Por favor, use este identificador para citar o enlazar este ítem:
http://conacyt.repositorioinstitucional.mx/jspui/handle/1000/2283
Discovering associations in COVID-19 related research papers | |
Iztok Fister Jr.. Karin Fister. Iztok Fister. | |
Acceso Abierto | |
Atribución-NoComercial-SinDerivadas | |
https://arxiv.org/pdf/2004.03397v1.pdf | |
A COVID-19 pandemic has already proven itself to be a global challenge. It proves how vulnerable humanity can be. It has also mobilized researchers from different sciences and different countries in the search for a way to fight this potentially fatal disease. In line with this, our study analyses the abstracts of papers related to COVID-19 and coronavirus-related-research using association rule text mining in order to find the most interestingness words, on the one hand, and relationships between them on the other. Then, a method, called information cartography, was applied for extracting structured knowledge from a huge amount of association rules. On the basis of these methods, the purpose of our study was to show how researchers have responded in similar epidemic/pandemic situations throughout history. | |
arxiv.org | |
2020 | |
Artículo | |
https://arxiv.org/pdf/2004.03397v1.pdf | |
Inglés | |
VIRUS RESPIRATORIOS | |
Aparece en las colecciones: | Artículos científicos |
Cargar archivos:
Fichero | Tamaño | Formato | |
---|---|---|---|
1101401.pdf | 486.18 kB | Adobe PDF | Visualizar/Abrir |