Please use this identifier to cite or link to this item:
http://conacyt.repositorioinstitucional.mx/jspui/handle/1000/1730
Development of a reverse transcription-loop-mediated isothermal amplification as a rapid early-detection method for novel SARS-CoV-2 | |
Yun Hee Baek Khristine Joy Antigua Ji-Hyun Parka Yeonjae Kim Sol Oh Young Il Kim Won-Suk Choi Seong Gyu Kim Ju Hwan Jeong BUMSIK CHIN Halcyon Dawn Nicolas Ji Young Ahn Kyeong Seob Shin Young Ki Choi Jun Sun Park Min-Suk Song | |
Acceso Abierto | |
Atribución | |
https://doi.org/10.1080/22221751.2020.1756698 | |
SARS-CoV-2 Reverse transcription-loop-mediated isothermal amplification Molecular diagnosis Colorimetric detection COVID-19 | |
The previous outbreaks of SARS-CoV and MERS-CoV have led researchers to study the role of diagnostics in impediment of further spread and transmission. With the recent emergence of the novel SARS-CoV-2, the availability of rapid, sensitive, and reliable diagnostic methods is essential for disease control. Hence, we have developed a reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay for the specific detection of SARS-CoV-2. The primer sets for RT-LAMP assay were designed to target the nucleocapsid gene of the viral RNA, and displayed a detection limit of 102 RNA copies close to that of qRT-PCR. Notably, the assay has exhibited a rapid detection span of 30 min combined with the colorimetric visualization. This test can detect specifically viral RNAs of the SARS-CoV-2 with no cross-reactivity to related coronaviruses, such as HCoV-229E, HCoV-NL63, HCoV-OC43, and MERS-CoV as well as human infectious influenza viruses (type B, H1N1pdm, H3N2, H5N1, H5N6, H5N8, and H7N9), and other respiratory disease-causing viruses (RSVA, RSVB, ADV, PIV, MPV, and HRV). Furthermore, the developed RT-LAMP assay has been evaluated using specimens collected from COVID-19 patients that exhibited high agreement to the qRT-PCR. Our RT-LAMP assay is simple to perform, less expensive, time-efficient, and can be used in clinical laboratories for preliminary detection of SARS-CoV-2 in suspected patients. In addition to the high sensitivity and specificity, this isothermal amplification conjugated with a single-tube colorimetric detection method may contribute to the public health responses and disease control, especially in the areas with limited laboratory capacities. | |
Emerging Microbes & Infections | |
18-05-2020 | |
Artículo | |
https://www.tandfonline.com/doi/full/10.1080/22221751.2020.1756698 | |
Inglés | |
Epidemia COVID-19 | |
Investigadores | |
VIRUS RESPIRATORIOS | |
Versión publicada | |
publishedVersion - Versión publicada | |
Appears in Collections: | Artículos científicos |
Upload archives