Por favor, use este identificador para citar o enlazar este ítem: http://conacyt.repositorioinstitucional.mx/jspui/handle/1000/2173
Modeling Epidemic Spreading through Public Transit using Time-Varying Encounter Network
Baichuan Mo.
Kairui Feng.
Yu Shen.
Clarence Tam.
Daqing Li.
Yafeng Yin.
Jinhua Zhao.
Acceso Abierto
Atribución-NoComercial-SinDerivadas
https://arxiv.org/pdf/2004.04602v1.pdf
Passenger contact in public transit (PT) networks can be a key mediate in the spreading of infectious diseases. This paper proposes a time-varying weighted PT encounter network to model the spreading of infectious diseases through the PT systems. Social activity contacts at both local and global levels are also considered. We select the epidemiological characteristics of coronavirus disease 2019 (COVID-19) as a case study along with smart card data from Singapore to illustrate the model at the metropolitan level. A scalable and lightweight theoretical framework is derived to capture the time-varying and heterogeneous network structures, which enables to solve the problem at the whole population level with low computational costs. Different control policies from both the public health side and the transportation side are evaluated. We find that people's preventative behavior is one of the most effective measures to control the spreading of epidemics. From the transportation side, partial closure of bus routes helps to slow down but cannot fully contain the spreading of epidemics. Identifying "influential passengers" using the smart card data and isolating them at an early stage can also effectively reduce the epidemic spreading.
arxiv.org
2020
Artículo
https://arxiv.org/pdf/2004.04602v1.pdf
Inglés
VIRUS RESPIRATORIOS
Aparece en las colecciones: Artículos científicos

Cargar archivos:


Fichero Tamaño Formato  
1101198.pdf6.37 MBAdobe PDFVisualizar/Abrir