Por favor, use este identificador para citar o enlazar este ítem:
http://conacyt.repositorioinstitucional.mx/jspui/handle/1000/2415
Analysis of the COVID-19 pandemic by SIR model and machine learning technics for forecasting | |
Babacar Mbaye Ndiaye. Lena Tendeng. Diaraf Seck. | |
Acceso Abierto | |
Atribución-NoComercial-SinDerivadas | |
https://arxiv.org/pdf/2004.01574v1.pdf | |
This work is a trial in which we propose SIR model and machine learning tools to analyze the coronavirus pandemic in the real world. Based on the public data from cite{datahub}, we estimate main key pandemic parameters and make predictions on the inflection point and possible ending time for the real world and specifically for Senegal. The coronavirus disease 2019, by World Health Organization, rapidly spread out in the whole China and then in the whole world. Under optimistic estimation, the pandemic in some countries will end soon, while for most part of countries in the world (US, Italy, etc.), the hit of anti-pandemic will be no later than the end of April. | |
arxiv.org | |
2020 | |
Artículo | |
https://arxiv.org/pdf/2004.01574v1.pdf | |
Inglés | |
VIRUS RESPIRATORIOS | |
Aparece en las colecciones: | Artículos científicos |
Cargar archivos:
Fichero | Tamaño | Formato | |
---|---|---|---|
1101637.pdf | 571.15 kB | Adobe PDF | Visualizar/Abrir |