Por favor, use este identificador para citar o enlazar este ítem:
http://conacyt.repositorioinstitucional.mx/jspui/handle/1000/3307
Machine Learning Analysis of Chest CT Scan Images as a Complementary Digital Test of Coronavirus (COVID-19) Patients | |
Dhurgham Al-karawi. Shakir Al-Zaidi. Nisreen Polus. Sabah Jassim. | |
Acceso Abierto | |
Atribución-NoComercial-SinDerivadas | |
10.1101/2020.04.13.20063479 | |
This paper reports on the development and performance of machine learning schemes for the analysis of Chest CT Scan images of Coronavirus COVID-19 patients and demonstrates significant success in efficiently and automatically testing for COVID-19 infection. In particular, an innovative frequency domain algorithm, to be called FFT-Gabor scheme, will be shown to predict in almost real-time the state of the patient with an average accuracy of 95.37%, sensitivity 95.99% and specificity 94.76%. The FFT-Gabor scheme is adequately informative in that clinicians can visually examine the FFT-Gabor feature to support their final diagnostic. | |
www.medrxiv.org | |
2020 | |
Artículo | |
https://www.medrxiv.org/content/10.1101/2020.04.13.20063479v1.full.pdf | |
Inglés | |
VIRUS RESPIRATORIOS | |
Aparece en las colecciones: | Artículos científicos |
Cargar archivos:
Fichero | Tamaño | Formato | |
---|---|---|---|
1103957.pdf | 390.54 kB | Adobe PDF | Visualizar/Abrir |