Por favor, use este identificador para citar o enlazar este ítem: http://conacyt.repositorioinstitucional.mx/jspui/handle/1000/2891
Wearable Cardiorespiratory Monitoring Employing a Multimodal Digital Patch Stethoscope: Estimation of ECG, PEP, LVET and Respiration Using a 55 mm Single-Lead ECG and Phonocardiogram
Michael Klum.
Mike Urban.
Timo Tigges.
Alexandru-Gabriel Pielmus.
Aarne Feldheiser.
Theresa Schmitt.
Reinhold Orglmeister.
Acceso Abierto
Atribución-NoComercial-SinDerivadas
10.3390/s20072033
Cardiovascular diseases are the main cause of death worldwide, with sleep disordered breathing being a further aggravating factor. Respiratory illnesses are the third leading cause of death amongst the noncommunicable diseases. The current COVID-19 pandemic, however, also highlights the impact of communicable respiratory syndromes. In the clinical routine, prolonged postanesthetic respiratory instability worsens the patient outcome. Even though early and continuous, long-term cardiorespiratory monitoring has been proposed or even proven to be beneficial in several situations, implementations thereof are sparse. We employed our recently presented, multimodal patch stethoscope to estimate Einthoven electrocardiogram (ECG) Lead I and II from a single 55 mm ECG lead. Using the stethoscope and ECG subsystems, the pre-ejection period (PEP) and left ventricular ejection time (LVET) were estimated. ECG-derived respiration techniques were used in conjunction with a novel, phonocardiogram-derived respiration approach to extract respiratory parameters. Medical-grade references were the SOMNOmedics SOMNO HDTM and Osypka ICON-CoreTM. In a study including 10 healthy subjects, we analyzed the performances in the supine, lateral, and prone position. Einthoven I and II estimations yielded correlations exceeding 0.97. LVET and PEP estimation errors were 10% and 21%, respectively. Respiratory rates were estimated with mean absolute errors below 1.2 bpm, and the respiratory signal yielded a correlation of 0.66. We conclude that the estimation of ECG, PEP, LVET, and respiratory parameters is feasible using a wearable, multimodal acquisition device and encourage further research in multimodal signal fusion for respiratory signal estimation.
Sensors
2020
Artículo
https://www.mdpi.com/1424-8220/20/7/2033/pdf
Inglés
VIRUS RESPIRATORIOS
Aparece en las colecciones: Artículos científicos

Cargar archivos:


Fichero Tamaño Formato  
1102888.pdf7.53 MBAdobe PDFVisualizar/Abrir