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Abstract 

The first wave of the coronavirus pandemic is waning in many countries. Some of 

them are starting to lift the confinement measures adopted to control it, but 

there is considerable uncertainty about if it is too soon and it may cause a second 

wave of the epidemic. To explore this issue, I fitted a SEIR model with time-

dependent transmission and mortality rates to data from Spain and Germany as 

contrasting case studies. The model reached an excellent fit to the data. I then 

simulated the post-confinement epidemic under several scenarios. The model 

shows that (in the absence of a vaccine) a second wave is likely inevitable and 

will arrive soon, and that a strategy of adaptive confinement may be effective to 

control it. The model also shows that just a few days delay in starting the 

confinement may have caused and excess of thousands of deaths in Spain. 

Keywords: coronavirus, covid-19, SEIR, second wave, confinement, infectious 

disease. 

 

Introduction 

The epidemic of coronavirus (SARS-CoV-2) has spread all over the world since 

January 2020. Most governments have taken measures in trying to limit its 

spread and to reduce its severity, with greater or lesser success. The most 

common, non-pharmaceutical measures are directed to reduce the rate of 

contacts between people, thus reducing the transmission rate. Among other 

possibilities, these measures may entail forbidding large assemblies of people, 

closing of schools and universities, closing of businesses, home isolation of 

confirmed or suspected cases and tracing their contacts, etc. In what follows I 

refer to all these measures collectively as confinement. 

The rigor of these measures and their timing vary among countries, or even 

between regions. Some countries adopted measures very early in their epidemic 

while others took more time. At present (June 2020) in many countries the 

epidemic has passed its peak and is quickly decreasing, which is leading many 

governments to start lifting the confinement. Although this is done with a phased, 
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gradual approach, there is still considerable uncertainty about the consequences, 

and if it may cause a resurgence of the virus and a second wave of cases. 

It is difficult to know exactly the effect that the end of confinement will have on 

the transmission rate and, therefore, on the number of infections. For this reason, 

predictive models fitted to specific situations are useful as tools to predict the 

probability of a second (and subsequent) waves, their potential amplitude and to 

test strategies for their control before they arrive. 

Here, I fitted a SEIR model with time-dependent transmission and mortality rates 

to data from Spain and Germany as case studies. With the fitted model, I 

simulated the epidemic in both countries post-confinement to show the 

possibility of a second wave and its potential amplitude and timing under 

different scenarios. Additionally, I used the model to explore the option of 

adaptive confinement to control the second and subsequent waves. 

 

Methods 

All the calculations were done with MATLAB (2018). 

SEIR model 

I used a standard SEIR model modified with time-dependent transmission and 

mortality rates. SEIR models classify the population into four classes: susceptible 

(S), exposed (E, infected but not yet infectious), infected (and infectious, I), and 

recovered (R). The total population is N= S+E+I+R. The model is represented by 

the equations: 

𝑑𝑆

𝑑𝑡
= −

𝛽𝑡𝑆𝐼

𝑁
    [eq 1] 

𝑑𝐸

𝑑𝑡
=

𝛽𝑡𝑆𝐼

𝑁
− 𝜎𝐸   [eq 2] 

𝑑𝐼

𝑑𝑡
= 𝜎𝐸 − (𝛾 + 𝜇𝑡)𝐼  [eq 3] 

𝑑𝑅

𝑑𝑡
= 𝛾𝐼    [eq 4] 

where: t is time-dependent transmission rate (eq. 7),  is the loss of latency rate, 

 is recovery rate and t is time-dependent, disease-induced mortality rate (eq. 

8). This formulation assumes a complete mixing of the population and no 

population dynamics (i.e. births and natural mortality are considered negligible 

within the time frame of the epidemic). It also assumes that surviving the disease 

confers permanent immunity. 
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Two additional equations are included to keep track of the accumulated number 

of deaths (D) and accumulated infections (denoted AI, to avoid confusion with 

currently infected I), which are later used to fit the model to data. These are: 

𝑑𝐴𝐼

𝑑𝑡
= 𝜎𝐸    [eq 5] 

𝑑𝐷

𝑑𝑡
= 𝜇𝑡𝐼    [eq 6] 

Transmission rate t and mortality rate t are not constants but a function of 

time, to capture the effect of measures taken to control the epidemic. Regarding 

transmission, this refers to the confinement of a large part of the population and 

the quarantine of detected cases. Regarding mortality rate, the time-dependency 

was introduced because a variable mortality rate achieved a better fit, and, with 

constant mortality, the deviation between model and data suggested a decrease 

of mortality rate after confinement measures were put in place. Time-dependent 

transmission and mortality rates are modelled with sigmoid functions, as: 

 

𝛽𝑡 =

{
 
 

 
 
𝛽                                                            𝑖𝑓 𝑡 ≤ 𝑡𝑖

𝛽 (1 −
𝛿𝑑(𝑡−𝑡𝑖)

2

1+𝛿𝑑(𝑡−𝑡𝑖)
2
)                    𝑖𝑓 𝑡𝑖 < 𝑡 < 𝑡𝑒

𝛽𝑚𝑖𝑛 + (𝛽 − 𝛽𝑚𝑖𝑛) (
𝛿𝑖(𝑡−𝑡𝑒)

2

1+𝛿𝑖(𝑡−𝑡𝑒)
2
)    𝑖𝑓 𝑡 > 𝑡𝑒

   [eq 7] 

 

𝜇𝑡 = {
𝜇                                  𝑖𝑓 𝑡 ≤ 𝑡𝑖

𝜇 (1 −
𝛿𝑚(𝑡−𝑡𝑖)

2

1+𝛿𝑚(𝑡−𝑡𝑖)
2
)    𝑖𝑓 𝑡 > 𝑡𝑖

     [eq 8] 

 

where  is the initial transmission rate, without any measures to limit contact 

between people, and  is the same for the mortality rate. t is time (days) from the 

first detected case, and t is the initial day of confinement minus 2, and te is the 

end of confinement. d is the rate of decrease of transmission because of the 

control measures, while m is the same for mortality. min is the value of t at time 

te, and i is the rate of increase of transmission after te (see fig. 1 for an example of 

t). 

 

Fitting of the model 

To fit the model, I used data on daily cases and daily deaths from the European 

Centre for Disease Control (ECDC 2020) and data of recovered from the John 

Hopkins University github (CSSE 2020), because the ECDC does not include 
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recovery data. Accumulated time series were generated from daily values. Only 

values up to the end of the confinement period were used in the fitting, so only 

the first two lines of eq. 7 are pertinent in this case. At the time of writing there is 

not yet enough data after confinement to find a good fit for parameter i. 

The date of start of confinement is not always easy to define, as measures may 

have been taken incrementally along several days or weeks or may have been 

adopted at different times in different regions of a country. I relied on published 

news about the confinement to choose ti and te for Spain and Germany. For Spain: 

ti was the 14th of March and te the 10th of April. For Germany ti was the 23rd of 

March and te the 20th of April. 

When comparing the model to data we must consider the question of 

detectability. Most of the cases are undetected, either because they are mild or 

even asymptomatic or because they are not tested for the virus for different 

reasons. In the model all cases are known exactly, so to make a meaningful 

comparison with the data the model values were multiplied by a probability of 

detection, pdet. Recent extensive serological studies in Spain have shown a 

prevalence of 5%, or around 2.3 million people (Instituto de Salud Carlos III, 

2020). This is approximately ten times the number of diagnosed cases in Spain, 

which suggests a value of 0.1 for pdet. I used the same value for Germany. Deaths, 

on the other hand, are assumed to be known exactly. If more deaths were due to 

the epidemic, the parameter estimates could change, particularly mortality rate, 

but until a more accurate estimation of deaths is available, I rely on data as 

published. 

The fitting is done by least squares, combining four time-series: accumulated 

infected, accumulated deaths, accumulated recovered, and currently infected. 

The quantity to be minimized is, then: 

𝑆𝑆 =  ∑(𝑝𝑑𝑒𝑡 𝐴𝐼𝑚 − 𝐴𝐼𝑑 )
2
+ ∑(𝐷𝑚 − 𝐷𝑑 )

2
+ ∑(𝑝𝑑𝑒𝑡 𝑅𝑚 − 𝑅𝑑 )

2
+

∑(𝑝𝑑𝑒𝑡 𝐼𝑚 − 𝐼𝑑)
2   [eq 9] 

The minimization was done with MATLAB function lsqcurvefit. In eq. 9 the 

subscript d stands for data, while subscript m stands for model. AI is accumulated 

infected (eq. 5), D is accumulated deaths (eq. 6), R is accumulated recovered (eq. 

4) and I are currently infected (eq. 3). The number of current infections is 

typically not reported, so I calculated it as: 

𝐼𝑑(𝑡) = 𝐼𝑑(𝑡 − 1) + 𝑁𝐼(𝑡) − 𝑁𝐷(𝑡) − 𝑁𝑅(𝑡) [eq 10] 

where: Id(t) are observed current infections on day t, Id(t-1) are the current 

infections the day before and I(t), ND(t), and R(t) are the new infections, new 

deaths, and new recoveries on day t, respectively. 
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To generate a model prediction with a specified set of parameters the model 

equations are integrated using MATLAB function ode45. This solver uses an 

explicit Runge-Kutta formula to do the integration. The initial values for each 

population class were: as susceptible, the total population of the country (World 

Bank 2019), no individuals exposed, one individual infected, no dead, and no 

recovered. The initial values for the parameters and their bounds during fitting 

are shown in Table 1.  

After fitting the model, the basic reproductive number (R0) is estimated 

(Diekmann et al. 1990, Blackwood & Childs 2018) as: 

 𝑅0 =
𝑟

𝛾+𝜇
 

where r is the exponential rate of increase of cases at the beginning of the 

epidemic, which, in turn, is estimated by fitting an exponential function using 

only the first 50 days of data. 

Once a best-fitting model is identified, confidence intervals for all the parameters 

(and R0) were estimated by bootstrap, assuming a Poisson error structure and 

using 1000 realizations (following Chowell 2017). I fitted the model to data from 

two countries: Spain and Germany because they have shown contrasting 

epidemic trajectories, which can shed light on the benefits or pitfalls of different 

control strategies. The parameter estimates and their confidence intervals for 

both countries are shown in Table 2. 

 

Results and simulations 

The model reached a very good fit for both countries and for all the components 

of the population: total infections, current infections, deaths, and recoveries (fig. 

2). This good fit lends confidence in using the model as a predictive tool and for 

the testing of hypothesis or the consequences of control strategies. I used the 

model to simulate the evolution of the epidemic post-confinement in several 

scenarios, and the feasibility of an adaptive confinement strategy. 

 

The second wave 

Many countries, including Spain and Germany, are already lifting the 

confinement measures, typically in a slow, phased approach. However, there is 

considerable unease and uncertainty about if the lifting of confinement will 

provoke a resurgence of the virus and a second wave of cases, and its potential 

magnitude. It is very difficult to know with any exactitude the effect that the 

lifting of each measure will have on the transmission rate and, therefore, on the 

number of infections. However, it seems safe to assume that any increase of 
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transmission rate will be slower than the decrease that happened as a 

consequence of the confinement. Or, in terms of the model, that 𝛿𝑖 ≪ 𝛿𝑑. I used 

the Spain and Germany models to simulate the possible evolution of the epidemic 

post-confinement in three scenarios, each characterized by a value of the rate of 

increase of transmission i. The three values are expressed as a fraction of the 

rate of decrease of transmission d. Specifically I used: i= d/10, i= d/50, and i= 

d/100 (fig. 3). It is important to keep in mind that these simulations assume that 

no further confinement measures would be taken in any case. 

The results suggest that there will be a second wave in both countries and that 

their magnitude would dwarf the current wave. In fact, they would be as large as 

the first wave would have been if no measures at all had been taken. At the peak 

of the second wave the number of current infections would be between 2 and 3 

million and the number of deaths would be in the hundreds of thousands, for 

both Spain and Germany. The timing of the second wave, on the other hand, 

would be different in both countries. Spain, in the worst-case scenario, would 

have the peak of the second wave in mid-June, and in the best-case scenario in 

late July. Germany, on the other hand, would have a second-wave peak between 

early July and early October, depending on the scenario. 

 

Adaptive confinement 

The results of the simulation of the second wave strongly suggest that, in the 

absence of a vaccine or an extremely efficient track-and-trace system, further 

periods of confinement will be necessary in the near future. I used the Spain-

fitted model to simulate a situation in which the confinement is triggered when 

the number of currently infected exceeds a given threshold, and it is gradually 

lifted when the number drops back below it (Ferguson et al. 2020). I used the 

number of currently infected as trigger variable and simulated two scenarios, 

with a threshold of 3500 and 1000, respectively. The former is the number of 

infected there were in Spain two days before the “estate of alert” (i.e. 

confinement) was declared, on the 14th of March. The later was reached 

approximately four days before, on the 8th of March (fig. 4).  

The results show that the epidemic can be controlled by using this type of 

adaptive strategy, imposing or easing a lockdown depending on the state of the 

epidemic. This adaptive model shows three waves of decreasing amplitude 

(including the present one) in the first two years, with the thresholds mentioned 

above. Crucially, the simulations also show large differences in the number of 

infections and deaths depending on the threshold used to trigger the 

confinement. This fact, given the exponential growth of the number of cases at 
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the start of the epidemic, stresses the importance of taking measures early in the 

epidemic. 

 

Discussion 

I fitted a SEIR model with time-variable transmission and mortality rates to the 

COVID19 epidemic data of Spain and Germany, as case studies. The model fitted 

the data extremely well in both cases, which allows to use it with confidence to 

predict the future evolution of the epidemic or the outcomes of different control 

strategies. The fact that the transmission rate, particularly, is not constant but 

time-dependent allows the model to respond to the confinement of part of the 

population, which is the most commonly used strategy to control or reduce the 

epidemic.  

The timing of control measures plays an essential role in the model, but it is not 

straightforward to define this timing in a way that matches reality. In the model, 

the confinement starts in a specific day for the whole population, but this is 

typically not the case. In some countries, control measures were taken 

incrementally as the epidemic progressed, not all in a single day. Furthermore, 

some measures may be applied at different times in different regions of a 

country, like it happened in Italy, which does not fit the assumption of 

homogenous mixing implicit in the model. However, despite this difficulty, the 

model retains its capacity to fit the observations quite well, thus making it a good 

tool for prediction and testing. 

The estimates of the model parameters show differences between Spain and 

Germany which could be related to their management of the epidemic (Table 2). 

Given that Germany’s population is almost twice that of Spain, a stronger 

epidemic would have been expected there. However, the total cases, deaths and 

peak of infections were considerably lower. Although the initial transmission 

rate () was higher in Germany, the decrease of transmission with confinement 

was also much faster, and this, coupled with a higher recovery rate and lower 

mortality, led to a much-restricted epidemic. The basic reproductive number (R0) 

also offers clues on the severity of the epidemic. It was twice as high in Spain, and 

higher in both countries than most estimates from other studies (Liu et al. 2020), 

but still within the range estimated by other authors (Shen et al. 2020, Sanche el 

at. 2020). Further, by the end of confinement the case fatality rate was 0.5% in 

Germany and 1.22% in Spain; while the fatalities per hundred thousand people 

were 11.2 and 64.1, respectively. It would be difficult to attribute any of these 

differences to specific circumstances. Undoubtedly, they are the combined 

outcome of multiple factors, but taken together suggest that the management of 

the epidemic was more effective in Germany. 
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The simulations of the post-confinement period clearly show that a second wave 

is probably inevitable, no matter how gradually or carefully the confinement is 

lifted. The reason is the large pool of infected (mostly undetected) still present 

among the population when the lifting of confinement measures is started. The 

model estimate of the number of infected at the end of the confinement was 

775×103 in Spain, and 149×103 in Germany. This is undoubtedly much larger 

than the initial, imported cases that started the epidemic in either country, which 

makes a second wave very likely and with the potential of being larger than the 

first. The difference between the two countries in number of infected when 

confinement was lifted is also the reason for the differences in the timing of the 

second-wave peak, which the model predicts will happen much earlier in Spain. 

In the best-case scenario this difference is approximately 2.5 months. To delay a 

second wave as much as possible in Spain it would be necessary to prolong the 

confinement measures until the pool of infected has reduced considerably below 

its present level. However, it would be probably unfeasible to prolong it until the 

complete disappearance of the disease. The model predicts that the last case in 

Spain (maintaining confinement) would occur in late November and in Germany 

by the end of August. A good track-and-trace system may help to reduce the 

amplitude of the second wave, but it would require a very high efficacy. 

Given that a second wave is likely inevitable and that is not possible to maintain 

the confinement measures until the disease disappears completely, other 

strategies will be required, like the adaptive policy suggested by Fergusson et al. 

(2020). The simulations of this strategy with the Spain-fitted model (fig. 4) show 

that it is feasible to control the epidemic by alternating confinement periods with 

others of non-confinement. There is a trade-off to consider, however, in using 

this strategy; setting the threshold higher makes the periods of confinement 

slightly shorter, but the epidemic waves will be larger and, consequently, there 

will be more fatalities. Another factor to consider is what to choose as indicator. I 

used here the number of active infections, while Fergusson et al. (2020) 

suggested the case incidence in ICU patients. This question is open to debate, but 

the best indicator (which may be different in each country) would be one that 

can be measured as accurately and with as little delay as possible. 

The model predicts that there would be three waves of diminishing amplitude in 

two years, including the current one, with the thresholds chosen. The reason for 

the decrease in amplitude is the increasing percentage of the population that has 

had the disease, thus acquiring immunity. Permanent immunity after having the 

disease is an assumption of the model, but if it happens and how long it lasts is 

still an open question (see a review of studies in Flodgren 2020). 

The simulations of adaptive confinement make it clear the importance of taking 

early measures against the epidemic. I simulated two scenarios, one with a 

threshold for confinement of 3500 current infections and another with a 
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threshold of 1000. The first is approximately the number of infected that there 

were in Spain two days before the confinement was officially declared by the 

government on the 14th of March, a scenario chosen to represent the actual 

events. The lower threshold was reached about four days before that, on the 8th 

of March. The differences between the two scenarios are striking (fig. 4). The 

peak of the first wave is approximately 108×103 infected with the highest 

threshold, but only 33×103 with the lower one. More importantly, the model-

predicted fatalities reach approximately thirty thousand with the higher 

threshold (very close to the actual official number) but only nine thousand with 

the lower one; a third of the number of deaths. Thus, the delaying of the start of 

confinement by a mere four days may have caused a two-thirds increase in 

fatalities, or twenty thousand more deaths. An earlier confinement would have 

reduced this number even further. At the start of an epidemic the number of 

cases rises exponentially, meaning that every single day is important to control 

the epidemic. 

The predictions of the model clearly show that some control strategies and 

implementations are better that others, even if they are not perfect. They also 

show that strong measures must be taken very early in the epidemic and very 

aggressively; that the argument that some measures “cannot be adopted too 

early” is unjustifiable if the goal is to control the epidemic and save lives. 

Hopefully, the lessons of modelling and analysis exercises like this and others 

will be learnt and considered when the next wave arrives and, especially when 

the next pandemic emerges. 
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Table 1. Initial values and bounds of the free parameters of the model. The 

values of  and  are expressed as the inverse of the latency period and infective 

period, respectively. The value of  is calculated from  and  assuming an R0 of 3. 

Parameter Initial value Lower bound Upper bound 

  3 ( +) 0 5 

 1/3.5 1/10 1 

  1/15 1/60 1/4 

  0.01 0 0.25 

d  5 10-4 0 0.25 

m 5 10-4 0 0.25 

    
 

 

Table 2. Parameter estimates and 95% confidence intervals for Spain and 

Germany. For a description of the parameters, see methods. R0, while not a model 

parameter, is shown for its indicative value. 

  Spain  Germany 
Parameter Estimate 95% CI Estimate 95% CI 

  0.6101 [0.6023    0.6179] 1.0779 [1.0736    1.0819] 

 0.2578 [0.2521    0.2637] 0.0863 [0.0859    0.0867] 

  0.0334 [0.0333    0.0335] 0.0711 [0.0707    0.0715] 

  15 10-4 [14 10-4    16 10-4] 3.74 10-4 [3.63 10-4    4.14 10-4] 

d  0.0172 [0.0169    0.0175] 0.0717 [0.0709    0.0725] 

m 0.0016 [0.00152    0.00176] 1.17 10-8 [2.36 10-14    9.78 10-5] 

R0 6.27 [6.25    6.30] 3.16 [3.13    3.19] 
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Figures 

 

 

Fig. 1. Evolution of time-dependent transmission rate (t) for Spain before, 

during, and after confinement. The blue line shows the initial phase with 

constant  (up to day 40) and the decline of transmission with confinement, until 

day 93. The rate of decrease (d) is estimated from model fitting. After day 93 

each line represents a different speed of confinement release, as a fraction of the 

speed of decrease. Red: 1/10, Orange: 1/50 and Green: 1/100. 
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Fig. 2. Fit and forecast of the model for Spain and Germany. From left to right the 

panels represent: accumulated infected, currently infected, deaths, and 

recovered. Red dots represent Spain and black dots represent Germany. The 

yellow line is the best-fitting model, forecasted 300 days after the first infection 

(in each country). Grey areas are 95% confidence intervals for the prediction 

from a bootstrap procedure (see methods). Confidence intervals are not visible 

for the most part because they are very narrow. 
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Fig. 3. Simulation of the easement of confinement. Panel A shows results for 

Spain and panel B for Germany. The grey area is the period of confinement. In 

each panel, the top figure shows current infections and the lower one number of 

deaths.  Each line represents a different speed of confinement release, expressed 

as a fraction of the speed of decrease of transmission during confinement (t). 

Red line: /10, pink line: 1/50, blue line: 1/100.  The yellow line shows model 

prediction maintaining confinement. 
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Fig. 4. Simulation of adaptive confinement with the Spain-fitted model. The 

confinement is triggered when the number of active infections exceeds a 

specified threshold and is gradually lifted when the number drops back below it. 

The threshold was 3500 for the yellow line and 1000 for the blue line. The top 

panel shows active infections and the lower panel shows deaths. The semi-

transparent areas in the top panel mark the periods of confinement (above 

threshold), in orange for the higher threshold and blue for the lower one. 
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