Por favor, use este identificador para citar o enlazar este ítem:
http://conacyt.repositorioinstitucional.mx/jspui/handle/1000/2009
Deep Learning COVID-19 Features on CXR using Limited Training Data Sets | |
Yujin Oh. Sangjoon Park. Jong Chul Ye. | |
Acceso Abierto | |
Atribución-NoComercial-SinDerivadas | |
https://arxiv.org/pdf/2004.05758v1.pdf | |
Under the global pandemic of COVID-19, the use of artificial intelligence to analyze chest X-ray (CXR) image for COVID-19 diagnosis and patient triage is becoming important. Unfortunately, due to the emergent nature of the COVID-19 pandemic, a systematic collection of the CXR data set for deep neural network training is difficult. To address this problem, here we propose a patch-based convolutional neural network approach with a relatively small number of trainable parameters for COVID-19 diagnosis. The proposed method is inspired by our statistical analysis of the potential imaging biomarkers of the CXR radiographs. Experimental results show that our method achieves state-of-the-art performance and provides clinically interpretable saliency maps, which are useful for COVID-19 diagnosis and patient triage. | |
arxiv.org | |
2020 | |
Artículo | |
https://arxiv.org/pdf/2004.05758v1.pdf | |
Inglés | |
VIRUS RESPIRATORIOS | |
Aparece en las colecciones: | Artículos científicos |
Cargar archivos:
Fichero | Tamaño | Formato | |
---|---|---|---|
1100892.pdf | 2.45 MB | Adobe PDF | Visualizar/Abrir |