Por favor, use este identificador para citar o enlazar este ítem: http://conacyt.repositorioinstitucional.mx/jspui/handle/1000/2009
Deep Learning COVID-19 Features on CXR using Limited Training Data Sets
Yujin Oh.
Sangjoon Park.
Jong Chul Ye.
Acceso Abierto
Atribución-NoComercial-SinDerivadas
https://arxiv.org/pdf/2004.05758v1.pdf
Under the global pandemic of COVID-19, the use of artificial intelligence to analyze chest X-ray (CXR) image for COVID-19 diagnosis and patient triage is becoming important. Unfortunately, due to the emergent nature of the COVID-19 pandemic, a systematic collection of the CXR data set for deep neural network training is difficult. To address this problem, here we propose a patch-based convolutional neural network approach with a relatively small number of trainable parameters for COVID-19 diagnosis. The proposed method is inspired by our statistical analysis of the potential imaging biomarkers of the CXR radiographs. Experimental results show that our method achieves state-of-the-art performance and provides clinically interpretable saliency maps, which are useful for COVID-19 diagnosis and patient triage.
arxiv.org
2020
Artículo
https://arxiv.org/pdf/2004.05758v1.pdf
Inglés
VIRUS RESPIRATORIOS
Aparece en las colecciones: Artículos científicos

Cargar archivos:


Fichero Tamaño Formato  
1100892.pdf2.45 MBAdobe PDFVisualizar/Abrir