Por favor, use este identificador para citar o enlazar este ítem:
http://conacyt.repositorioinstitucional.mx/jspui/handle/1000/3643
COVID-19 Knowledge Graph: a computable, multi-modal, cause-and-effect knowledge model of COVID-19 pathophysiology | |
Daniel Domingo-Fernandez. Shounak Baksi. Bruce T Schultz. Yojana Gadiya. Reagon Karki. Tamara Raschka. Christian Ebeling. Martin Hofmann-Apitius. Alpha Tom Kodamullil. | |
Acceso Abierto | |
Atribución-NoComercial-SinDerivadas | |
10.1101/2020.04.14.040667 | |
The past few weeks have witnessed a worldwide mobilization of the research community in response to the novel coronavirus (COVID-19). This global response has led to a burst of publications on the pathophysiology of the virus, yet without coordinated efforts to organize this knowledge, it can remain hidden away from individual research groups. By extracting and formalizing this knowledge in a structured and computable form, as in the form of a knowledge graph, researchers can readily reason and analyze this information on a much larger scale. Here, we present the COVID-19 Knowledge Graph, an expansive cause-and-effect network constructed from scientific literature on the new coronavirus that aims to provide a comprehensive view of its pathophysiology. To make this resource available to the research community and facilitate its exploration and analysis, we also implemented a web application and released the KG in multiple standard formats. | |
www.biorxiv.org | |
2020 | |
Artículo | |
https://www.biorxiv.org/content/10.1101/2020.04.14.040667v1.full.pdf | |
Inglés | |
VIRUS RESPIRATORIOS | |
Aparece en las colecciones: | Artículos científicos |
Cargar archivos:
Fichero | Tamaño | Formato | |
---|---|---|---|
1104750.pdf | 528.81 kB | Adobe PDF | Visualizar/Abrir |