Please use this identifier to cite or link to this item: https://covid-19.conacyt.mx/jspui/handle/1000/1442
Development of a SYBR green-based real-time RT-PCR assay for rapid detection of the emerging swine acute diarrhea syndrome coronavirus
Ma, L
Zeng, F
Cong, F
Huang, B
Huang, R
Ma, J
Guo, P
Acceso Abierto
Atribución-NoComercial-SinDerivadas
Swine acute diarrhea syndrome coronavirus (SADS-CoV) is a novel coronavirus which was associated with severe diarrhea disease in pigs. SADS-CoV was first detected and identified as the causative agent of a devastating swine disease outbreak in southern China in 2017. Routine monitoring and early detection of the source of infection is therefore integral to the prevention and control of SADS-CoV infection. In this study, a SYBR green-based real-time reverse transcription quantitative polymerase chain reaction (RT-qPCR) technique was established for rapid detection and monitoring of this emerging virus. Specific primers were designed based on the conserved region within the M gene of the viral genome. The lowest detection limit of the RT-qPCR assay was 10 copies/μL. This assay was specific and had no cross-reaction with other 11 swine viruses. The positive rate of 84 clinical samples for the SYBR green-based RT-qPCR and the conventional RT-PCR was 73.81% (62/84) and 53.57% (45/84), respectively. These results demonstrated that the SYBR green-based RT-qPCR technique was an effectively diagnostic method with higher sensitivity than probe-based RT-qPCR and gel-based RT-PCR for detection and epidemiological investigations of SADS-CoV.
Journal of Virological Methods
2019
Preimpreso
https://coronavirus.1science.com/item/c2d62b39c35882d392e898db1fb00ac5182de188
Inglés
VIRUS RESPIRATORIOS
Appears in Collections:Artículos científicos

Upload archives


File SizeFormat 
108961.pdf776.37 kBAdobe PDFView/Open