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ABSTRACT 

Background:  Infectious disease predictions models, including virtually all epidemiological models 

describing the spread of the SARS-CoV-2 pandemic up to June 2020, are rarely evaluated. The aim of 

the present study was to investigate the predictive accuracy of a prognostic model for forecasting the 

development of the cumulative number of reported SARS-CoV-2 cases in countries and administrative 

regions worldwide. 

Methods: The cumulative number of reported SARS-CoV-2 cases was forecasted in 251 regions with a 

horizon of two weeks, one month, and two months using a previously described hierarchical logistic 

model at the end of March 2020. Forecasts were compared to actual observations by using a series of 

evaluation metrics. 

Results: On average, predictive accuracy was very high in nearly all regions at the two weeks forecast, 

high in most regions at the one month forecast, and notable in the majority of the regions at the two 

months forecast. Higher accuracy was associated with the availability of more data for estimation and 

with a more pronounced cumulative case growth from the first case to the date of estimation. In some 

strongly affected regions, cumulative case counts were considerably underestimated. 

Conclusions: With keeping its limitations in mind, the investigated model can be used for the 

preparation and distribution of resources during the SARS-CoV-2 pandemic. Future research should 

primarily address the model’s assumptions and its scope of applicability. In addition, establishing a 

relationship with known mechanisms and traditional epidemiological models of disease transmission 

would be desirable. 
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BACKGROUND 

Mathematical and simulation models of infectious disease dynamics are essential for understanding 

and forecasting the development of epidemics.1 As of June 2020, the ongoing severe acute respiratory 

syndrome coronavirus 2 (SARS-CoV-2) pandemic has called increased attention to epidemiological 

modeling both as a method of scientific inquiry and as a tool to inform political decision making.2–5 

Among epidemiological modeling methods, a distinction between mechanistic and phenomenological 

approaches is frequently made. While mechanistic approaches model the transmission dynamics 

based on substantial concepts from biology, virology, infectology, and related disciplines, 

phenomenological (sometimes termed ‘statistical’) models are looking for a mathematical function 

that fits observed data well without clear assumptions about the underlying processes.1,2 Mechanistic 

models are usually used to compare possible scenarios and to estimate the relative effects of different 

interventions rather than to produce precise predictions. On the contrary, phenomenological models 

are commonly optimized for forecasting. From a broader perspective, mechanistic and 

phenomenological approaches can be considered as the epidemiological modeling representatives of 

the long-standing explanation-prediction controversy.6 It should be noted that although the distinction 

between these two model classes is instructive and one side usually predominates, most approaches 

have both mechanistic and phenomenological components, and some are explicitly balanced (so called 

‘semi-mechanistic’ or ‘hybrid’ models). 

Although the value of any predictive model is ultimately determined by whether it improved critical 

decision making,7,8 a rigorous scientific appraisal should also include a comparison of what have been 

predicted to what have actually happened.1,9,10 Unfortunately, infectious disease predictions models 

are rarely evaluated during or after outbreaks.9,10 Notable exceptions include systematic evaluation of 

models about the epidemiology of severe acute respiratory syndrome (SARS),11,12 influenza,13,14 

ebola,7,9,15,16 dengue,10,17 foot-and-mouth disease,8 and trachoma.18 

The SARS-CoV-2 pandemic has prompted a large amount of epidemiological modeling efforts, including 

studies with primarily mechanistic (e.g., references19–25), primarily phenomenological (e.g., 

references26–29), and hybrid (e.g., reference30) approaches. According to the knowledge of the author 

up to June 2020, none of the existing models was systematically evaluated with regard to the accuracy 

of their predictions. In order to start closing this gap, the objective of the present study was to evaluate 

the predictive accuracy of a phenomenologically oriented model that was trained on data up to the 

end of March 2020 for forecasting the development of the cumulative number of reported SARS-CoV-

2 cases in countries and administrative regions worldwide.31 

 

METHODS 

Data 

As described in detail elsewhere,31 the model was fitted using information on the cumulative number 

of confirmed SARS-CoV-2 infections in the COVID-19 data repository of the Johns Hopkins University 

Center for Systems Science and Engineering.32,33 Cumulative case count data from 251 countries and 

administrative regions were used for training the model, with daily time series from the day of the first 

reported case to 29 March 2020 in each region. For evaluation, data of confirmed cases were extracted 

from the same database two weeks, one month, and two months after model development (12 April, 

29 April, and 29 May 2020). Sufficient information for creating predictions of the most likely number 
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of cases in all investigated countries and administrative regions for any time horizon was made publicly 

available at the beginning of April 2020.31 

 

Model 

A hierarchical logistic model was fit to observed data.31 The logistic part of the model was based on 

the ecological concept of self-limiting population growth34 and used a formulation with five 

parameters35 controlling the expected final case count at the end of the outbreak (parameter a), the 

maximum speed of reaching the expected final case count (parameter b), the approximate time point 

of the transition of the outbreak from an accelerating to a decelerating dynamic (parameter c), the 

case count at the beginning of the outbreak (parameter d), and the degree of asymmetry between the 

accelerating and decelerating phases of the outbreak (parameter g). The predicted number of 

cumulative case counts in region i at day t from the first reported case was estimated as  

𝑛𝑝𝑟𝑒𝑑,𝑖𝑡 = 𝑑𝑖 +
𝑎𝑖 − 𝑑𝑖

(1 + (
𝑡
𝑐𝑖

)
𝑏𝑖

)
𝑔𝑖

 

with log-normally distributed errors. 

The hierarchical part of the model was inspired by random-effect meta-analysis assuming that the 

parameters of the logistic equation are similar, but not necessarily identical, across the investigated 

regions.36,37 This was implemented by restricting the parameters of the logistic equation to follow a 

normal distribution in the population of regions. With respect to interpretation, this means that the 

model was based on the hypothesis that the pandemic runs a similar course in all countries and 

regions, even though they are expected to differ to a certain degree regarding the number of cases in 

their first report, the expected final case count, the time point and speed of the accelerating and 

decelerating phases of the outbreak, as well as the time point, extent, and effects of control measures. 

 

Evaluation metrics 

For evaluating each individual estimate i at time point t, four measures were calculated. 

The difference between logarithmic predicted and observed counts (“error in logs”, EIL) was defined 

as 

𝐸𝐼𝐿𝑖𝑡 = ln 𝑛𝑝𝑟𝑒𝑑,𝑖𝑡 − ln 𝑛𝑜𝑏𝑠,𝑖𝑡  , 

with ln being the natural logarithm, and npred and nobs being the predicted and  the observed cumulative 

case counts, respectively. 

The absolute error in logs (AIEL) was calculated as  

𝐴𝐸𝐼𝐿𝑖𝑡 = |ln 𝑛𝑝𝑟𝑒𝑑,𝑖𝑡 − ln 𝑛𝑜𝑏𝑠,𝑖𝑡| . 

 

The percentage error (PE) was calculated as 
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𝑃𝐸𝑖𝑡 =
𝑛𝑝𝑟𝑒𝑑,𝑖𝑡 − 𝑛𝑜𝑏𝑠,𝑖𝑡

𝑛𝑜𝑏𝑠,𝑖𝑡
 , 

and the absolute percentage error (APE) as 

𝐴𝑃𝐸𝑖𝑡 =
|𝑛𝑝𝑟𝑒𝑑,𝑖𝑡 − 𝑛𝑜𝑏𝑠,𝑖𝑡|

𝑛𝑜𝑏𝑠,𝑖𝑡
 . 

Summary estimates of predictive accuracy across all k regions at a given time point t are listed in the 

following. 

The root mean squared error in logs (RMSE) was defined as 

𝑅𝑀𝑆𝐸𝑡 = √∑(ln 𝑛𝑝𝑟𝑒𝑑,𝑖𝑡 − ln 𝑛𝑜𝑏𝑠,𝑖𝑡)
2

𝑘

𝑖=1

 , 

and the mean absolute percentage error (MAPE) was calculated as 

𝑀𝐴𝑃𝐸𝑡 =

∑
|𝑛𝑝𝑟𝑒𝑑,𝑖𝑡 − 𝑛𝑜𝑏𝑠,𝑖𝑡|

𝑛𝑜𝑏𝑠,𝑖𝑡

𝑘
𝑖=1

𝑘
 . 

The coefficient of determination R2
t was additionally determined from a linear model regressing the 

logarithmic observed values on the logarithmic predictions with the intercept fixed at zero. 

Furthermore, the intraclass correlation coefficient ICC(3,1)t was calculated for quantifying the level of 

absolute agreement between predicted and observed values from a two-way mixed-effects model.38 

Bootstrapping was used with 1,000 samples to create 95% confidence intervals for summary estimates 

of predictive accuracy. 

 

Factors associated with accuracy 

In order to identify factors associated with the accuracy of the predictions, the AEIL was regressed on 

the number of available data points, the difference in the logarithm of the first and the last case count 

at the moment of estimation (as a proxy for progress of the epidemic), and their interaction term. 

Estimates are reported with 95% parametric confidence intervals. 

Furthermore, strongly affected regions (defined by a minimum of 10,000 cases at the forecasted time 

point) with the most extreme under- and overestimation were identified to gain additional qualitative 

insights on model performance. 

 

RESULTS 

Data 

In 251 regions, the number of available data points at estimation ranged from 2 to 68 with a median 

of 25 and a mean of 31.48 days. The cumulative number of reported cases at the point of the first non-

zero count ranged from 1 to 444 with a median of 1 and a mean of 4.09 across regions. The cumulative 
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number of reported cases at model estimation (29 March 2020) ranged from 1 to 140,886 with a 

median of 139 and a mean of 2,869. 

 

Individual estimates of predictive accuracy 

The probability density function of the percentage error (PE) at the day of estimation as well at the 

forecasts after two weeks, one month, and two months, respectively, is displayed in Figure 1. At the 

day of estimation, the median relative error indicated an average underestimation of the cumulative 

case count by about one third across regions. The relative error distribution was rather narrow, with 

only a tenth of predictions showing an underestimation exceeding -62.8 percent and none of the 

predictions having more than 36.9 percent error. Across forecasts, the median percentage error was 

always less than twenty percent, although an overestimation by more than two hundred percent was 

observed in 7.2, 19.1, and 19.5 percent of the cases at the two weeks, one months, and two months 

forecasts, respectively. The proportion of regions with an underestimation exceeding minus two thirds 

(-66.6 percent) was 12.4, 19.5, and 28.7 percent at the two weeks, one months, and two months 

forecasts, respectively. 

 

Figure 1. Probability density function of the percentage error at different forecast horizons 

The solid line shows the median, the dashed lines show the first and third quartiles, and the dotted lines show the first and 

ninth deciles. The x-axis is trimmed at 2.5. 
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The calibration plots suggest an increasing number of regions for which case counts are substantially 

under- or overestimated with increasing length of the forecast period (Figure 2). Nevertheless, a 

strong positive association between predicted and observed case counts is apparent even after two 

months. 

 

Figure 2. Calibration plots at different forecast horizons 

Points refer to regions. The solid black line indicates no prediction error, the blue area indicates a prediction error by a factor 

of two or less, and the green area indicates a prediction error by a factor of ten or less. Both axes are log-transformed. 

 

Summary estimates of predictive accuracy 

All parameters show an increasing amount of error with increasing length of the forecast period 

(Table 1). The MAPE shows that, on average, estimates are off by more than one hundred, two 

hundred, and four hundred percent at the two weeks, one month, and two months forecasts, 

respectively. The coefficient of determination indicates a very strong relative association between 

predicted and observed case counts, and the intraclass correlation coefficient suggests that the level 

of absolute agreement is excellent after two weeks and still high after one month, but sinks to a 

moderate level after two months. 
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Table 1. Summary estimates of predictive accuracy 

 RMSE 
(95% CI) 

MAPE 
(95% CI) 

R2 
(95% CI) 

ICC 
(95% CI) 

Day of estimation 
0.640 

(0.577 to 0.707) 
0.323 

(0.295 to  0.356) 
0.989 

(0.986 to 0.992) 
0.984 

(0.979 to 988) 

Two weeks forecast 
0.900 

(0.803 to 1.05) 
1.085 

(0.673 to 2.598) 
0.980 

(0.971 to  0.984) 
0.935 

(0.905 to 0.950) 

One month forecast 
1.393 

(1.271 to  1.546) 
2.133 

(1.600 to  2.953) 
0.958 

(0.948 to  0.966) 
0.828 

(0.777 to 0.866) 

Two months forecast 
1.958 

(1.791 to  2.157) 
4.250 

(2.907 to  6.735) 
0.931 

(0.914 to  0.943) 
0.679 

(0.606 to 0.748) 

RMSE=root mean squared error in logarithmic case counts; MAPE=mean absolute percentage error in case counts; 

R2=coefficient of determination; ICC=intraclass correlation; CI=confidence interval 

 

Factors associated with accuracy 

Visual analysis suggests that a larger number of available data points at estimation (Figure 3) and a 

more extensive growth of the logarithmic case counts from the first reported case until estimation 

(Figure 4) are associated with a lower prediction error. 

 

Figure 3. Association of the amount of available data at estimation and predictive accuracy (AEIL) at 

different forecast horizons 

AEIL= absolute difference between logarithmic predicted and observed case counts. Points refer to regions. The grey line 

corresponds to a linear smoothing curve. 
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This is confirmed by regression analyses indicating statistically significant associations that are 

becoming stronger with increasing forecast horizon (Table 2). These two factors have also a 

multiplicative effect, as indicated by the statistically significant interaction term. 

 

Figure 4. Association of growth in logarithmic case counts until estimation and predictive accuracy 

(AEIL) at different forecast horizons 

AEIL= absolute difference between logarithmic predicted and observed case counts. Points refer to regions. The grey line 

corresponds to a linear smoothing curve. 

 

Table 2. Regression coefficients for factors associated with prediction accuracy (AEIL) 

 Number of data points in 
weeks 

(95% CI) 

Growth in logarithmic case 
counts until estimation 

(95% CI) 

Interaction 
term 

(95% CI) 

Day of estimation 
-0.077*** 

(-0.114 to -0.040) 
-0.016 

(-0.055 to 0.023) 
0.002 

(-0.005 to 0.009) 

Two weeks forecast 
-0.073* 

(-1.304 to -0.015) 
-0.100** 

(-1.614 to -0.039) 
0.011* 

(0.000 to 0.022) 

One month forecast 
-0.131** 

(-0.216 to -0.046) 
-0.145** 

(-0.235 to -0.054) 
0.017* 

(0.001 to 0.034) 

Two months forecast 
-0.242*** 

(-0.361 to -0.124) 
-0.242*** 

(-0.368 to -0.117) 
0.032** 

(0.010 to 0.055) 

AEIL= absolute difference between logarithmic predicted and observed case counts; CI=confidence interval; *p<.050; 

**p<.010; ***p<.001 
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Strongly affected regions (a minimum of 10,000 cases) with extreme under- or overestimation of the 

cumulative case counts are presented in Table 4. Among the listed regions, the extent of 

underestimation was considerable (an EIL below -1.6, roughly corresponding to an underestimation by 

a factor of five) at the one and two months forecasts, with most regions being located in Asia. Among 

strongly affected regions, overestimation was rather moderate (an EIL below 0.7, roughly 

corresponding to an overestimation by a factor of two) in most cases. Substantial overestimation (an 

EIL between 0.7 and 1.6) was present in Austria and Switzerland at the one and two months forecasts 

and in the United States at the one month forecast. No strongly affected region with a considerable 

overestimation (EIL above 1.6) was identified. 

Table 3. Most extreme under- or overestimation for regions with a minimum number of 10,000 

cases 

 Underestimation Overestimation 

 Region EIL Region EIL 

Day of estimation 

Belgium -0.565 Hubei, China 0.022 

United States of America -0.444 Germany 0.020 

Netherlands -0.422 NA NA 

Switzerland -0.322 NA NA 

Italy -0.301 NA NA 

Two weeks forecast 

Belgium -1.274 Austria 0.657 

Sweden -1.171 Quebec, Canada 0.498 

Russia -0.939 Switzerland 0.399 

France -0.651 United States of America 0.336 

Iran -0.556 Germany 0.096 

One month forecast 

Belarus -3.719 Austria 1.281 

Qatar -3.159 Switzerland 0.889 

Singapore -3.155 United States of America 0.714 

India -2.301 Quebec, Canada 0.638 

Russia -2.290 Portugal 0.402 

Two months forecast 

Bangladesh -6.097 Austria 1.398 

Belarus -4.730 Switzerland 1.012 

Qatar -4.597 United States of America 0.399 

Kuwait -4.104 Israel 0.358 

India -3.864 Portugal 0.302 

EIL= difference between logarithmic predicted and observed case counts; NA=not applicable 

 

DISCUSSION 

In the present study, a hierarchical logistic model was used to predict cumulative counts of confirmed 

SARS-CoV-2 cases in 251 countries and administrative regions with two weeks, one month, and two 

months forecasting horizons. Several metrics were used to evaluate predictions visually and 

statistically. In summary, case counts could be predicted in the majority of the regions with a surprising 

accuracy. In spite of the facts that at the time of estimation (29 March 2020) only about one month’s 

data were available on average in each region, and that most regions were at the very beginning of the 

epidemic, a massive difference between forecast and observation was rather the exception than the 
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rule. Summary metrics of predictive accuracy suggested very strong prognostic validity the model for 

a horizon of two weeks, substantial accuracy after one month, and still notable, although markedly 

lower, accuracy after two months. This is in good agreement with studies finding that the horizon for 

reasonable epidemiological predictions covers a few weeks at most.9,17 

Although most predictions were fairly accurate, some were still considerably off. They were most likely 

to be found in regions with a lower amount of available data at the date of estimation and/or with a 

more limited growth between the date of the first case and the date of estimation. In general, 

underestimation seems to be somewhat more pronounced than overestimation, particularly in 

strongly affected regions (i.e., with cumulative case counts above 10,000 at the point of validation). 

The strongly affected regions for which the model provided too low predictions included several 

countries in which mitigation strategies might have been less effective than in other regions, as 

suggested by the only slowly or not at all decelerating cumulative case growth curves at the beginning 

of June 2020 (e.g., India, Bangladesh, Qatar). On the other hand, the strongly affected regions with a 

substantial overestimation of cumulative case counts are characterized with an extremely successful 

mitigation of the epidemic (mainly Austria and Switzerland). Hence, predictive errors are likely to be 

closely related to one of the central assumptions of the model, i.e., that timing, extent, and 

effectiveness of control measures is comparable across regions. Obviously, the forecasts based on the 

presented model are likely to reach their limits in regions that deviate too strongly from the average 

case. As shifting individual estimates towards the group mean is also a statistical property of 

hierarchical models,39 extreme cases are likely to fall outside the scope of validity of the presented 

approach.  

A notable feature of the model that it provides predictions without any reference to measures taken 

to control the epidemic. This “ignorance” towards interventions, paired with fairly accurate 

predictions, may be misinterpreted as evidence of dispensability of the mitigation and containment 

measures implemented in most countries. However, it is far more likely that the key model assumption 

suggesting similarity of the course of the epidemic and of the control measures taken across regions 

holds to a substantial extent. In cases when it does not, model performance is very poor, as discussed 

above. Bringing these issue together, the hierarchical structure of the model appears to have both 

benefits and risks: sufficiently accurate predictions for a large number of regions even at a very early 

stage of the epidemic come with the price of considerably erroneous predictions for atypical regions. 

Consequently, if used with the aim of generating locally applicable predictions for a particular region, 

forecasts may be improved by using data from comparable regions with a higher probability than from 

rather dissimilar regions.40 

The presented evaluation study has several limitations. First, the case counts were not standardized in 

any form. Expressing them as cumulative incidence rates (e.g., per 100,000 persons) is likely to have 

increased homogeneity across regions and enhanced interpretability. As it has been shown in a specific 

analysis of the development of the SARS-CoV-2 epidemic in German federal states, standardization has 

rendered using log-transformation of case counts for homogenization superfluous and allowed 

estimating models with normally distributed errors.41 Second, in the present study uncertainty of the 

predictions remained unconsidered, although measures of uncertainty, such as reliability and 

sharpness, can be just as important for forecasting as bias.9 Third, predictions only at selected time 

points were analyzed, and it cannot be excluded that choosing other time points would have led to 

different results. Nevertheless, the general pattern of findings is unlikely to have changed substantially. 
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The forecasting model itself has some weaknesses as well.31,41 Most importantly, it models the 

reported rather than the true number of cases and therefore can be subject to different forms of 

testing and reporting bias. Considerable improvement regarding this point can realistically be expected 

first when regional findings form well-conducted epidemiological studies become available. Another 

major limitation of the model is that it works only as long as the conditions of the epidemic remain 

largely unchanged in each region, i.e., within a single epidemic wave with fairly constant testing and 

reporting practices and without serious disruptions. This issue could perhaps be addressed by using 

dynamic (time-dependent) rather than fixed (time-invariant) model parameters.42 Finally, the primarily 

phenomenological nature of the model calls for integration with mechanistic components, in  order to 

create a hybrid approach that is capable of producing widely generalizable conclusions.43 

As stated by one of the most prominent epidemiologist of the SARS-CoV-2 pandemic, Neil Ferguson, 

models are “not crystal balls”.3 However, without rigorous scientific evaluation, they run the risk of 

becoming one, characterized not by correct predictions but by obscurity. Some state that 

epidemiological forecasting is “more challenging than weather forecasting”,44 and complexity of 

modelling and reliance on assumptions make it difficult to assess the trustworthiness of models based 

solely on their inherent structure. Just like we trust weather forecasts that prove to be accurate by 

experience, empirical comparison of modeling predictions with actual observations should become an 

essential step of epidemiological model evaluation. 
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