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Abstract 
Cryo-EM maps are valuable sources of information for protein structure modeling. However, 
due to the loss of contrast at high frequencies, they generally need to be post-processed to 
improve their interpretability. Most popular approaches, based on B-factor correction, suffer 
from limitations. For instance, they ignore the heterogeneity in the map local quality that 
reconstructions tend to exhibit. Aiming to overcome these problems, we present 
DeepEMhancer, a deep learning approach designed to perform automatic post-processing of 
cryo-EM maps. Trained on a dataset of pairs of experimental maps and maps sharpened using 
their respective atomic models, DeepEMhancer has learned how to post-process experimental 
maps performing masking-like and sharpening-like operations in a single step. DeepEMhancer 
was evaluated on a testing set of 20 different experimental maps, showing its ability to obtain 
much cleaner and more detailed versions of the experimental maps. Additionally, we illustrated 
the benefits of DeepEMhancer on the structure of the SARS-CoV-2 RNA polymerase.  
 

Introduction 
Almost one decade after the beginning of the so-
called “resolution revolution”, cryogenic electron 
microscopy (cryo-EM) has become one of the 
most versatile tools in the field of structural 
biology. Beginning from thousands of single 
particle projection images, cryo-EM workflows 
are capable of obtaining three-dimensional (3D) 
reconstructions of many macromolecules at 
“near-atomic” resolution levels. However, the 
ultimate goal of cryo-EM Single Particle 
Analysis is not the obtention of 3D maps but the 
detailed atomic understanding through the 
derivation of atomic models. 

During the atomic model building process, raw 
3D maps are rarely employed, as they suffer from 
loss of contrast at high resolution (Rosenthal and 
Henderson, 2003) that makes difficult the 
detection and interpretability of residues and 
secondary structure. Fortunately, loss of contrast 
can be alleviated using different contrast 
restoration algorithms, which are usually known 
as sharpening methods. The first sharpening 

approach for cryo-EM maps was introduced by 
Rosenthal and Henderson (Rosenthal and 
Henderson, 2003) and its formulation, based on 
the B-factor correction, is still at the basis of the 
most commonly employed sharpening methods, 
including RELION postprocessing (Kimanius et 
al., 2016; Zivanov et al., 2018) or Phenix 
AutoSharpen (Terwilliger et al., 2018). The 
principle behind these algorithms consists in the 
correction of the raw maps by boosting the 
amplitude of their high frequency Fourier 
components. The strength of the amplitude boost 
at each frequency depends on the frequency itself 
and on a single number, the B-factor, that 
measures the global loss of contrast. Thus, 
although the different B-factor-based methods 
differ in the procedures employed to determine 
the B-factor that is applied, they modify the 
volume globally in a similar manner. 

Despite being widely used, B-factor-based 
approaches present an important limitation: they 
do not consider the differences in quality that 
different parts of the map may present and they 
produce density maps that do not correspond to 
the scattering properties of biological 
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macromolecules (Vilas et al., 2020). 
Consequently, for the case of maps that exhibit 
heterogeneous local resolution, some regions 
could be undersharpened whereas others could be 
oversharpened. Recently, local sharpening 
algorithms, that alleviate this shortcoming, have 
been proposed. Thus, the LocScale (Jakobi et al., 
2017) algorithm uses the information contained 
in an atomic model to locally scale up a map. 
Such transformation is achieved by means of a 
sliding window approach in which the amplitudes 
of the map region that lay inside the window are 
scaled up to agree with the atomic model 
provided.  Following a totally different strategy, 
the LocalDeblur (Ramírez-Aportela et al., 2020) 
algorithm employs a Wiener filtering approach 
that performs local deblurring with a strength 
proportional to an estimation of the local 
resolution, that has to be pre-computed. 
Similarly, LocSpiral (Kaur et al., 2020) employs 
the spiral phase transformation to factorize the 
volume and then, perform a local enhancement 
based on the normalization and thresholding of 
the amplitudes.  

Despite their benefits, current local sharpening 
approaches present some drawbacks. Thus, both 
LocSpiral and LocalDeblur depend on masks to 
distinguish the macromolecule from the noise 
and LocalDeblur requires also from an estimation 
of the local resolution of the map. On the other 
hand, the main strength of LocScale, its ability to 
employ the structural information of atomic 
models, could also be regarded as its main 
weakness since the availability of atomic models 
limits its applicability. 

With the aim of overcoming these shortcomings, 
in this work, we present Deep cryo-EM Map 
Enhancer (DeepEMhancer), a fully automatic 
deep learning-based approach that performs cryo-
EM volume post-processing. Deep learning has 
revolutionized the field of Artificial Intelligence 
and its impact has been felt in many others 
including cryo-EM. Deep learning in cryo-EM 
was firstly applied for the problem of particle 
picking (Wagner et al., 2019; Wang et al., 2016; 
Zhu et al., 2017) and since then, it has evolved to 
deal with other questions such as map 
reconstruction (Gupta et al., 2020; Zhong et al., 
2019), map segmentation (Maddhuri Venkata 
Subramaniya et al., 2019; Si et al., 2020) or local 
resolution determination (Avramov et al., 2019; 
Ramírez-Aportela et al., 2019). As in most of 
those methods, our approach relies on a 
convolutional neural network (CNN) that is 

trained on massive quantities of data. 
Particularly, our development, that follows a 
simple image super-resolution setup (Yang et al., 
2019), exploits the vast amount of structural 
information that is contained in the Electron 
Microscopy Data Bank (EMDB) database 
(Lawson et al., 2015) in order to mimic the local 
sharpening effect of the LocScale algorithm. 
However, DeepEMhancer does not require any 
atomic model to function and, contrary to 
previous methods, it also performs automatic 
(tight) masking of input maps. Our results show 
that DeepEMhancer, that works in a fully 
automatic manner, is able to largely improve the 
interpretability of the maps contained in our 
benchmark, performing better than classical B-
factor approaches. 

Results 

DeepEMhancer is based on an end-to-end U-net 
architecture (Ronneberger et al., 2015) trained in 
a supervised manner. Particularly, we 
implemented a 3D U-net consisting in three 
downsampling blocks and three upsampling 
blocks that processes cubic chunks of the input 
map. Training was performed using pairs of input 
maps and target maps, consisting in experimental 
cryo-EM maps and tightly masked LocScale 
post-processed maps. See Methods section for a 
complete description of the data preparation, 
training, and evaluation processes. 

Deep cryo-EM Map Enhancer performance on 
the testing set. 

In order to assess the quality of DeepEMhancer 
predictions, we first compared them against the 
target maps generated by LocScale. Thus, for 
DeepEMhancer maps, we measured a median 
correlation coefficient of 0.91 against LocScale 
maps in contrast to 0.60 for input maps (see 
Supplementary Material Figure S1). Such an 
important increase in the correlation coefficient 
implies that DeepEMhancer has learned to 
accurately reproduce the effect of LocScale 
sharpening with one important advantage: no 
atomic models are required to employ 
DeepEMhancer. 

Although reproducing the LocScale sharpening 
effect was our main objective, the ultimate goal 
of map post-processing is to simplify the process 
of atomic model building. With the aim of 
studying if DeepEMhancer also contributes to 
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that purpose, we next explored whether 
DeepEMhancer post-processed maps were more 
similar to the actual atomic models. To do so, we 
computed, for all the maps included in the testing 
set, the Fourier Shell 

 
Figure 1. DeepEMhancer produces maps that are 
more similar to the atomic models. Resolution 
(determined by Fourier Shell Correlation coefficient, 
FSC) between the reference maps obtained from the 
atomic model and 1) the input maps (blue), 2) the 
input maps tightly masked (orange), 3) the post-
processed maps by DeepEMhancer (green) and 4) the 
post-processed maps by DeepEMhancer tightly 
masked (red). EMDB entries are sorted by published 
global resolution.  

 
Figure 2. DeepEMhancer produces better quality 
maps. DeepRes median local resolution estimation for 
1) the input maps (blue), 2) the post-processed maps 
obtained with Relion postprocessing automatic B-
factor (orange), 3) the post-processed maps deposited 
in EMDB (green) and 4) the post-processed maps 
obtained with DeepEMhancer (Red). EMDB entries 
are sorted by published global resolution.  

Correlation coefficient (FSC) resolution between 
the input (half maps average) and post-processed 

maps against the reference maps obtained from 
the atomic models. As it is shown in Figure 1, for 
all the examples included in the testing set, the 
application of DeepEMhancer increased the 
similarity of the input maps with respect to the 
references (blue and green bars). Indeed, the 
post-processed maps exhibit a median FSC 
resolution value of 3.3 Å compared to 3.9 Å for 
the input maps. Particularly, the median 
improvement achieved by DeepEMhancer was 
~0.6 Å (~14% in the frequency domain). Such an 
important improvement confirms that the maps 
computed by DeepEMhancer are much more 
similar to the target maps.  

 
Figure 3. DeepEMhancer produces better results than 
B-factor-based methods. Resolution (determined by 
Fourier Shell Correlation coefficient, FSC) between 
the reference maps obtained from the atomic model 
and 1) the input maps (blue), 2) the post-processed 
maps obtained with Relion postprocessing automatic 
B-factor (orange), 3) the post-processed maps 
deposited in EMDB (green) and 4) the post-processed 
maps obtained with DeepEMhancer (red). EMDB 
entries are sorted by published global resolution. 

DeepEMhancer post-processing operation 
performs a non-linear transformation of the 
experimental volume that produces a set of 
effects that could be broadly classified as 
masking/denoising and sharpening-like features 
enhancement. In order to disentangle the 
contribution of the different effects, we have also 
computed the FSC of the input and post-
processed maps using a very tight mask derived 
from the atomic model. As it can be observed in 
Figure 1, the FSC resolution obtained for the 
post-processed maps tend to be better than the 
values computed for the input independently of 
the mask application (green and red bars vs 
orange bar), which implies that the masking 
effect is of high-quality, as the resolutions for the 
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unmasked DeepEMhancer results tend to be 
better than the ones for the masked input maps. 

Similarly, and, although it is true that the trend is 
not as strong as in the previous experiment, 
DeepEMhancer also tends to improve the 

resolution of the masked regions (Figure 1, 
orange vs red bars), which supposes an 
enhancement of the map features. Leaving aside 
some problematic examples such as EMD-7055

 

Figure 4. Testing map EMD-7099. a, Lateral view of the published map (B-factor sharpened, shown at 
recommended threshold). b, Lateral view of the raw data map obtained from the half maps that was used as input for 
DeepEMhancer. c, Lateral view of the published map after rising the threshold and removing the small connected 
components so that the signal coming from the lipids was suppressed. As a collateral consequence, some densities 
corresponding to the protein were also lost. d, Lateral view of the map obtained with DeepEMhancer. e, Zoom-in of 
the region marked with a blue box in c. f, Zoom-in of the region marked with a blue box in d, in which 
DeepEMhancer post-processed map, contrary to the published map, shows the densities corresponding to a missing 
loop in PDB 6bhu chain A. As a result, the residues A195 to I203 have been de novo modeled (new residues 
depicted in yellow, published in green). 

 (Tenthorey et al., 2017), that will be discussed in 
Supplementary Material, most of the evaluated 
maps exhibit a non-negligible improvement in 
resolution, especially notable when compared to 
B-factor-based results (see next section), with a 
median value of ~0.3 Å. 

Alternatively, with the aim of obtaining a 
complementary measurement of improvement, 
we computed the DeepRes local resolution for 
the input and post-processed maps. As can be 
appreciated in Figure 2, all test cases treated with 
DeepEMhancer improved in terms of DeepRes 
local resolution, with dramatic improvements of 
more than 0.8 Å and a median improvement of 
~0.4 Å. Again, those figures, consistent with the 

FSC-based measurements, point out that 
DeepEMhancer is improving the interpretability 
of the maps.  

Comparison with B-factor-based methods. 

With the aim of comparing DeepEMhancer with 
the commonly employed B-factor-based 
sharpening methods, we repeated the same 
experiments using the post-processed maps 
obtained with the Relion postprocessing 
algorithm (Kimanius et al., 2016; Zivanov et al., 
2018). Before, it is important to notice that 
contrary to DeepEMhancer, Relion automatic 
masking is a simple process and thus, in order to 
make the comparison more interesting, we used 
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instead the masks derived from the atomic models.

 

Figure 5. Testing map EMD-4997. a, Overview of the published map (B-factor sharpened, shown at the 
recommended threshold of 0.031), bottom, and the map obtained with DeepEMhancer, top. Red box highlights an 
artifact that has been automatically removed by DeepEMhancer. Blue box delimits the region showed in b. b, Zoom-
in of the region marked with a blue box that contains the β-sheet R7-A10, chains A and B. The published volume is 
shown at the recommended threshold and at the threshold at which the backbone begins to look discontinuous. As it 
can be appreciated, DeepEMhancer solution resolves better than the published map the two strands of the sheet. c, 
Zoom-in of the region centered at chain B residues H121 and Y361 (colored in magenta). The published volume is 
shown at the recommended threshold and at the smaller threshold at which the density that connects the two residues 
disappears. As it can be appreciated, DeepEMhancer post-processed map resolves better than the published map the 
two residues. 

Still, when we evaluated the FSC for the masked 
regions, only a few maps improved, while many 
others worsened, leading to a median 
improvement that was negligible (<0.05 Å) for 
both FSC and median DeepRes resolution (see 
Figure 2 and Figure 3).  

We acknowledge that the automatic 
determination of the B-factor can lead to less 
accurate results than if it were manually selected 
and it may be the reason behind the poor 
observed performance. Thus, we have also 
included in the comparison the post-processed 
maps deposited in EMDB in which the estimation 
of B-factor was carried out by the authors. In this 
case, the improvement in resolution, with median 
values of ~0.15 Å and ~0.1 Å for DeepRes and 
FSC respectively, although closer to the values 
obtained using DeepEMhancer, are still 
considerably inferior (see Figure 2 and 3). In the 
light of these results, we can state that 
DeepEMhancer maps tend to be much more 
similar to the atomic models than the ones 

obtained using B-factor-based methods and thus, 
more useful for the process of model building. 

Visual inspection of testing maps 

The purpose of this section is to further explore 
the results obtained with DeepEMhancer for 
some of the maps included in the testing set with 
the aim of illustrating how the improvements in 
global quality measurements translate to tangible 
improvements in the quality of the maps. 

EMD-7099 

The EMD-7099 (Johnson and Chen, 2018) is a 
high-resolution volume (global resolution 3.1 Å) 
of a multidrug resistance ATP-driven pump. 
EMD-7099 presents 17 transmembrane helices 
and, although the overall quality of the map is 
excellent, visualizing the transmembrane regions 
is challenging because of the signal that comes 
from the lipids. As a result, important parts of the 
protein are not traced. Due to the fact that 
DeepEMhancer was trained to ignore the signal 
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coming from lipidic layers, this example 
illustrates the unique characteristics of 
DeepEMhancer when applied to membrane 
proteins. Thus, as can be observed in Figure 4a-d, 
DeepEMhancer has been able to suppress the 
signal coming from the lipid layer in a much 
more simple and effective way than diminishing 
the threshold in the raw map or the B-factor-
based sharpened maps. The noise suppression 
effect simplifies the process of model building, as 
the researchers do not have to deal with masks or 
larger thresholds that make the visualization of 
near to noise level features more difficult. Yet not 

only DeepEMhancer produces a noise reduction 
effect, but also it is able to enhance some parts of 
the map that under B-factor based sharpening 
seem noisy and disconnected. Such improvement, 
although observed in several regions of the map, 
is more noticeable at the transmembrane region 
Thus, the most important enhancement is 
depicted in Figure 4e-f, in which an important 
part of the backbone of the protein has been de 
novo traced thanks to DeepEMhancer 
enhancement, that has restored the densities 
corresponding to residues A195 to I203 in chain 
A of PDB 6bhu.

 

Figure 6. Use case EMD-30178 from SARS-CoV-2 RNA-dependent RNA polymerase. a, Overview of the original 
map displayed with two different thresholds 0.3 (recommended, left) and 0.5 (middle panel) and processed with 
DeepEMhacer software (right). PDB 7btf is shown in ribbon, red squares designated the zoomed areas in b panel 
and blue squares the zoomed areas in c. b, Zoom-in and extraction of the density from the 3D reconstruction of the 
original map at different thresholds and DeepEMhacer map corresponding to the red squares in a, chain D from 
residues V115 to I132. Newly traced residues in the DeepEMhancer map are shown in pink c, Zoom-in and 
extraction of the density from the 3D reconstruction of the original map at different thresholds and DeepEMhacer 
map corresponding to the blue boxes.

EMD-4997 

The EMD-4997 (Walter et al., 2019) is a 
medium-high resolution volume (4.0 Å) for a 
murine epithelial anion transporter. As in the 
previous example, the overall quality of the map 
is quite good, yet it presents lower quality 
regions. Figure 5a shows an overview of the 
published map, displayed at the recommended 
threshold, and the map obtained with 

DeepEMhancer. Although it is true that both the 
original map and the post-processed map look 
very similar, it is also true that there exist 
important differences. Firstly, the map processed 
with DeepEMhancer is cleaner than the original 
one. Serve as an example the removal of the 
artifacts that the published map presents near the 
elbow of the complex (see Figure 5a, red box). 
More importantly, there can also be found many 
regions for which the DeepEMhancer post-
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processed volume resolves better the different 
residues of the regions. One of such examples 
can be found near the N-terminal end of the 
protein complex. Thus, as it is shown in Figure 
5b, the densities that correspond to the strands of 
the β-sheet are better separated than in the 
published volume. It is important to notice that 
this better separation is not a consequence of the 
employed thresholds, as it is proven by the fact 
that rising the threshold makes the densities 
corresponding to the backbone discontinuous 
before the densities for the two strands separate 
(see Figure 5b). As a result, we can affirm that 
the quality of this region has been improved by 
the usage of DeepEMhancer. 

Another similar example is displayed in Figure 
5c. In this case, two non-contiguous aromatic 
residues, Y361 and H121, seem connected in the 
original map. However, when DeepEMhancer is 
applied, the densities corresponding to the two 
residues look separated while the backbone 
remains continuous.  

Use case EMD-30178 from SARS-CoV-2 
RNA-dependent RNA polymerase 

In order to further explore the benefits of the 
DeepEMhancer algorithm we analyzed more 
deeply the post-processing of EMD-30178 map 
from Gao et al. (Gao et al., 2020), corresponding 
to the SARS-CoV-2 RNA-dependent RNA 
polymerase. The original map presents detailed 
structure up to 2.9 Å resolution, however, as is 
often the case in cryo-EM, the resolution of the 
map is highly heterogeneous. We have chosen 
this map not only for the importance of this 
structure in current days but also because of the 
fact that the heterogeneous quality of the map 
density presents an ideal case for DeepEMhacer 
software. As it is shown in Figure 6 a, the 
application of the algorithm reduces the noise and 
improves the consistency and depiction of the 
map. To better illustrate these differences, we 
have chosen two different regions in chains A 
and D where the differences between the original 
and the DeepEMhancer map can be appreciated 
(Figure 6 b and c). While the density in the 
original map looks noisy or discontinuous 
depending on the displayed threshold (Fig. 6 b 
and c, left and middle panel), the application of 
the DeepEMhacer software results in a well-
defined continuous density where the side chains 
are nicely depicted (Figure 6 b and c, right 
panel).  This improvement in the map density 

allowed us to close the loop between residues in 
the β-sheet V115 to I132 from chain D tracing 3 
new residues that were not traced in the original 
structure (Figure 6 b). The improvement of the 
density is not only applicable to the edges of the 
map but it can be also appreciated in its core. 
Residues H362 to L366 in chain A, traced on the 
original map where positioned more accurately 
on the density after map post-processing (Fig 6 
c). 

Discussion 
The number of deposited high resolution cryo-
EM maps have soared since the beginning of the 
‘resolution revolution’. As a result, there is an 
increasing number of atomic models that are 
being built using cryo-EM as the primary source 
of information. However, building atomic models 
directly from the raw maps is generally not 
possible. Instead, maps are post-processed in 
order to enhance the contrast of their high-
resolution features. 

In this work we have presented Deep cryo-EM 
Map Enhancer (DeepEMhancer), a new map 
post-processing method based on deep learning. 
Trained on pairs of experimental cryo-EM maps 
and post-processed maps constructed with 
LocScale using atomic models, DeepEMhancer 
has learned how to perform a high-quality post-
processing operation that reproduces the effects 
of masking and local sharpening in an automatic 
fashion. 

The performance of our new algorithm has been 
assessed using a testing set of 20 experimental 
maps that were not used for training nor during 
the trial and error process required for its 
implementation. In all cases, the similarity 
between the maps obtained from the atomic 
models and the experimental maps improved 
after the application of DeepEMhancer. 
Additionally, we evaluated in detail the 
performance of DeepEMhancer on two of those 
maps, showing that, not only DeepEMhancer 
facilitates the visualization of cryo-EM maps, but 
also that DeepEMhancer can unveil some details 
that are not easily recognizable in the raw maps. 
Finally, we have employed DeepEMhancer on a 
map of the RNA polymerase of the SARS-CoV 2 
virus, improving its quality of the map and the 
quality of the associated atomic model. 
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Methods 
Raw data collection:  

DeepEMhancer has been trained and evaluated 
using as input a subset of cryo-EM maps 
obtained from the EMDB (Lawson et al., 2015) 
that meet the following requirements: 1) 
resolution better than 7 Å; 2) have one and only 
one atomic model associated; 3) correlation 
between the atomic model and the map better 
than 0.6 and 4) half maps available. As a result, 
an original list of 415 maps was compiled. 
However, this initial list is highly redundant and, 
in order to avoid biases in both the training and 
evaluation procedures, this list was further 
filtered to reduce its redundancy, (see subsection 
Redundancy control). Finally, after a visual 
inspection aimed at removing problematic cases 
that survived to the automatic filtering procedure, 
a total amount of 151 maps, with an average 
reported resolution of 3.8 Å, was selected. 

Since the main objective of DeepEMhancer is to 
perform a sharpening-like post-processing 
transformation, it is important to ensure that the 
maps used in this study were not previously 
sharpened. Given the fact that most of the maps 
deposited in EMDB are sharpened and many are 
also masked, we decided to employ only the half-
maps available in EMDB (condition number 4). 
Due to the lack of an appropriate searching tool 
in EMDB and a file name convention, we had to 
analyze all the map file names included in the 
database looking for the substring “half” to 
recover the half maps. Full maps were obtained 
averaging respective half maps. 

As learning targets, we employed the output 
generated by LocScale using as input the 
aforementioned maps and their associated atomic 
models. Additionally, the output maps were 
tightly masked using as masks the maps 
simulated from the atomic models after a 
thresholding operation. Although it is true that 
the simulated maps could be directly employed as 
targets, we discarded this alternative for two 
reasons. The first one is empirical: we obtained 
better results when targets were produced with 
LocScale, probably because the input and target 
maps, although different, they still share some 
similar properties such as intensity ranges or 
local quality, which are not necessarily preserved 
when using simulated maps as targets. The other 
reason is that we wanted to reproduce the state-

of-the-art local sharpening effect and not a new 
type of post-processing that could not be 
compatible with downstream atomic modelling 
tools. 

Data preparation: 

Due to the fact that the monomers (amino acids, 
nucleotides…) that compose the macromolecules 
have fixed size but the deposited maps vary in 
voxel size, both the input and the target maps 
were resampled to 1 Å/voxel size with the aim of 
facilitating the learning process. After that, the 
intensity of each volume was normalized using 
the classical cryo-EM approach by which the 
map noise statistics are forced to adopt a fixed 
mean and standard deviation (0 and 0.1 
respectively). Finally, due to GPU size 
limitations, the maps were chunked into 
64x64x64 cubes, the maximum size that our 
computing systems were able to efficiently 
manage. As a result, more than 70k volume 
cubes, including both signal cubes and noise-only 
cubes were used for training. 

 Redundancy control: 

In order to perform the train/test/validation split 
used to develop and evaluate our method, it is 
important to consider that the universe of proteins 
is highly redundant and that the EMDB entries 
are even more redundant. Serve as an example 
the case of the ribosome, that supposes ~10% of 
the all EMDB entries. Thus, in order to avoid an 
over-optimistic performance estimation, we have 
ensured that the train, test and validation sets are 
mutually exclusive in the sense that their 
intersections are empty under a certain 
equivalence criterion. Particularly, we consider 
that two EMDB entries are equivalent if they 
share one sequence that belongs to the same 30% 
sequence identity cluster. Similarly, with the aim 
of eliminating potential bias in the evaluation, we 
have guaranteed that only one member per cluster 
is included in testing and validation sets. On the 
contrary, we have relaxed our quite strict 
redundancy control policy in the training set 
allowing up to five cluster representatives in an 
attempt to increase the size of this set. This 
decision is founded on the fact that even maps of 
the same exact protein may present different 
statistics due to the intrinsic variability of cryo-
EM reconstruction workflows and thus, limiting 
their presence in the training set may difficult the 
generalization of the neural network. 
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As a result, a list of 110, 21 and 20 maps were 
used for training, validation and testing 
respectively. The full list of the EMDB entries 
used can be found in Supplementary Material.  

Neural network architecture:  

We have employed a 3D U-net-like neural 
network (Ronneberger et al., 2015) as a 
regression model for the estimation of post-
processed maps. Our neural network consists of 
three downsampling blocks and three upsampling 
blocks with skip connections. Each block 
contains three convolutional layers followed by 
group normalization (Wu and He, 2020) and 
PRelu activation (He et al., 2015). The number of 
filters for each block is 3x32, 3x64 and 3x128 
respectively. Downsampling is carried out using 
strided convolutions and upsampling is 
performed via transposed convolution. See 
Supplementary Material for additional details. 

 

Neural network training:  

Our neural network was trained using stochastic 
gradient descent with a batch size of 8 cubes. 
Initial learning rate was set to 10-3 and decreased 
by a factor of 0.5 when the validation loss did not 
improve during 5 epochs. As loss function, mean 
absolute error was employed. Data augmentation, 
consisting in random 90º rotations, gaussian 
blurring and patch corruption was applied to the 
training data. 

Neural network inference:  

In order to perform volume post-processing, the 
input volume is pre-processed as described in the 
Data preparation subsection. Then, the resized 
and normalized volume is chunked into 
overlapping cubes of size 64x64x64 with strides 
of 16 voxels. Each cube is individually processed 
by the trained neural network, yielding post-
processed cubes. After that, the post-processed 
cubes are re-assembled into the final volume 
averaging the overlapping parts. Finally, the 
processed volume is resized to the size of the 
original volume, thus, showing the correct 
sampling rate value. 

Evaluation:  

With the aim of guiding the cross-validation 
process, we computed the correlation coefficient 
between the maps produced by DeepEMhancer 
and the maps used as learning targets (masked 
LocScale post-processed maps). Once the final 
model was selected, the quality of 
DeepEMhancer predictions were assessed 
comparing the input and processed maps against 
the reference maps obtained from the atomic 
models. Specifically, we computed the Fourier 
Shell Correlation coefficient (FSC) between them 
and we estimated the resolution using 0.5 as 
threshold. Due to the fact that DeepEMhancer 
performs a non-conventional post-processing 
operation, including masking and enhancement 
operations, in order to disentangle the two 
effects, the FSC was also computed after 
masking the maps to compare with a tight mask 
derived from the atomic model.  

As a complementary metric, we also applied 
DeepRes (Ramírez-Aportela et al., 2019) over the 
input and processed maps. DeepRes is a deep 
learning-based local resolution method that, 
contrary to others, is sensitive to the sharpening 
process and thus, it can provide an alternative 
estimation of the post-processing effect. 

Finally, for comparison purposes, we repeated 
the FSC and DeepRes experiments using the 
Relion postprocessing program (Kimanius et al., 
2016; Zivanov et al., 2018). As Relion automatic 
masking is very simple, in order to make the 
comparison more interesting, we decided to 
execute the postprocessing algorithm using the 
mask derived from the atomic models. Similarly, 
since the automatic determination of the B-factor 
can produce worse results than a manually 
selected one, in addition to the maps computed 
using an automatically determined B-factor by 
Relion, we also considered the sharpened map 
deposited in EMDB. 

EMD-30178 map evaluation and atomic model 
modification:  

DeepEMhancer was applied to the half maps 
deposited in EMDB entry EMD-30178. The 
original and post-processed maps were visually 
inspected using Coot (Emsley and Cowtan, 2004) 
and chimera (Pettersen et al., 2004), and chosen 
regions on the 7btf PDB were newly built or 
modified using Coot. 
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Data availability 
DeepEMhancer is available at 
https://github.com/rsanchezgarc/deepEMhancer 
and as an Xmipp protocol for Scipion v3. Post-
processed map examples are available at 
http://campins.cnb.csic.es/deepEMhancer/exampl
es. 
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