Por favor, use este identificador para citar o enlazar este ítem: http://conacyt.repositorioinstitucional.mx/jspui/handle/1000/2214
Google COVID-19 Community Mobility Reports: Anonymization Process Description (version 1.0)
Ahmet Aktay.
Shailesh Bavadekar.
Gwen Cossoul.
John Davis.
Damien Desfontaines.
Alex Fabrikant.
Evgeniy Gabrilovich.
Krishna Gadepalli.
Bryant Gipson.
Miguel Guevara.
Chaitanya Kamath.
Mansi Kansal.
Ali Lange.
Chinmoy Mandayam.
Andrew Oplinger.
Christopher Pluntke.
Thomas Roessler.
Arran Schlosberg.
Tomer Shekel.
Swapnil Vispute.
Mia Vu.
Gregory Wellenius.
Brian Williams.
Royce J Wilson.
Acceso Abierto
Atribución-NoComercial-SinDerivadas
https://arxiv.org/pdf/2004.04145v2.pdf
This document describes the aggregation and anonymization process applied to the initial version of Google COVID-19 Community Mobility Reports (published at http://google.com/covid19/mobility on April 2, 2020), a publicly available resource intended to help public health authorities understand what has changed in response to work-from-home, shelter-in-place, and other recommended policies aimed at flattening the curve of the COVID-19 pandemic. Our anonymization process is designed to ensure that no personal data, including an individual's location, movement, or contacts, can be derived from the resulting metrics. The high-level description of the procedure is as follows: we first generate a set of anonymized metrics from the data of Google users who opted in to Location History. Then, we compute percentage changes of these metrics from a baseline based on the historical part of the anonymized metrics. We then discard a subset which does not meet our bar for statistical reliability, and release the rest publicly in a format that compares the result to the private baseline.
arxiv.org
2020
Artículo
https://arxiv.org/pdf/2004.04145v2.pdf
Inglés
VIRUS RESPIRATORIOS
Aparece en las colecciones: Artículos científicos

Cargar archivos:


Fichero Tamaño Formato  
1101281.pdf217.3 kBAdobe PDFVisualizar/Abrir