Por favor, use este identificador para citar o enlazar este ítem: http://conacyt.repositorioinstitucional.mx/jspui/handle/1000/2413
In Silico Screening of Some Naturally Occurring Bioactive Compounds Predicts Potential Inhibitors against SARS-COV-2 (COVID-19) Protease
Ashok Kumar Mishra.
Satya Prakash Tewari.
Acceso Abierto
Atribución-NoComercial-SinDerivadas
https://arxiv.org/pdf/2004.01634v1.pdf
SARS-COV-2 identified as COVID-19 in Wuhan city of China in the month of December, 2019 has now been declared as pandemic by World Health Organization whose transmission chain and cure both have emerged as a tough problem for the medical fraternity. The reports pertaining to the treatment of this pandemic are still lacking. We firmly believe that Nature itself provides a simple solution for any complicated problem created in it which motivated us to carry out In Silico investigations on some bioactive natural compounds reportedly found in the fruits and leaves of Anthocephalus Cadamba which is a miraculous plant found on the earth aiming to predict the potential inhibitors against aforesaid virus. Having modeled the ground state ligand structure of the such nine natural compounds applying density functional theory at B3LYP/631+G (d, p) level we have performed their molecular docking with SARS-COV-2 protease to calculate the binding affinity as well as to screen the binding at S-protein site during ligand-protein interactions. Out of these nine studied naturally occurring compounds; Oleanic Acid has been appeared to be potential inhibitor for COVID-19 followed by Ursolic Acid, IsoVallesiachotamine,Vallesiachotamine,Cadambine,Vincosamide-N-Oxide, Isodihydroamino-cadambine, Pentyle Ester of Chlorogenic Acid and D-Myo-Inositol. Hence these bioactive natural compounds or their structural analogs may be explored as anti-COVID19 drug agent which will be possessing the peculiar feature of cost-less synthesis and less or no side effect due to their natural occurrence. The solubility and solvent-effect related to the phytochemicals may be the point of concern. The In-vivo investigations on these proposed natural compounds or on their structural analogs are invited for designing and developing the potential medicine/vaccine for the treatment of COVID-19 pandemic.
arxiv.org
2020
Artículo
https://arxiv.org/pdf/2004.01634v1.pdf
Inglés
VIRUS RESPIRATORIOS
Aparece en las colecciones: Artículos científicos

Cargar archivos:


Fichero Tamaño Formato  
1101634.pdf773.38 kBAdobe PDFVisualizar/Abrir