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Abstract

To support public health policymakers in Connecticut, we developed a county-structured compartmental SEIR-type
model of SARS-CoV-2 transmission and COVID-19 disease progression. Our goals were to provide projections
of infections, hospitalizations, and deaths, as well as estimates of important features of disease transmission,
public behavior, healthcare response, and clinical progression of disease. In this paper, we describe a transmission
model developed to meet the changing requirements of public health policymakers and officials in Connecticut
from March 2020 to February 2021. We outline the model design, implementation and calibration, and describe
how projections and estimates were used to support decision-making in Connecticut throughout the first year of
the pandemic. We calibrated this model to data on deaths and hospitalizations, developed a novel measure of
close interpersonal contact frequency to capture changes in transmission risk over time and used multiple local
data sources to infer dynamics of time-varying model inputs. Estimated time-varying epidemiologic features
of the COVID-19 epidemic in Connecticut include the effective reproduction number, cumulative incidence of
infection, infection hospitalization and fatality ratios, and the case detection ratio. We describe methodology
for producing projections of epidemic evolution under uncertain future scenarios, as well as analytical tools for
estimating epidemic features that are difficult to measure directly, such as cumulative incidence and the effects
of non-pharmaceutical interventions. The approach takes advantage of our unique access to Connecticut public
health surveillance and hospital data and our direct connection to state officials and policymakers. We conclude
with a discussion of the limitations inherent in predicting uncertain epidemic trajectories and lessons learned from
one year of providing COVID-19 projections in Connecticut.

Keywords: SEIR epidemic model, SARS-CoV-2, social distancing, effective reproduction number, case detection
ratio, infection fatality ratio, infection hospitalization ratio
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Introduction

Epidemiologic models of infectious disease transmission have played an important role in supporting public health

decision-making during the COVID-19 pandemic [1–7]. By specifying structural features of infection transmission

dynamics, models can provide insights into epidemiologic parameters, historical trends in epidemic dynamics, or

future outcomes under hypothetical intervention scenarios. Transmission models are especially useful in situations of

high uncertainty, offering a structured way to assess the potential effects of interventions given plausible assumptions

about disease transmission. Transmission models may also be useful for short-term forecasting: when it is feasible

to assume that key epidemiologic features will remain constant over time, such models can provide projections of

natural transmission dynamics given the current state of an epidemic. Models cannot predict the future with certainty,

but they can be helpful for scenario analysis by bounding the range of plausible future trajectories [8]. At the same

time, simple models may have poor inferential and predictive performance if they fail to capture important features

of disease transmission that may vary over time.

In early 2020, many countries, including the US, faced a public health crisis caused by the COVID-19 pandemic.

In places like New York City and large cities in California, COVID-19 cases increased rapidly. In New York City,

severely ill patients overwhelmed hospitals [9, 10] with death rates as high as 9% among confirmed cases and 32%

among hospitalized patients [11]. Policymakers from the US regions first affected by the pandemic, Connecticut

being one of them, were unprepared for its magnitude and severity. In the absence of effective pharmaceutical

interventions, state and local governments turned to public health control measures that were last widely used during

the 1918 influenza pandemic, such as social distancing and stay-at-home orders, to slow transmission of SARS-

CoV-2. As transmission subsided, states began considering phased lifting of social distancing restrictions. Several

urgent questions emerged: 1) How soon can interventions like school closures and stay-at-home orders be lifted? 2)

How should public health interventions be implemented to minimize the risk of a resurgence? 3) What will be the

effect of phased reopening plans on cases, hospitalizations, and deaths? Surveillance data on testing, case counts,

hospitalizations, and deaths was useful in characterizing the dynamics of the initial wave, but policymakers needed

predictive analytic tools to evaluate the current state of an epidemic and asess the risk of future resurgence.

A wide variety of transmission models were developed during the early months of the COVID-19 pandemic.

These models were constructed for several related purposes. Many models sought to estimate basic epidemiologic

parameters including basic reproduction number ('0), epidemic growth rate and doubling time, serial interval,

case and infection fatality ratios, and case detection ratio [6, 12–20]. Some models produced simulated future
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outcomes under hypothetical behavioral or interventional scenarios [1, 4, 21]. Other models had a retrospective

inferential goal of estimating effects of past interventions including lockdown and other non-pharmaceutical measures

[6, 14, 16, 18, 20]. Some early models did not calibrate parameters to data, and instead simulated from models

parameterized using published estimates from early observational studies or other infections with similar properties

[1, 4, 21]. Intervention effects were often included as constant model parameters or estimated by calibrating the

model separately to pre- and post-intervention time periods [6, 15, 16]. In the early stages of the pandemic, these

models helped demonstrate the dangers of unmitigated transmission and provided some evidence of the effectiveness

of non-pharmaceutical interventions. However most of these models relied on publicly available data, often limited

to official case counts, from the first wave of an epidemic [12–20], and assumed constant transition rates (other than

reduction in transmission following initial lockdown), and were therefore unable to adequately capture changing

features of the COVID-19 burden, including behavioral changes, time-varying policy response, clinical management

of the disease, or healthcare system dynamics [1, 13–16, 19, 21].

As the initial epidemic wave in Connecticut began to subside during the summer of 2020, local policymakers needed

models that could answer specific questions about past and current infection dynamics, accommodate established

epidemiologic features of disease transmission, permit prediction of outcomes under policy scenarios identified by

stakeholders, and provide projections of policy-relevant outcomes under assumptions that could be understood by

policymakers. Several nationwide forecasting tools were developed to provide state- or county-level projections,

relying on data universally and publicly available across all locations [3, 7, 22]. These models employed assumptions

applied universally across all locations and provided a limited set of outputs that were not always able to address

the needs of local policymakers. These factors motivated the development of transmission models tailored to local

context, the timing of intervention events and planned future policy changes, and data that were only available at the

local level [23–26].

In this paper, we present a county-structured model of SARS-CoV-2 transmission and COVID-19 disease progression

inConnecticut. Themodelwas developed and improved over the first year of the pandemic to support decision-making

by Connecticut public health officials and policymakers [27]. This work is the result of continuous feedback from

Connecticut public health officials, who provided detailed data on congregate and non-congregate testing, cases, and

deaths, age-stratified cases, and hospitalization admissions and census – a feature that is absent from all nationwide

analyses. We first describe the epidemic and public policy response in Connecticut, emphasizing the inferential

questions articulated by public officials during development of the model. We then briefly describe the structure of

the transmission model, its parameters, and data sources used for model calibration, with full details given in the

3

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 23, 2021. ; https://doi.org/10.1101/2020.06.12.20126391doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.12.20126391
http://creativecommons.org/licenses/by/4.0/


Supplementary Material. We present results, including model predictions of hospitalizations and deaths on the dates

of important decisions made by policymakers, estimates of the number of COVID-19 infections, case-detection rate,

cumulative incidence, effective reproduction number, infection fatality ratio, and other epidemiologic parameters.

We conclude with a discussion of the limitations inherent in predicting uncertain epidemic trajectories using models,

and outline lessons learned from one year of providing COVID-19 projections to support Connecticut policymakers.

The COVID-19 epidemic and response in Connecticut

Connecticut (population 3.565 million) was among the US states most severely impacted by the first wave of COVID-

19 epidemic [28]. On March 8th, 2020, the first Connecticut COVID-19 case was reported, followed by a rapid

increase in case counts. In the first three weeks of the epidemic, the state reported over 2,500 confirmed COVID-19

cases [29]. A similar rate of increase in hospitalizations followed, and on April 2, 2020, COVID-19 hospitalization

census exceeded 1,000. On March 17, Governor Ned Lamont ordered all in-person classes at K-12 schools canceled,

and later extended the closure for the remainder of the 2019-2020 academic year [30–33]. The Governor issued

a statewide “Stay Safe, Stay Home” order to take effect on March 23 [34]. The order called on all nonessential

businesses to cease in-person operations. Essential businesses could remain open with additional restrictions and

guidelines to minimize close contact and risk of transmission. Evidence from mobile device data suggests that

Connecticut residents reduced their mobility before the official lockdown order went in effect [35].

The number of hospitalized COVID-19 patients in Connecticut peaked on April 21, 2020 and began a slow decline

[29]. In early May, Governor Lamont issued plans and guidance for reopening, a process set to begin with “Phase 1”

on May 20 when some businesses, mostly those operating outdoors, were allowed to reopen at 50% capacity [36].

Around the same time, we released a report that included COVID-19 transmission projections through August 31,

2020 under different scenarios of potential contact increase during the summer [27]. Phase 2 of reopening began

on June 17th when indoor dining, libraries and religious services were allowed to reopen at reduced capacity [37].

Reopening was followed by scale-up in testing: average daily number of polymerase chain reaction (PCR) tests

increased from about 2,000 at the beginning of April to about 8,000 at the end of June [29].

For most of summer 2020, case counts and hospitalizations in Connecticut remained low, even while large outbreaks

were happening in many parts of the US [29]. The major state-level policy question during this time was whether and

how to reopen primary, secondary, and college/university schooling in the fall. At the end of August, we developed

model projections of infections, hospitalizations, and deaths for fall under different assumptions about the rate of
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close interpersonal contact associated with reopening of schools. These forecasts predicted increasing infections

and a statewide resurgence during the fall 2020. In-person, remote, and hybrid education at all levels resumed in

Connecticut in August and early September. Case counts and hospitalizations during fall 2020 increased slowly [29],

leading the Governor to implement Phase 3 reopening, permitting indoor businesses to operate at higher capacity,

on October 8 [38]. By early November, public health officials recognized a broad statewide epidemic resurgence.

In response to rising case counts and fears of a substantial second wave, on November 6 Governor Lamont reverted

to “Phase 2.1”, reducing permitted occupancy of indoor businesses and events [39]. In-person education at most

public schools and all universities ended in mid-November before the Thanksgiving recess. Asymptomatic testing

programs implemented by many universities were subsequently scaled down, resulting in a reduction in testing rates

in Connecticut – making it difficult to interpret changes in the test positive proportion. Case counts in the second

wave of the epidemic peaked in mid-December, plateaued for about a month and began a slow decline starting the

second half of January 2021.

As of mid-March 2021, most schools and universities have reopened with a simultaneous substantial increase in

close contact rates. Vaccine deployment in Connecticut began on December 14th, 2020 with residents of congregate

settings being vaccinated first. As of March 1, 2021, 8.9% of Connecticut population received full vaccination

schedule and 16.5% received at least one dose of the vaccine with most vaccines being administered among residents

of congregate settings and in the age group of 75 year old and above [29].

Methods

Data sources

Our modeling approach relies on multiple data streams provided by the Connecticut Department of Public Health

(CT DPH) and the Connecticut Hospital Association (CHA). Some of these datasets are publicly available, while

others, including public health surveillance data, were obtained through a contract agreement between CT DPH and

the Yale School of Public Health. Baseline non-institutionalized county-level populations and age demographics in

Connecticut were obtained from the American Community Survey [40]. Figure 1 shows data series, described below,

used in model parametrization and calibration.
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B Cumulative COVID−19 hospitalizations 
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H Daily SARS−CoV−2 PCR testing volume 
 in Connecticut
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Figure 1: Observed and estimated data used in model calibration and approximation of time-varying model param-
eters. Top row: A: daily new cases reported in Connecticut by the date of specimen collection among residents of
non-congregate and congregate settings; B: COVID-19 hospitalization census; C: cumulative COVID-19 hospital-
izations. In plots B and C, the total number (black line) represents observed data, while non-congregate (blue) and
congregate (red) lines represent estimates. Middle row: D: cumulative COVID-19 deaths in Connecticut; E: hospital
case fatality ratio (HFR) among hospitalized residents of non-congregate settings (estimated); F: average length of
hospital stay among COVID-19 patients by month. Bottom row: G: normalized close interpersonal contact metric
relative to the pre-epidemic period; H: proportion of cases 60+ years old among daily COVID-19 cases (only data
on the right of the dashed line is used in model parametrization); I: daily PCR testing volume.
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Hospitalization, deaths, and hospital capacity

We obtained data on daily confirmed COVID-19 hospitalization census, cumulative COVID-19 hospitalizations,

cumulative number of deaths among hospitalized patients, and daily total available hospital beds (including occupied)

in Connecticut from CHA [41]. Hospitalizations census and deaths time series are available since the epidemic onset

inMarch 2020. CHAchanged their data collection and reporting procedureswith respect to admissions and discharges

in late May 2020, and cumulative hospitalizations data are available starting May 29, 2020. Data on the total number

of COVID-19 deaths are publicly available and were obtained from the Connecticut Open Data Portal [29].

The transmission model aims to capture community spread of SARS-CoV-2, and therefore excludes transmission

occurring in congregate settings like skilled nursing and assisted living facilities, or prisons. Similar to Salje et al.

[6], we excluded congregate settings, since transmission in small closed communities violates important modeling

assumptions related to mixing patterns in the population. Available hospitalization data do not disaggregate by

the patient’s place of residence at the time of diagnosis or hospitalization. According to CT DPH, as of October

30, 2020, about 73% of all deaths have occurred among residents of congregate settings, primarily nursing homes,

emphasizing that the first wave of the epidemic was heavily dominated by transmission in this population. To address

this issue, we estimated the time series of hospitalizations (census and cumulative) and hospital deaths coming

from non-congregate settings and used these estimated counts in the model calibration. We received data on daily

COVID-19 death counts in hospitals disaggregated by the type of residence (congregate vs. non-congregate) at

the time of diagnosis or hospitalization from CT DPH (Plot D in Figure 1). Based on these data, we estimated

the time-varying proportion of hospitalization census and cumulative hospitalizations coming from congregate and

non-congregate settings. A detailed description of this process is provided in the Supplement. Plots B and C in

Figure 1 show estimates of these time series along with observed total numbers.

Data on estimated daily hospital admissions and deaths from non-congregate settings were used to estimate time-

varying hospital case fatality ratio (HFR) and used as a time-varying parameter in the transmission model (Plot E

in Figure 1). Data on monthly average hospital length of stay among COVID-19 inpatients in Connecticut hospitals

were provided by the CHA and used as a time-varying parameter in the transmission model (Plot F in Figure 1).
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COVID-19 tests, cases, and age distribution of cases

We assume that widespread testing shortens the time between infection and diagnosis and may therefore lead to

shorter duration of transmissibility via isolation of infected individuals. We use daily PCR testing volume (Plot I in

Figure 1) to parameterize the time-varying duration of infectiousness among mildly symptomatic and asymptomatic

cases. Data on daily PCR tests were obtained from the Connecticut Open Data Portal [29].

We used the proportion of daily confirmed COVID-19 cases aged 60 years old and above to parameterize the

dynamics of severe infections over time (Plot H in Figure 1). Early in the epidemic, testing was not widely available

and was primarily used to confirm severe cases that were more likely to be among older people. Therefore, in model

parametrization, we assume a constant severe proportion early in the epidemic, and use these data to approximate

changing severity proportion beyond the second phase of reopening, which started on June 17, 2020, when testing

became widely available (vertical dashed line in Plot H in Figure 1). Plot A in Figure 1 shows reported case counts

in Connecticut by residence type (congregate or non-congregate).

Close interpersonal contact

Close interpersonal contact (within six feet) is the main route for transmission of SARS-CoV-2 [42]. Social

distancing interventions implemented in Connecticut were intended to reduce the frequency of such contact. We

therefore estimated the frequency of close interpersonal contact everywhere in Connecticut using mobile device

geolocation data. The project, described separately by Crawford et al. [43], developed a novel probabilistic measure

of contact and aggregated contact events at the town and state levels to describe the dynamics of close interpersonal

contact. Plot G in Figure 1 shows that statewide close contact in Connecticut dropped from its February 2020 baseline

about one week prior to the Governor’s stay-at-home order, and rose slowly throughout the summer and fall.

Compartmental model

We developed a deterministic compartmental model of SARS-CoV-2 transmission and COVID-19 disease progres-

sion. Themodel is based on the SEIR (susceptible, exposed, infectious, removed) framework [44], which we extend to

accommodate geographical variation in Connecticut, hospital capacity, and distinctive features of COVID-19 disease.

The model is implemented at the level of individual counties in Connecticut and assumes that most transmission

occurs within a given county. A small proportion of contacts (1.5%) is allowed to happen between adjacent counties.
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Figure 2: Schematic illustration of the model of SARS-CoV-2 transmission and COVID-19 disease progression;
county map of Connecticut and county adjacency matrix. Individuals begin in the susceptible (() compartment.
Exposed individuals (�) may develop either asymptomatic (�), mild (�" ), or severe (�() infection. Asymptomatic
and mild infections resolve without hospitalization and do not lead to death. Mild symptomatic cases self-isolate
('" ) shortly after development of symptoms, and transition to recovery (') when infectiousness ceases. All severe
cases require hospitalization (�) unless hospitalization capacity is exhausted, in which case they transition to �̄
representing hospital overflow, then to recovery (') or death (�). The model captures infection transmission in
non-congregate settings, and excludes cases and deaths occurring in settings like nursing homes and prisons. It
assumes a closed population without births and does not capture non-COVID-19 deaths. In the adjacency matrix,
the dark gray cells correspond to counties that are adjacent.

Figure 2 shows a schematic representation of the transmission model structure within a single county, the county

map of Connecticut [45], and the county adjacency matrix.

We categorize infections as asymptomatic (�), mild symptomatic (�" ), and severe (�(). Only severe infections may

lead to death (�). Severe infections are defined as those requiring hospitalization (�). If hospitalization capacity is

overwhelmed, severe cases in the community are denied hospitalization (�̄), and experience a higher probability of

death compared to hospitalized cases. Mild symptomatic cases are assumed to self-isolate shortly after they develop

symptoms ('" ) and remain isolated until they recover ('). The average time that severe cases spend in the infectious

state is approximated by the time between onset of infectiousness and hospitalization (or attempted hospitalization in

case of hospital overflow). The force of infection from hospitalized patients to unhospitalized susceptible individuals

is assumed to be negligible. We further assume that recovered individuals remain immune to reinfection for the

duration of the study period. Let #8 be the population size of county 8 and let �8 be the set of counties adjacent to

county 8. Let � (8) represent hospitalization capacity in county 8, which may vary over time. Transmission dynamics
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(
− W�� (8)

d�̄ (8)

dC
= [ (8)U�( �

(8)
(
− W�̄ �̄ (8)

d� (8)

dC
= W�<��

(8) + W�̄<�̄ �̄ (8)

d' (8)

dC
= U��

(8) + W'" '
(8)
"
+ W� (1 − <� )� (8) + W�̄ (1 − <�̄ )�̄ (8) ,

(1)

where @� + @�" + @�( = 1. The function [ (8) =
[
1 + exp(0.5(� (8) − � (8) ))

]−1 is a “soft” hospitalization capacity

overflow function. Table 1 lists model parameters and their definitions. The analysis was performed using the R

statistical computing environment [46, 47].

Our transmission model does not include effects of vaccination, which began on December 14th, 2020. Initial vaccine

deployment in Connecticut prioritized residents of congregate settings and individuals in the age group 75 years

old and above. According to the CDC, COVID-19 vaccines achieve their full effectiveness 14 days after the second

dose in a 2-dose series or a single dose in a 1-dose series [48]. As of March 1, 2021, about 5% of non-congregate

population in Connecticut were fully vaccinated. Given that some of these people may have already experienced

SARS-CoV-2 infection, that the majority of them were older people who do not mix as much as younger working-age

population, and that the proportion vaccinated is within the uncertainty bounds of the cumulative incidence, vaccine

effects before March 1, 2021 are unlikely to have a substantial impact on model projections. At the same time, some

of the vaccine effects, such as incidence and case fatality reduction among older people are captured in the dynamics

of time-varying model parameters. As vaccination coverage among young and working-age individuals increases, it

will become important to incorporate vaccine effects in the transmission model.
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Table 1: Transmission model parameters.

Notation Definition

V Transmission parameter per susceptible - infectious pair

X 1 / Latency period (days−1)

@�, @�" , @�( Proportions of infections that are asymptomatic, mild symptomatic, and severe, @� + @�" + @�( = 1

U� 1 / Duration of infectiousness among asymptomatic cases (days−1)

:� Relative infectiousness of asymptomatic cases compared to symptomatic

U�" 1 / Duration of infectiousness among mild symptomatic cases, time until isolation (days−1)

W'" 1 / Duration of isolation among mild symptomatic cases, remaining time to recovery (days−1)

U�( 1 / Duration of infectiousness among severe cases, time to hospitalization (days−1)

W� 1 / Length of hospital stay (time until recovery or death) (days−1)

W�̄ 1 / Remaining time until recovery or death among hospital overflow patients−1 (days−1)

<� Case fatality ratio among hospitalized cases (HFR)

<�̄ Case fatality ratio among hospital overflow patients

:= Proportion of all contacts that happen with individuals from adjacent counties (as opposed to within
the county)

� Hospitalization capacity, may be constant or vary over time representing capacity increase
intervention

�0 Number of exposed individuals statewide at the time of epidemic onset
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Time-varying model parameters

Transmission rate V

Social distancing practices may reduce the value of the transmission rate V. We use data on close interpersonal

contact in Connecticut for the entire duration of the modeling period [43], and assume the following functional form

for the transmission rate:

V(C) = V0"contact(C) exp[�(C)],

where "contact(C) is a smoothed normalized measure of close interpersonal contact at time C relative to the pre-

epidemic level (February 1st - March 12th, 2020), and exp[�(C)] is a function that approximates residual changes in

transmission parameter V that are not explained by changes in close contact and other time-varying parameters. Here,

�(C) is a smooth function obtained by applying spline smoothing on a piecewise linear function �∗(C), where �∗(C)

is modeled with �∗(F) = n [ (F−C0)/14] defined on bi-weekly knots F = {C0, C0 + 14, C0 + 28, . . .} over the observation

period and linearly imputed between the knots. The Supplement shows plots of functions "contact(C) and �(C). We

model the vector of random effects & using a random walk of order one:

n0 = 0, n8 |n8−1 ∼ N(n8−1, f
2
n ).

For the hyperparameter f2
n , we use Inverse-Gamma(0 n , 1n ) prior with a shape parameter 0 n = 2.5 and a rate

parameter 1 n = 0.1. The function �(C) is also used to set V(C) in the future to test scenarios and potential intervention

effects.

Rates of isolation and recovery: U�" and U�

Widespread testing and contact tracing efforts can potentially reduce duration of infectiousness. While there is no

information about the effectiveness of specific testing efforts implemented in Connecticut, the model accommodates

the possibility of such reduction as a function of daily testing volume:

U(C) = U0(1 + " testing(C)g),

12

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 23, 2021. ; https://doi.org/10.1101/2020.06.12.20126391doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.12.20126391
http://creativecommons.org/licenses/by/4.0/


where g is the size of testing effect per unit increase in testing volume measure " testing(C) modeled as:

" testing(C) =


log

(
Etesting(C)

)
− log

(
Etesting(C∗)

)
, C > C∗ and Etesting(C) ≥ Etesting(C∗)

0, otherwise.

Etesting(C) is a spline-smoothed measure of testing volume at time C. Testing efforts early in the epidemic were

primarily used to confirm severe and highly symptomatic infections, and were unlikely to have any appreciable

impact on overall duration of infectiousness. Early response daily testing volume is denoted by Etesting(C∗). The

Supplement shows the plot of function " testing(C). This approach is used to model time-varying rates U�" (C) and

U�(C) with g�" = g and g� = 0.5g. The rate U�( is assumed to remain constant over time.

Severe fraction @�(

The probability of severe infection increases with age [49]. Age distribution of confirmed cases in the US has shifted

toward younger people in the summer compared to spring [50]. We model the time-varying proportion of infections

that are severe as:

@�( (C) = @�( ,0"severity(C),

where measure of severity "severity(C) is a normalized spline-smoothed proportion of cases 60+ years old among all

cases detected at time C relative to a baseline level. Since testing availability affects this proportion, we assume that

"severity(C) = 1 for all C < C∗, where C∗ denotes the time when testing became widely available. The Supplement

shows the plot of function "severity(C). Since @� + @�" + @�( = 1, we also model @� and @�" as functions of time.

Rate of hospital discharge W�

We estimate the time-varying rate of hospital discharge W� (C) (including deaths and alive discharges) as a reciprocal

of the average length of hospital stay at time C, which has been inversely correlated with the incidence of COVID-19.

The average length of hospital stay at time C is approximated using a spline-smoothed monthly averages of this

quantity and is provided in the Supplement.
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Hospital case fatality ratio <�

Overall and hospital case fatality ratios may vary over time for various reasons. We model HFR as:

<� (C) = <�,0"HFR(C),

where "HFR(C) is a normalized spline-smoothed HFR at time C relative to the baseline HFR = <�,0. HFR is

calculated as a ratio of hospital deaths at time C to hospital admissions at time (C − HLOS(C)), where HLOS(C) is an

average hospital length of stay at time C. The Supplement shows the plot of function "HFR(C).

Model calibration and Bayesian posterior inference

We calibrate the posterior distribution of model parameters to estimated hospitalizations and hospital deaths coming

from non-congregate settings using a Bayesian approach. Sampling from the joint posterior distribution of calibrated

model parameters is performed using Markov Chain Monte Carlo. The Supplement provides detailed description of

the data likelihood, calibration approach, sampling algorithm, implementation, and results, including convergence

and estimated joint posterior distribution of model parameters, as well as description of prior distributions along

with data sources. Source code and aggregated data used to produce model projections are available from https:

//github.com/fcrawford/covid19_ct. To generate model projections, we sample from the joint posterior

distribution of estimated parameters, simulate transmission dynamics for a given combination of parameters, and

compute pointwise averages (means or medians) and posterior predictive intervals for each time point.

Ethics statement

This analysis does not use patient-level data with personal identifiers.
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Results

Estimates of epidemiologic features

Figure 3 shows the results of model calibration along with estimates of important epidemiologic parameters for the

period between March 1, 2020 - March 1, 2021. Plots of hospitalizations, effective reproduction number ('eff), and

cumulative incidence are overlaid with the dates of Governor’s interventions, reopening of schools and universities in

the fall and winter, and the starting date of vaccination campaign. Model fit to observed dynamics of hospitalizations

and deaths shows that data points track with mean projections and largely fall within uncertainty intervals.

We estimate that 'eff dropped substantially in mid-March and remained below one through mid-June. For the

rest of the summer, mean estimated 'eff was slightly above one consistent with low numbers of case counts and

hospitalizations in the summer. A major increase of 'eff started in mid-August and continued with the reopening of

schools and colleges. It reached a maximum mean value of 1.45 by mid-October, followed by a slow decline through

the rest of the year. A second increase in 'eff started at the end of January 2021 as schools and universities reopened

for the spring semester. The dynamics of 'eff follows closely the dynamics of close contact. Plot F in Figure 3

shows that the estimated dynamics of transmission parameter captured by a community contact function (measure

of close contact adjusted for estimated random effects) exhibits small deviations from the measure of close contact.

Our estimate of '0 is 4.7 (95%CI: 4.3 – 5.1), consistent with estimates reported elsewhere [51, 52]. However, this

estimate depends on assumptions about initial conditions and is not identifiable from the shape of early exponential

increase alone.

We estimate that cumulative incidence at the beginning of June 2020 was 5.2% (95%CI: 3.6 – 6.8%) consistent with

the results of community-based seroprevalence surveys conducted in Connecticut between April and June [53, 54]

and other local modeling efforts that included Connecticut [55]. We estimate that as of March 1, 2021, cumulative

incidence in Connecticut was about 21% (95%CI: 18 – 24%), which implies a cumulative case detection ratio of

36% (95%CI: 26 - 54%). Our estimates suggest that the case detection ratio varied substantially over time in a way

that is not explained by the volume of PCR testing alone (plot I in Figure 3). An increase up to 80% in mid-May

may be due to delayed testing, including postmortem diagnosis of first epidemic wave cases. The second spike in

estimated case detection ratio in early January may be a consequence of testing and reporting disruptions related to

the Christmas and New Year holidays.

We estimate the cumulative infection fatality ratio (IFR) to be 1.06% (95% CI: 0.93 – 1.24%) and the cumulative
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Figure 3: Model fit to observed data and estimates of epidemiologic features of SARS-CoV-2 transmission in
Connecticut. Top row shows calibration results for: A: observed COVID-19 hospitalizations census, B: cumulative
hospitalizations and C: cumulative deaths in Connecticut. Observed time series are shown as points and correspond
to total hospitalizations and deaths among all Connecticut residents. The model is calibrated to estimated data series
coming from non-congregate settings, and model projections are adjusted by the estimated difference to reflect the
totals for congregate and non-congregate settings. Middle row: D: effective reproduction number, E: normalized
measure of close contact relative to the pre-epidemic period along with the spline approximation (thick solid line),
and F: contact function adjusted for estimated random effects that capture residual variation in transmission that is not
explained by dynamics of close contact and other time-varying parameters. For comparison, black line in plot F shows
smoothed normalized close contact metric unadjusted for random effects. Bottom row: G: cumulative incidence of
SARS-CoV-2 infection, H: daily new infections, and I: estimated case detection ratio in non-congregate settings in
Connecticut. Solid lines represent model-projected means and shaded regions represent 95% posterior predictive
intervals. Some of the plots are overlaid with the key intervention dates (lockdown and phased reopening), as well
as important event dates, including reopening of schools and universities and beginning of vaccination campaign.
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infection hospitalization ratio (IHR) to be 4.1% (95% CI: 3.6 – 4.7%). These estimates are based on data from all

recorded deceased and hospitalized individuals, including those residing in congregate settings. Estimated IFR and

IHR among residents of non-congregate settings are 0.43% (95% CI: 0.38 - 0.50%) and 3.4% (95% CI: 3.0 – 4.0%)

respectively, which are somewhat lower than previously estimated in Connecticut [56], but are consistent with studies

conducted elsewhere [6, 14, 49, 57].

Predictive performance of the model

We illustrate predictive performance of the model by calibrating it to data up to several time points and producing

projections of hospitalizations and deaths for the next two months. Projections into the future are simulated by

propagating the latest available values of time-varying parameters into the future. A forecasting time horizon of two

months is shown. Longer-term projections were less useful due to anticipated changes in policy, public behavior,

and time-varying parameters. The time points were selected based on important events, such as reopening phases,

as well as distinct stages of the epidemic. Figure 4 shows calibrations results, projections and actual data over the

prediction period for the following calibration cut-off dates: May 20, 2020 (Phase 1 of reopening), June 17, 2020

(Phase 2 of reopening), September 1, 2020 (reopening of schools and colleges), October 15, 2020 (early indications

of resurgence), and December 15, 2020 (early indications of the curve flattening during the second epidemic wave).

These results show that projections become more accurate as data accrue, and that uncertainty intervals are generally

tighter during periods of epidemic decline, when the upper bound of uncertainty interval for projected 'eff is below

one. In early stages, our projections predicted higher hospitalization census compared to what was observed during

summer 2020. The main reason for this mismatch is a sharp decline in severe infections proportion that was observed

after the initial epidemicwave subsided, as well as the decline in the average length of hospital stay among hospitalized

COVID-19 patients (plots H and F in Figure 1).

Discussion: transmission modeling in the COVID-19 pandemic

As COVID-19 pandemic emerged, policymakers in many parts of the US and across the globe had to make quick

decisions under high uncertainty. Access to reliable information about both the current state of the local epidemic

and likely future outcomes is an important foundation to support policymakers in this process. Elected officials

and public health agencies already have access to near real-time information about COVID-19 testing, case counts,
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Statewide COVID−19 hospitalizations census in Connecticut 
Calibration through May 20, projections through July 20, 2020
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Statewide cumulative deaths in Connecticut 
Calibration through May 20, projections through July 20, 2020
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Calibration through June 17, projections through August 17, 2020
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Calibration through June 17, projections through August 17, 2020
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Calibration through September 1, projections through November 1, 2020
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Calibration through September 1, projections through November 1, 2020
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Calibration through October 15, projections through December 15, 2020
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Calibration through October 15, projections through December 15, 2020
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Calibration through December 15, 2020, projections through February 15, 2021
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Calibration through December 15, 2020, projections through February 15, 2021
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Figure 4: Posterior predictive performance of the transmission model calibrated using data up to the dashed line
shown in each plot and projected forward for a period of two months. Solid lines represent model-projected means
and shaded regions represent 90% posterior predictive intervals. Observed data are shown as points; lighter color
points correspond to the data used in calibration.
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hospitalizations, and deaths. However, these data may not provide timely insight into the current and future

dynamics of COVID-19 transmission. Mathematical modeling of infectious diseases offers one way to address these

questions, but is subject to limitations that may be difficult to communicate to policymakers. During our year-long

collaboration with CT DPH, we learned several lessons in the process of developing, deploying, calibrating, revising,

and communicating the outputs of COVID-19 transmission model to policymakers in Connecticut.

Transmission dynamics in congregate settings may bias model-based estimates

Observable features of the initial epidemic wave in Connecticut - hospitalizations and deaths - were dominated by

residents of skilled nursing and assisted living facilities [29]. In our initial efforts to model outcomes under the

state’s stated reopening plans in May of 2020, we did not isolate transmission in congregate settings and treated

all hospitalizations and deaths as those arising from a homogeneous mixing process within Connecticut population

[27]. Transmission dynamics in congregate settings among higher risk individuals violate the homogeneous mixing

assumption underlying compartmental modeling approaches. Merging cases, hospitalizations and deaths from

congregate and non-congregate settings may bias estimates of 'eff and result in over-estimation of cumulative

incidence, transmission potential, and infection fatality ratio. Recognizing this, we modified the model to only

include residents of non-congregate settings.

Detailed local data are necessary to capture time-varying epidemic features

Similar to many early transmission models that only used data from the first epidemic wave [13–16, 19], the first

version of our model did not incorporate any temporal variation in the input parameters and included constant effects

of school closure and lockdown [27]. However, as the data accrued, constant parameter values failed to achieve a

good fit to the observed data. Our collaboration with CT DPH allowed us access to detailed local data informing

time-varying model parameters. Incorporating time trends in important epidemic features like close interpersonal

contact, risk profile of incident cases, hospital length of stay, and hospital case fatality ratio substantially improved

model fit to observed data and its predictive performance. One of the limitations of our model is that it does not

incorporate vaccination effects. However, during the modeling period ending on March 1, 2021 these effects are

likely negligible in non-congregate residents due to low overall coverage that is primarily driven by an older age

group, and are partially captured in the dynamics of time-varying parameters. As vaccination coverage increases, it

will be important to include vaccination effects in the transmission model.
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Anticipated changes in time-varying epidemic features warrant scenario analysis

The most substantial changes in time-varying model parameters occurred as the first epidemic wave began to subside

in early summer 2020. Figure 4 illustrates modest predictive performance of our model during early stages. In this

example, future projections are made by propagating the last observed value of time-varying model parameters into

the future. When substantial changes in epidemic features are anticipated in the future, scenario analysis may offer a

better way to represent the true uncertainty.

Close interpersonal contact drives transmission

One of the most important data sources that substantially improved our model performance is a measure of close

interpersonal contact based on mobile device data. This is a novel metric, whose dynamics exhibit different behavior

from that observed in several publicly available mobility metrics, such as maximum distance traveled or time spent

away from home, which mostly returned to their baseline values by mid-summer 2020 [43]. Combined with other

time-varying parameters, the close contact metric captured most of the variation in transmission over time. While

our approach to use random effects to capture residual variation in transmission dynamics proved feasible and useful,

the shape of the resulting contact function exhibits small deviations from the dynamics of close interpersonal contact

(plot F in Figure 3).

Timing of interventions may not always reflect timing of behavioral changes

Public perception of risk appears to be an important time-dependent confounder that is hard to measure or predict.

Behavior changes that drive transmission, such as social distancing or mask wearing, may not coincide in time with

respective interventions. In Connecticut, close interpersonal contact dropped substantially before the lockdown order

went in effect and started rebounding before it was lifted. Many transmission models [6, 15, 16], including the early

version of our model [27] assume constant intervention effects that modify a given set of parameters at the time of

their enactment. Measuring critical features of transmission directly improves model-based projections and offers

insights into the estimation of intervention effects.
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Case counts may be an unreliable proxy for infections

Policymakers often rely on case counts and test positive proportion as direct measures of infection incidence. Even

though dynamics of detected cases may be a reasonable qualitative indicator of disease incidence, we found that

its usefulness for modeling purposes is limited. It is widely recognized that detected case counts depend on the

underlying infection incidence and testing volume [24, 58], however we found that changes in testing strategies and

human behavior may lead to non-monotonic relationship between testing volume and case detection rate. Since case

counts dynamics are usually widely available across geographic locations, and are often among a few data sources

easily accessible by researchers, many nationwide models rely on case counts, possibly adjusting for testing volume

[7, 22]. Our experience shows that this approach may be misleading. We therefore chose to rely on hospitalizations

and death data for model calibration as these epidemic features are less susceptible to unmeasured time-varying

confounding.

Incorporating diverse data sources improves credibility of model-based inferences

Our modeling projections have been one of the many analytic products informing policy response in Connecticut

along with surveillance data on case counts, testing volume and test positive proportion, trends in emergency

department visits presenting symptoms of COVID-like illness, outbreak investigations, wastewater monitoring [28],

and trends in close interpersonal contact [43] among others. For a variety of reasons, it can be difficult for public

health decision-makers to enact policy responses based on predictions about the future from transmission models.

However, when model projections tell a cohesive story in combination with other analytic products, they may fill in

missing pieces and offer insights into the current and future epidemic dynamics.

Conclusions and limitations

Our year-long effort to provide policymakers with predictions of COVID-19 dynamics in Connecticut showed that

standard SEIR-type transmission models work best in large well-mixing populations with constant transmission rates

and without major external shocks, like interventions or importation of infections. In order to make valid inferences,

it is necessary to incorporate temporal changes in model parameters reflecting interventions, human behavior,

heterogeneity in mixing patterns, and measurement errors. Given geographic heterogeneity in the dynamics of these

features, models that incorporate contextual information and local data are needed to support local policymakers.
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While modeling approach described in this paper captures many important features of epidemic dynamics that are

often omitted in simpler SIR-type models, our model could be extended to reflect more granular geographic variation,

age structure and contact patterns between different age groups, vaccination effects, and other time-varying features

of COVID-19 epidemic. When it works best, modeling provides heuristics, guidance, and what-if scenarios for the

future offering insights that are otherwise unavailable.
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Supplementary Material: Detailed Methods

Estimating hospitalizations and hospital deaths coming from non-congregate settings

Our transmission model aims to capture disease spread in the community and excludes residents of congregate

settings, whose contact patterns violate homogeneous mixing assumption. Available hospitalizations data do not

disaggregate by the patient’s place of residence at the time of diagnosis or hospitalization. We have therefore

estimated the time-varying number of hospital admissions and hospitalizations census that came from congregate

settings and excluded them from the observed time series. We received data on daily COVID-19 death counts

in hospitals disaggregated by the type of residence (congregate vs. non-congregate) at the time of diagnosis or

hospitalization from Connecticut Department of Public Health (CT DPH). Posterior distribution of model parameters

was calibrated to the estimated time series of cumulative hospitalizations and hospitalizations census coming from

non-congregate settings and to the observed time series of hospital deaths in this population.

The time-varying proportion of hospitalization census and cumulative hospitalizations coming from congregate

settings was estimated as follows:

1. We first estimated the cumulative number of hospitalizations coming from congregate settings as the total

number of hospital deaths among residents of congregate settings divided by the hospital case fatality ratio

(HFR) among this population, and adjusting for an average hospital length of stay. The estimated HFR among

residents of congregate settings in Connecticut is 0.38 and was obtained from the CT DPH based on a survey

of a sample of 50 nursing homes, representing about a quarter of all nursing homes in Connecticut [29].

2. Next, we computed the cumulative proportion of hospitalizations coming from congregate settings as an

estimate of the number of cumulative hospitalizations coming from congregate settings divided by the total

cumulative number of hospitalizations as of the same date.

3. The proportion of hospital admissions coming from congregate settings varied over time. To approximate

temporal dynamics of this proportion, we assumed that it follows the samepattern as the time-varying proportion

of deaths among hospitalized residents of congregate settings among all hospital deaths:

?hospital congregate deaths (C) =
3hospital congregate deaths (C)

3hospital deaths (C)
,

where 3 (C) denotes smoothed daily death counts calculated as a first order difference of spline-smoothed
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cumulative counts of respective time series. We then re-scaled this time-varying proportion relative to the

cumulative proportion of deaths among hospitalized residents of congregate settings among all hospital deaths

and lagged it back by the average hospital length of stay. The resulting time-varying function was then

multiplied by the cumulative proportion of hospitalizations coming from congregate settings estimated in step

2 to obtain a time-varying estimate of the proportion of hospital admissions coming from congregate settings

at time C.

This time-varying proportion was then applied to the CHA-reported daily hospital census and daily hospital admis-

sions to estimate the number of current hospitalizations, daily hospital admissions, and cumulative hospitalizations

coming from congregate settings, and respective time series coming from non-congregate settings follow directly.

Data smoothing for time-varying parameters

All time-varying parameters described in detail in the Methods section rely on smoothed functions of observed data.

Figure 5 shows five functions of observed data series overlaid by a smooth function (red line), which is used as a

component of time-varying model parameters.

Model calibration and Bayesian posterior inference

We calibrate the posterior distribution of model parameters to the estimated hospitalizations and hospital deaths

coming from non-congregate settings using a Bayesian approach with a Gaussian likelihood. Model-based estimates

of observed quantities are adjusted for reporting lags. The distributions of hospitalizations census, cumulative

hospitalizations, and hospital deaths are given by:

ℎ(C) ∼ N
(
� (C, !� , )), f2

ℎ

)
, (2)

D(C) ∼ N
(
* (C, !� , )), f2

D

)
, (3)

3 (C) ∼ N
(
� (C, !� , )), f2

3

)
, (4)

where � (C, !� , )), * (C, !� , )), and � (C, !� , )) are model-projected hospitalizations census (lagged by !� ),

cumulative hospitalizations (lagged by !� ), and cumulative deaths (lagged by !�) at time C under parameter values

) . Prior distributions imposed on calibrated model parameters ensure non-negative values of model compartments.
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Normalized close contact metric in Connecticut
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Figure 5: Smooth functions of observed data used as components of time-varying model parameters. A: normalized
close contact metric, function "contact(C); B: testing volume function " testing(C); C: COVID-19 severity function,
normalized proportion of cases 60+ years old among all cases detected at time C, function "severity(C); D: average
hospital length of stay among COVID-19 patients, reciprocal of rate of hospital discharge W� (C); E: normalized
hospital case fatality ratio, function "HFR(C). Black lines show input data trajectories and red lines show smooth
functions of observed data.
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We put uniform priors on !� and !� over a range of plausible integer values. Reporting lags are correlated with other

unknown parameters, including latency period, time between infection and hospitalization, time between infection

and death, and length of hospital stay, therefore !� and !� should not be strictly interpreted as reporting lags. We

put the same independent Inverse-Gamma(0, 1) prior on all three hyperparameters f2
ℎ
, f2

D , and f2
3
with 0 = 0.5 and

1 = 5×106 at the end of the modeling period. The prior was gradually relaxed as observed time series increased. For

the purposes of future forecasting, as opposed to estimation of epidemiologic features from the past model dynamics,

we imposed a tighter prior on these hyperparameters to achieve reasonable posterior predictive intervals beyond the

observation period.

We construct the posterior distribution over unknown parameters () ,2) as:

?() ,2 |ℎ(C), D(C), 3 (C)) ∝ ?())?(2)
∏
C ∈C�

[
?
(
ℎ(C) |� (C, !� , )), fℎ

) ]FℎI (C)
∏
C ∈C*

[
?
(
D(C) |* (C, !� , )), fD

) ]FDI (C)
∏
C ∈C�

[
?
(
3 (C) |� (C, !� , )), f3

) ]F3I (C)
,

(5)

where ) = (V0, @�, U�( , <�,0, �0, !� , !� , g, &) and 2 = (fℎ, fD , f3 , fn ).

We assume the date of epidemic onset to be February 16th, 2020 - 21 days before the first case was officially confirmed

in Connecticut on March 8th, 2020, and initialize the model with �0 exposed individuals at the time of epidemic

onset, setting the size of all downstream compartments to be zero. County-level distribution of �0 is fixed and was

estimated based on the county population size and dates of first registered case and death in each county.

Each likelihood term is weighted by the time-dependent weight I(C) times the weight assigned to a respective time

series. We let the weight function I(C) take the following form,

I(C) = 1
1 + exp(−:IC)

, (6)

where I(C) is the weight assigned to an observation at time C, C ∈ {C0, ..., Cmax}, and the correspondence between

{C0, ..., Cmax} and calendar time is set such that C = 0 corresponds to 90 days prior to the most recent observation.

Parameter :I controls the smoothness of logistic function. We set :I = 0.01, resulting in a range of weights between

0.06 − 0.7 for the duration of observation period.

We set Fℎ = 0.89, FD = 0.01, and F3 = 0.1. We place a large weight on the hospitalizations census, since this time
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series is most sensitive to changes in epidemic dynamics, and a small weight on cumulative hospitalizations, since

it measures a feature that is related to hospitalizations census. The range of observation times differ for different

time series. For hospitalizations census and deaths, observation times start with the first non-zero observation. For

cumulative hospitalizations, observation times start onMay 29, 2020when these data started being reported routinely.

Posterior sampling

Sampling from the joint posterior distribution of () ,2) given in (5) is performed using Markov Chain Monte Carlo

(MCMC). We employ a hybrid algorithm that combines elliptical slice sampling (ESS) [59], Gibbs sampling, and

Metropolis-Hastings sampling with random walk proposals. We first provide an overview of the steps in drawing

samples from the full posterior distribution and then describe each steps in more details. Let ) = ()MH , )ESS), where

)MH = (V0, @�, U�( , <�,0, �0, !� , !�) and )ESS = (g, &). The sampler proceeds with the following steps:

1. Update )ESS |)MH ,2 using ESS.

2. Update )MH |)ESS ,2 with a Metropolis-Hastings step.

3. Update hyperparameters 2 |) with a Gibbs sampler step.

Update )ESS |)MH ,2: We use a rejection-free sampler (ESS) to sample a vector of random effects & and a testing

effect g. The ESS operates by drawing samples from the ellipse defined by a Gaussian prior, and then accept or reject

the samples by evaluating the likelihood component. Within the slice sampling step, the sampler moves along the

generated ellipse and always accepts a new set of parameters.

Update )MH |)ESS ,2: We implement a Metropolis-Hastings algorithm with random walk proposals for )MH .

Proposals for !� and !� are made on a subset of integers bounded by a prior distribution on lags. All other elements

of )MH are continuous.

Update hyperparameters 2 |): The hyperparameters f2
ℎ
, f2

D , f2
3
, f2

n are updated with Gibbs sampler steps:

1
f2
ℎ

|ℎ(C), � (C) ∼ Gamma

(
0 +

Fℎ
∑
C ∈C� I(C)
2

, 1 +
Fℎ

∑
C ∈C� I(C) (ℎ(C) − � (C))2

2

)
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1
f2
D

|D(C),* (C) ∼ Gamma

(
0 +

FD
∑
C ∈C* I(C)
2

, 1 +
FD

∑
C ∈C* I(C) (D(C) −* (C))2

2

)
1
f2
3

|3 (C), � (C) ∼ Gamma

(
0 +

F3
∑
C ∈C� I(C)
2

, 1 +
F3

∑
C ∈C� I(C) (3 (C) − � (C))2

2

)
1
f2
n

|n1, ..., n ∼ Gamma

(
0 n +

 

2
, 1n +

∑ 
8=1(n8 − n8−1)2

2

)

We ran 10 chains of the sampler for 22,000 iterations each, discarded the first 2,000 draws from each chain, and

thinned each chain by a factor of 20. The final posterior sample combines the resulting thinned chains. Based on

the visual inspection of individual parameter trace plots, we found that 10,000 iterations is sufficient for the chain

to converge in practice. Figure 6 illustrates model calibration results and convergence. The top row shows each

of 10 thinned MCMC sampler chains overlaid. The middle row shows posterior histograms, marginal means and

95% posterior credible intervals of calibrated model parameters. The bottom row shows calibrated random effects

function �(C). To generate uncertainty intervals of model projections, we sample from the joint posterior over

estimated parameters, and find pointwise 90% or 95% posterior predictive intervals for each time point.

Prior and posterior distributions of model parameters

Let )MH,CONT denote the subset of continuous transmission model parameters whose joint distribution is calibrated to

observed data and updated with Metropolis-Hastings step: )MH, CONT = (V0, @�, U�( , <�,0, �0). For each individual

parameter \ ∈ )MH,CONT, we specify a fixed support [\min, \max], and put independent beta priors on the transformed

parameter, i.e.,
\ − \min
\max − \min

∼ Beta(0\ , 1\ ), (7)

where the shape parameters 0\ and 1\ are set to let \ have mean `\ and standard deviation f\ . Table 2 provides

the summary of (`\ , f\ , \min, \max) for all parameters in )MH,CONT along with data sources. For parameters whose

values were fixed, only the mean is given. Parameter g is updated in the ESS step, therefore in calibration, we assume

a Gaussian prior distribution on log(g), whose mean and SD are shown in Table 2.

Asymptomatic infections play an important role in transmission of SARS-CoV-2 [85–87], but estimates of the

proportion of infections that do not exhibit symptoms vary substantially [60, 61, 88]. The true proportion of

asymptomatic infections is important for projections and policy planning due to its relationship to evolving herd
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Figure 6: Model calibration results: trace plots ofMCMC sampler chains, marginal posterior histograms of calibrated
parameters, and random effects function �(C). MCMC trace plots show 10 thinned chains plotted using different
colors. Plot titles of posterior histograms include marginal posterior means and 95% credible intervals (CI). Dashed
red lines correspond to posterior means of model parameters. In the transmissibility random effects function plot,
black line shows the mean value of �(C) at each time point, and the shaded region shows 95% CI.

29

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 23, 2021. ; https://doi.org/10.1101/2020.06.12.20126391doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.12.20126391
http://creativecommons.org/licenses/by/4.0/


Table 2: Prior distributions of model parameters.

Parameter Mean SD Lower Upper Source
@� 0.4 0.02 0.3 0.5 [60–65]
@�( ,0/(1 − @�) 0.07 - - - 7% of symptomatic infections are severe [4,

6, 49]
V0 1 0.5 0.01 2.00 A diffuse prior assumed
X 1/4 - - - [6, 12, 15, 23, 62, 66–73]
U�,0 1/7 - - - [66, 74–79]
:� 0.5 - - - [23, 61, 76, 80, 81]
U�" ,0 1/4 - - - [4, 6, 15]; of 4 days, 2 are assumed to be

presymptomatic [23, 66, 67]
W'" 1/7 - - - [74, 78, 79, 82]
U�( 1/9 0.03 0.02 0.2 [23, 66, 67, 83, 84]
<�,0 0.13 0.05 0.01 0.25 Estimated fromConnecticut COVID-19 hos-

pitalization data [41]
<�̄/<� 1.5 0.25 1 2 Assumed
log(g) -2.5 0.12 - - Assumed, Gaussian prior distribution
:= 0.015 - - - Assumed
�0 150 5 100 200 Assumed
!� - - 5 14 Assumed, uniform prior between lower and

upper values
!� - - 5 14 Assumed, uniform prior between lower and

upper values

immunity. Reported estimates of asymptomatic proportion range between 6 – 96%, and the authors of a recent review

recommend a range between 40 – 45% [60]. Another review reported an overall asymptomatic proportion estimate

of 20%, and 31% among the studies that included follow-up [61]. Large population-based studies conducted in Spain

and in the U.K. provide estimates of asymptomatic proportion between 22-36% [89, 90]. We calculated age-adjusted

weighted average of several estimates available from the literature: Nishiura et al. [63] estimated 30.8% among

Japanese citizens evacuated from Wuhan, China. We applied this estimate to age group 20-64 years old. Mizumoto

et al. [64] estimated 17.9% among infections on the Diamond Princess cruise ship. We applied this estimate to age

group 65 plus years old, which is the age group, in which most infections occurred. We assumed 65% for age group

0-19 years old, consistent with findings reported by Russell et al. [65], where 4 out of 6 infections in this age group

were asymptomatic among passengers of the Diamond Princess. The average was weighted by the age distribution

of Connecticut population, resulting in the estimate of @� = 0.37, which is consistent with systematic reviews and

population-based studies. At the time of this writing, the best estimate of asymptomatic proportion recommended

by the CDC was 40% [62]. We center the prior distribution of @� at 0.4 and allow it to vary between 0.3 and 0.5.

The proportion of severe cases early in the epidemic (@�( ,0) is assumed to be 7% of symptomatic infections in line
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with [4, 6, 49]. Combined with the estimates of asymptomatic proportion, this translates into an estimate of severe

proportion of 4.2% (3.5-4.9%) of all infections.

Duration of latency (1/X) was fixed, since consistent estimates of this parameter are available from the literature,

and because it is highly correlated with several calibrated parameters, including reporting lags and parameters that

determine duration of infectiousness and time between infection and recovery or death. We assume an average of 4

days of latency [6, 15, 23] and 2 days of presymptomatic infectiousness [23, 66, 67] resulting in an average incubation

period of 6 days consistent with [12, 62, 68–73].

Parameters (U�, :�, U�" , U�( ) collectively determine the force of infection at any given time. Force of infection,

transmission parameter V and initial number of exposed individuals �0 together determine the early growth of the

epidemic. Without additional data, all of these parameters cannot be simultaneously identified. We therefore fixed

the values for a subset of these parameters based on available estimates and assumed a diffuse prior on V, which

absorbs additional variation of parameters that determine the force of infection.

Duration of infectiousness of asymptomatic individuals is unknown, but is likely shorter than that of symptomatic

individuals [74–77]. While several studies estimated that viral RNA could be detected in upper respiratory tract

for 2-3 weeks [91, 92], findings from [74, 78, 79] show that in mild-to-moderate symptomatic patients live virus

could be isolated for a substantially shorter time period: up to 7-10 days from the day of symptom onset, suggesting

the duration of infectiousness of up to 12 days. Based on these estimates and [66], we assume the duration of

infectiousness of 7 days among asymptomatic individuals. Although multiple studies have shown similar viral loads

among symptomatic, presymptomatic and asymptomatic cases [75, 93, 94], evidence suggests that asymptomatic

individuals are less infectious that symptomatic, likely due to higher viral shedding while coughing and longer

duration of infectiousness among symptomatic individuals [61, 74, 76, 95, 96]. Multiple estimates of relative

infectiousness of asymptomatic individuals compared to symptomatic are available and range from close to zero to

above one [23, 61, 76, 80, 81]. Generally, estimates that are based on attack rates are lower than those based on viral

shedding or time until the first negative PCR test. In our analysis, we set relative infectiousness of asymptomatic

cases to be 0.5 [23, 61, 80].

Although the duration of infectiousness of mild-to-moderately symptomatic cases may be up to 12 days [74, 78, 79],

we assume that the majority of symptomatic individuals self-isolate shortly after developing symptoms. We set

the duration of infectiousness of symptomatic cases to be 4 days [4, 6, 15], 2 of which are assumed to represent

presymptomatic infectiousness [23, 66, 67]. We further assume that the duration of self-isolation until recovery is 7
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days [74, 78, 79].

We calibrate the rate of hospitalization among severe cases (U�( ), assuming a mean of 9 days between the onset

of infectiousness and hospitalization: 2 days of presymptomatic infectiousness plus 7 days between the onset of

symptoms and hospitalization [83, 84].
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