Por favor, use este identificador para citar o enlazar este ítem: http://conacyt.repositorioinstitucional.mx/jspui/handle/1000/2253
Visualising the Evolution of English Covid-19 Cases with Topological Data Analysis Ball Mapper
Pawel Dlotko.
Simon Rudkin.
Acceso Abierto
Atribución-NoComercial-SinDerivadas
https://arxiv.org/pdf/2004.03282v1.pdf
Understanding disease spread through data visualisation has concentrated on trends and maps. Whilst these are helpful, they neglect important multi-dimensional interactions between characteristics of communities. Using the Topological Data Analysis Ball Mapper algorithm we construct an abstract representation of NUTS3 level economic data, overlaying onto it the confirmed cases of Covid-19 in England. In so doing we may understand how the disease spreads on different socio-economical dimensions. It is observed that some areas of the characteristic space have quickly raced to the highest levels of infection, while others close by in the characteristic space, do not show large infection growth. Likewise, we see patterns emerging in very different areas that command more monitoring. A strong contribution for Topological Data Analysis, and the Ball Mapper algorithm especially, in comprehending dynamic epidemic data is signposted.
arxiv.org
2020
Artículo
https://arxiv.org/pdf/2004.03282v1.pdf
Inglés
VIRUS RESPIRATORIOS
Aparece en las colecciones: Artículos científicos

Cargar archivos:


Fichero Tamaño Formato  
1101353.pdf419.36 kBAdobe PDFVisualizar/Abrir