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Abstract

A large number of methods have been developed and continue to be developed for detecting the 

signatures of selective sweeps in genomes. Significant advances have been made, including the 

combination of different statistical strategies and the incorporation of artificial intelligence 

(machine learning) methods. Despite these advances, several common problems persist, such as 

the unknown null distribution of the statistics used, necessitating simulations and resampling to 

assign significance to the statistics. Additionally, it is not always clear how deviations from the 

specific assumptions of each method might affect the results.

In this work, allelic classes of haplotypes are used along with the informational interpretation of 

the Price equation to design a statistic with a known distribution that can detect genomic patterns 

caused by selective sweeps. The statistic consists of Jeffreys divergence, also known as the 

population stability index, applied to the distribution of allelic classes of haplotypes in two 

samples. Results with simulated data show optimal performance of the statistic in detecting 

divergent selection. Analysis of real SARS-CoV-2 genome data also shows that some of the sites 
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playing key roles in the virus's fitness and immune escape capability are detected by the 

method.

The new statistic, called JHAC, is incorporated into the iHDSel software available at

https://acraaj.webs.uvigo.es/iHDSel.html.
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Introduction

Evolutionary biology studies the factors that affect genetic variability in populations and 

species. The main processes that influence the evolution of this variability include mutation 

and recombination, genetic drift, migration, and natural selection. Natural selection, in 

addition to affecting the allele carrying a beneficial mutation, impacts the neutral alleles of 

loci linked to the selective one, producing what is known as genetic hitchhiking (Smith and 

Haigh 1974; Kaplan et al. 1989), which leads to a selective sweep (Berry et al. 1991; Stephan 

2019), meaning a loss of diversity around the selected site. These sweeps can be complete or

incomplete, strong or soft, and they can even overlap (Johri, Stephan, et al. 2022). Regarding

the detection of the footprint left by selective sweeps in genomes, from the earliest methods

that explored haplotype patterns, whether by studying homozygosity (Sabeti et al. 2007), its 

diversity (Kimura et al. 2007), or interpopulation differentiation (Chen et al. 2010),  among 

others, a great number of methods have been developed and continue to be developed. 

Significant advancements have been made, including the use of summary statistics, the 

combination of different statistical strategies, and the incorporation of artificial intelligence-

based methods (Horscroft et al. 2019; Stephan 2019; Abondio et al. 2022; Arnab et al. 2023; 

Panigrahi et al. 2023; Whitehouse and Schrider 2023). 

Methods for detecting selective sweeps require the existence of haplotypic data. Despite 

improvements in the efficiency and accuracy of methods for estimating haplotypes 

(Delaneau et al. 2019; Meier et al. 2021; Shipilina et al. 2023), in non-model species 

(understood as those in which, whether or not a genome has been sequenced, it is poorly 
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annotated and has not traditionally been a model species in the pre-genomic era), 

haplotype-based detection methods are still not widely used. Instead, it is more common to 

use interpopulation methods based on detecting molecular markers with excessively high 

differentiation values, known as "outliers". But even in the case of model species, the use of 

haplotype-based methods to detect selective sweeps presents the problem that the same 

genomic pattern that could be produced by a selective sweep could also be explained under 

different scenarios related to factors as diverse as the quality and characteristics of the 

sampled data, biological characteristics related to mutation and recombination rates, as well

as demographic history and the effects of purifying and background selection (Johri, 

Aquadro, et al. 2022; Soni et al. 2023; Soni and Jensen 2024).

Part of this problem arises from the lack of knowledge of the null distribution of the statistics

used, which requires simulating the neutral biological scenario. But overall, it is clear that 

although a statistical tool can detect a specific genomic pattern in the data, it is unlikely that 

that pattern could be due solely to the effect of a selective scan. It may do so in some 

scenarios, but not in others.Therefore, to validate a candidate SNP or region as a result of a 

selective process, it is first necessary to prove that the statistic does not generate false 

positives in realistic scenarios in terms of demography and other evolutionary parameters of 

interest. Subsequently, functional validation of these candidate loci will always be necessary 

(Johri, Aquadro, et al. 2022). This does not preclude that the development of statistical tools 

to detect genomic patterns that may be related to selective sweeps remains of great 

interest. It would also be interesting if that statistic had a known null distribution.
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When studying a selective sweep, we can trace its effect over time (directional selection) or 

across space (divergent selection). Therefore, if we use two samples to compare the effect of

the sweep, they can be separated by time or space. Detecting the footprint of natural 

selection in genomes in general, and specifically divergent selection, is important for 

studying speciation processes (Galindo et al. 2021) and climate adaptation (Folkertsma et al. 

2024), but also for more immediate effects such as resistance to infections in commercially 

important marine species (Pampín et al. 2023; Vera et al. 2023). 

In this work, I propose a statistic that uses the population stability index, also known as 

Jeffreys divergence, to compare the distribution of allelic classes of haplotypes (Labuda et al.

2007; Hussin et al. 2010) between two populations or samples. To develop the statistic I use 

the informational interpretation of the Price equation (Price 1972; Frank 2012a) defined for 

the haplotype allelic class trait. The advantage of this statistic is that it follows a chi-square 

distribution when the null hypothesis (equal distribution of haplotype classes among 

samples) is true. This not only increases computational efficiency by several orders of 

magnitude but also allows for the testing of biological models expected to deviate from this 

hypothesis, including the presence of local selection and its corresponding selective sweep. 

Below, I will present the development of the statistic and then demonstrate its behavior 

with both simulated and real genomic data from various samples of the SARS-CoV-2 virus.

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 3, 2024. ; https://doi.org/10.1101/2024.06.01.596790doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.01.596790
http://creativecommons.org/licenses/by-nc/4.0/


The Price equation and the population stability index to compare

population genomes

Price equation

The Price equation in its most general formulation describes the change between two 

populations at any scale, spatial or temporal (Frank 2012a; Frank 2017). The equation 

partitions the change into a part due to natural selection and another part due to other 

effects. We compare two populations or frequency distributions which can be separated by 

space and/or time. Natural selection causes populations to accumulate information, which is

measured in relation to the logarithm of biological fitness m= log(ω), where ω is the relative 

fitness (Frank 2012b; Frank 2012a).

Therefore, let z be a character that takes different values zi with associated frequency pi in 

population P and with frequency qi in population Q. If we consider the logarithm of fitness as

the character, z=m, we have that the mean change in m due to the effect of natural selection

in one or the other population is (Frank 2012a)

Δ s m̄=J ( p ,q)=βmw Dw where Dw=
V w

w̄
(1)

where J is the Jeffreys divergence or population stability index, p and q the frequency of the 

different values of m in the populations P and Q respectively, and βmw is the regression of m 

on the absolute fitness w.

However, it is possible to use scales other than the fitness logarithm to measure 

information, with the key element being the regression of values in the new scale on fitness 
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(Frank 2013). Therefore, to detect the effect of natural selection from genomic data, it will 

be necessary to measure those genomic patterns with high regression values on biological 

fitness. In this work, we propose the haplotype allelic class (HAC) as a suitable pattern to 

capture the increase in information generated by natural selection, whether in temporal 

comparisons (directional selection) or spatial comparisons (divergent selection).

Haplotype allelic class (HAC)

Haplotype allelic classes were initially introduced in (Labuda et al. 2007) and later used to 

detect genomic patterns caused by selective sweeps (Hussin et al. 2010) and divergent 

selection  (Carvajal-Rodríguez 2017). 

Consider a sample of sequences and compute the reference haplotype R as the one formed 

by the major allele of each site. Now, consider for the same or another sample of sequences,

the haplotypes of length L+1 centered in a given candidate SNP c and define the mutational 

distance between any haplotype and the reference R as the Hamming distance between the 

haplotype and the reference i.e. the number h of sites in the haplotype carrying an allele 

different to the one in R. Each group of haplotypes having the same h will constitute an 

haplotype allelic class (HAC, Labuda et al. 2007; Hussin et al. 2010). The HAC distribution is 

estimated from the distribution of the h values in a sample. 

Thus, in a given haplotype with the candidate SNP position c in the middle, for each position 

other than c we count the outcome Xk = I(sk ≠ rk) were sk is the allele in the position k of the 

haplotype, rk is the allele in the reference and I(A) is the indicator variable taking 1 if A is true

and 0 otherwise. Therefore, the h value of an haplotype of length L+1 is 
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h=∑
k=1

L+1

Xk where k≠c , X k=I (sk≠rk)and h∈[0 , L] (2)

The idea behind using h-values to detect selective sweeps is that if one allele increases in 

frequency due to the effect of selection, the higher frequency alleles from adjacent sites will 

be swept along with the selected allele so that these haplotypes will have many common 

alleles with the reference configuration, i.e., an h-value close to zero.

Information for haplotype allelic classes: the population stability index

Let hi be the HAC value that satisfies h=i with i∈[0 , L] then for a sample of n1 sequences in

P, the frequency of hi is 

Pi=# hi /n1 with ∑i
Pi=1

similarly, for a sample of n2 sequences in Q, the frequency of hi is 

Qi=# hi /n2 with ∑i
Qi=1

In previous works, studying the distribution of alleles around a candidate site in both 

samples P and Q , has been performed comparing in several ways the HAC variances of the 

partitions that have the reference allele or not in the different samples (Carvajal-Rodríguez 

2017; Gabián et al. 2022). There are some problems with this type of approach as the 

unknown distribution of the defined statistics or a loss of power when using homogeneity 

variance tests. Here, I rely on the abstract model of the Price equation as proposed by Frank 

(Frank 2012a; Frank 2013; Frank 2017; Frank 2020) to calculate, using Jeffreys divergence, 

the change caused by selection in the distribution of HAC values between two populations. 
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Number of classes and smoothing

For a total of L+1 different classes the Jeffreys divergence is (Kullback 1997)

J HAC=
n1 n2

n1+n2
∑
i=0

L

(Pi−Qi) ln
Pi

Qi

However, computing JHac in this way could suffer from the curse of dimensionality if 

eventually L > n1+n2 which will cause the presence of the different classes to be scarce. To 

alleviate this problem we will group the values in K (K≤L) HAC classes. The number of classes 

K is an important parameter because too many classes have the dimensionality issue but too

few classes will have low power for the distribution comparison. A heuristic conservative 

guess is K=L/2 when L>=15 or K=L otherwise.

Given K, we will group uniformly the h values into K groups so that the first group indicates 

classes with less than (100/K)% of minor alleles, the next corresponds to classes with more 

than (100/K)% but less than 2×(100/K)%, until the last group with more than (K-1)×(100/K)% 

but equal or less than 100%. The class with 100% of minor alleles is included in this last 

group.

Thus, for population P, the frequency P'i of each group of classes is

{
S i=∑

j=u

U

# h j−1/n1 wherei∈[0 , K ] , u=1+
L
K

i andU=
L
K

(i+1)

i∈[0 , K−1] : P 'i=S i

i=K :         P' K=SK+# hL /n1

(3)

However, note that the Jeffreys divergence is defined only if P and Q have no zeros. To avoid 

zeros we use additive smoothing (Manning et al. 2008) with a pseudocount α=0.5 for each 
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possible outcome so that Si and P'k in (3) become

S i=∑
j=u

U

(# h j−1+α)/(n1+α K )

P' k=SK+(# hL+α)/(n1+α K )

So, for K groups of HAC classes, the Jeffreys divergence for comparing the HAC distribution 

between populations P and Q finally is  (c.f. eq. 5.10 in Kullback 1997 p. 130)

J HAC=
n1 n2

n1+n2
∑
i=0

K

(P 'i−Q' i) ln
P 'i

Q ' i

with values in [0, +∞) (4)

Note that JHAC is also known as the population stability index and is asymptotically distributed

as Chi-square with K-1 degrees of freedom.

The advantage of using (4) in the context of studying the genomic footprint of selection is 

that, contrary to other statistics, it can be approached by a chi-square distribution providing 

a faster approach as we can avoid performing computationally expensive simulations or 

resampling.

Phenotypic scale, linkage disequilibrium and window size

Phenotypic scale

The gain in information caused by the effect of natural selection as expressed in (1) depends 

on the log-fitness m and if we measure the frequency of the hi classes instead of fitness 

classes, the relationship between the average change in the h distribution and the gain in 

information will depend on the regression of h-values on fitness as follows (Frank 2013)  

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 3, 2024. ; https://doi.org/10.1101/2024.06.01.596790doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.01.596790
http://creativecommons.org/licenses/by-nc/4.0/


Δ s h̄=βhw Dw where Dw=
V w

w̄

thus, if we use the HAC values to compute J we obtain JHAC

J HAC=βhw Dw=
βhw

βmw
J

The quantity βhw/ βmw is the change in phenotype (HAC values) relative to the change in 

information (Frank 2013). Therefore, if there is perfect fit between ln(P/Q) and m then JHAC=J.

The regression of h on w will be high when it is fitness that is distributing the classes of h, 

which requires that there are indeed one or more sites under selection within the haplotype 

window. However, this is a necessary but not sufficient condition. Price's equation for total 

change indicates that the average variation in phenotype h has two components: one due to 

selection and the other due to other causes, including changes in the components of the 

phenotype that are transmitted (Δh)

Δ h̄=Δ s h̄+q ' Δ h

In our context, the change in h not caused by selection may be due to, besides mutation, the

effect of recombination on haplotypes, which in turn will depend on the window size. 

Therefore, we are interested in using window sizes that correspond to haplotype blocks in 

order to minimize Δh. 

Window size

The program computes haplotype blocks and set the candidate position c in the middle of 

each block. An haplotype block is computed as a sequence of reference SNPs with lenght W 
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that satisfies r²(c-W/2,c-W/2+1),..., r²(c-1,c), r²(c,c+1), r²(c+x-1,c+x),..., r²(c+W/2-1, c+W/2),... 

where r is the correlation coefficient calculated from the sample of size n so that Pr(nr2)≤α 

and nr2 has a Chi square distribution. Furthermore, for a given SNP c+1 to be included in the 

block, it is also required that D'(c, c+1)≥0.4, where D' is the normalized linkage disequilibirum

(Lewontin 1964). The block is extended until any of both conditions is rejected i.e. Pr(nr2
c+x-

1,c+x)>α or D'(c+x-1, c+x)<0.4. 

Optionally, the program can use an outlier as the putative center of a block and build the 

block around it. In this case, the condition for defining a block is more liberal, allowing blocks

that have a mean normalized linkage disequilibrium value greater than zero. The reason is 

that the outliers may have been part of older blocks, so we use the minimum condition that 

the average linkage of reference alleles is greater than zero assuming that, if they are not the

product of selective sweep, the distribution of haplotypic classes will not be affected, the 

latter will be checked in the next section by simulation.

Simulations

The same simulated data as in (Carvajal-Rodríguez 2017; Gabián et al. 2022) were used. Two 

populations of 1000 facultative hermaphrodites were simulated under divergent selection 

and different conditions about mutation, recombination, migration and selection. Each 

individual consisted of a diploid chromosome of length 1Mb. 

Input setting for the simulations

A minor allele frequency (MAF) value of 0.01 was used. As we have already seen, the 

program allows defining the window or haplotypic block size automatically, using the 
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correlation between pairs of sites to define the block size and placing the central SNP as a 

candidate or, alternatively, it uses the detected outliers as candidate SNPs and then 

calculates the window size. Both methods were used.  All other parameters were as defined 

by default (see the program manual). An example of the command line to launch case C1  

(Table 1) and analyze the 1,000 files located in subfolder C1 and using the automatic 

calculation of blocks (-useblocks 1) is:

-path /home/data/C1/ -runs 1000 -input Om_SNPFile_Run -format ms -sample 50

-minwin 11 -output JHAC_C1_ -maf 0.01 -useblocks 1 -doEOS 1 &

The -doEOS tag indicates whether we want (1, default) or not (0) to run in addition the EOS 

outlier test (Carvajal-Rodríguez 2017). If the calculation without blocks is used (-useblocks 0) 

the doEOS tag must necessarily be set to 1.

Simulation results

In the following tables the results of power (Tables 1-3) and false positive rate (Table 4) after 

analyzing 1000 replicates of each scenario are presented. In summary, for haplotypes with 

linkage and the selective site in the center of the chromosome, when using the automatic 

blocks system, the power is equal to or greater than 95%, regardless of mutation and 

recombination rates. As expected, if the sites are not linked, the method does not work 

because there is no selective sweep (Table 1). When the position of the selective site moves 

away from the center of the chromosome (Table 2), the power remains high. Localization 

improves as recombination increases and as the marker is located closer to the center. In the

case of multiple selective sites (Table 3), the power to detect at least three is above 75% 

when using automatic blocks but only detects one (97% power) in the case of blocks 
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centered on outliers. In general, for blocks centered on outliers, the power is slightly lower, 

but in some cases, the localization was considerably more accurate.

Table 1. Percent power for detecting divergent selection by JHac in simulated data with the selective site in 
the middle. The power was computed as 100×the number of replicates where selection was detected/1000. 
In parentheses, the corresponding value when the blocks were built around outliers instead of finding the 
blocks automatically, if the value is equal the = symbol appears. Genome size is 1Mb. Population size N= 
1000. T: number of generations.  Population mutation rate θ = 4Nµ.  Population recombination rate ρ = 
4Nr. s: selection coefficient. Dist: average distance in Kb from the detected position to the actual effect, 
given only when ρ>0. W: average size, in number of SNPs, of the haplotypes analyzed. Significance level α 
= 0.05. Each case was replicated 1,000 times.

Case T θ ρ s % power Dist Kb W

C1 10 4 12 0 ± 0.15 100 (98) - 14 (13)

C2 10 4 12 4 ± 0.15 100 (98) 42  (38) 14 (13)

C3 10 4 12 12 ± 0.15 100 (96) 4 (10) 13 (12)

C7 5×10 3 60 0 ± 0.15 100 (94) - 13 (12)

C8 5×10 3 60 4 ± 0.15 100 (85) 37 (14) 13 (12)

C9 5×10 3 60 60 ± 0.15 98 (80) 14 (2) 12 (11)

C13 10 4 60 0 ± 0.15 100 (100) - 14 (=)

C14 10 4 60 4 ± 0.15 99 (100) 126 (15) 14 (13)

C15 10 4 60 60 ± 0.15 95 (91) 19 (2) 13 (12)

C15Indep 10 4 60 ∞ ± 0.15 0 (2*) - (-) - (11)

* Note that this 2% results from using the outlier-centered haplotype method. When directly inspecting outliers with the EOS 

method, the power was 78%.

Table 2. Percent power for detecting divergent selection by JHac in simulated data with the selective site in 
different locations. The power was computed as 100×the number of replicates where selection was 
detected/1000. In parentheses, the corresponding value when the blocks were built around outliers instead
of finding the blocks automatically, if the value is equal the = symbol appears. Genome size is 1Mb. 
Population size N= 1000. T: number of generations.  Population mutation rate θ = 4Nµ.  Population 
recombination rate ρ = 4Nr. s: selection coefficient. Loc: true relative position of the selective site. Dist: 
average distance in Kb from the detected position to the actual effect, given only when ρ>0. W: average 
size, in number of SNPs, of the haplotypes analyzed. Significance level α = 0.05. Each case was replicated 
1,000 times.

Case T θ ρ s Loc % power Dist Kb W

C13loc0 10 4 60 0 ± 0.15 0.0 100 (99) - 14  (13)

C13loc10 10 4 60 0 ± 0.15 0.01 100 (99) - 14 (13)

C13loc100 10 4 60 0 ± 0.15 0.1 100 (98) - 14 (13)
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C13loc250 10 4 60 0 ± 0.15 0.25 100 (99) - 14  (13)

C14loc0 10 4 60 4 ± 0.15 0.0 98 (93) 300  (262) 14 (13)

C14loc10 10 4 60 4 ± 0.15 0.01 98 (96) 285 (292) 14 (13)

C14loc100 10 4 60 4 ± 0.15 0.1 99 (96) 180 (229) 14 (13)

C14loc250 10 4 60 4 ± 0.15 0.25 99 (98) 62 (114*) 14 (14)

C15loc0 10 4 60 60 ± 0.15 0.0 86 (79) 211 (189) 13 (11)

C15loc10 10 4 60 60 ± 0.15 0.01 87 (80) 198 (170) 13 (11)

C15loc100 10 4 60 60 ± 0.15 0.1 91 (89) 106 (70) 13 (12)

C15loc250 10 4 60 60 ± 0.15 0.25 92 (89) 37 (14) 13 (12)

* Several runs with average FST > 0.5 and no outliers, so the 90th percentile was considered.

Table 3. Percent power for detecting divergent selection by JHac in simulated data for a polygenic model 
with 5 selective sites uniformly distributed in the chromosome. The power was computed as the number of
replicates where selection was detected. In parentheses the corresponding % power when the blocks were 
built around outliers instead of finding the blocks automatically, if the value is equal the = symbol 
appears. Genome size is 1Mb. Population size N= 1000. Number of generations T=10⁴.  Population 
mutation rate θ = 4Nµ=60.  Population recombination rate ρ = 4Nr=60. Selection coefficient per site s=± 
0.032 . W: average size, in number of SNPs, of the haplotypes analyzed.  Each case was replicated 100 
times.

Case Candidate % power W

C15poly 1 99 (97) 15 (18)

C15poly 2 89 (0) 16 

C15poly 3 75 (0) 16 

C15poly 4 59 (0) 16 

C15poly 5 44 (0) 16 

Finally, in the neutral simulations where there was no selective site (Table 4), the false 

positive rate conservatively remains below the expected 5%, both using automatic blocks 

and those centered on outliers, with one exception corresponding to the effect of 

bottlenecks. When a bottleneck occurs, it can generate linkage disequilibrium that could 

resemble the effect of a selective sweep, thus increasing the possibility of false positives. In 

our case, we observed that JHac becomes liberal with 13% when the blocks are centered 
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around the outliers, which means an 8% excess over the expectation. The explanation for 

this happening with blocks centered on outliers but not with automatic ones is that, as 

previously indicated, the construction of blocks centered on outliers is somewhat more 

liberal, validating as blocks those regions that have an average disequilibrium greater than 0.

A conservative option available for the above exception is to set the window size to a higher 

value, say 25 or 50, which solves the problem and sets the false positive rate to just 2%. 

While for the corresponding selective case when we run the program with these window 

sizes the power is 90%.

Table 4. Percent false positive rate for detecting divergent selection in simulated neutral data. In 
parentheses the corresponding value when the blocks were built around outliers instead of finding the 
blocks automatically, if the value is equal the = symbol appears. Genome size is 1Mb. Population size N= 
1000. T: number of generations.  Population mutation rate θ = 4Nµ.  Population recombination rate ρ = 
4Nr. %FPR = 100×number of replicates with significant JHac test/1000. W: average size, in number of 
SNPs, of the haplotypes analyzed. Each case was replicated 1,000 times.

Case T θ ρ % FPR W

C4 10 4 12 0 0.1 (1) 11 (=)

C5 10 4 12 4 0.3 (2) 12 (11)

C6 10 4 12 12 0.1 (4) 12 (11)

C10 5×10 3 60 0 0 (0.4) - (11)

C11 5×10 3 60 4 0 (2) - (11)

C12 5×10 3 60 60 0.2 (3) 12 (11)

C16 10 4 60 0 0.3 (0.4) 12 (11)

C17 10 4 60 4 1 (2) 12 (11)

C18 10 4 60 60 1 (4) 13 (=)

C18Indep 10 4 60 ∞ 0 (0.2) - (11)

C18Bottle 10 4 60 60 3 (13) 12 (11)

C18Bottle 10 4 60 60 2 26* 

C18Bottle 10 4 60 60 2 51* 
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* window size set to a specific value

Real data analysis: SARS-CoV-2

SARS-CoV-2 virus genomes stored in the GISAID database (Khare et al. 2021) are indexed by 

both locality and the time period where they were sampled thus presenting a unique 

opportunity to apply iHDSel to both time or spatially separated samples. Therefore, as an 

example of application, we are going to compare SARS-CoV-2 genomes sampled in Spain 

(SP), England (EN) and South Africa (SA) in periods corresponding to different waves. The 

findings of this section are based on data associated with 30,274 SARS-CoV-2 genomes 

available on GISAID up to February 12, 2024, gisaid.org/EN1, gisaid.org/EN2, gisaid.org/EN3, 

gisaid.org/EN4, gisaid.org/SP1, gisaid.org/SP2, gisaid.org/SA.

The downloaded genomes were complete (>29,000 bp) and of high quality (<1% undefined 

bases and <0.05% unique amino acid mutations). These datasets were then processed using 

the Nextclade CLI for quality control (Aksamentov et al. 2021). Briefly, the Nextclade CLI 

examines the completeness, divergence, and ambiguity of bases in each genome. Only 

genomes considered ‘good’ by Nextclade CLI were selected.

The samples from England (EN1, EN2,EN3 and EN4) correspond to the period of March 2020,

at the beginning of the first wave of the pandemic (EN1, 4820 genomes collapsed to 4227 

after quality control), a second sample taken between March 28 and March 31, 2021, 

inclusive (EN2, 5966 genomes collapsed to 4152 after quality control), a third from June 24 

to June 26, 2021, inclusive (EN3, 6886 genomes collapsed to 5844 after quality control), and 
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from October 1, 2023, until January 31, 2024, inclusive (EN4, 3928 genomes collapsed to 

3712 after quality control). 

The samples from Spain (SP1 and SP2) correspond to the periods June 24, 2021, to July 12, 

2021, inclusive (SP1, 6195 genomes collapsed to 4627 after quality control) and October 1, 

2023, to January 31, 2024, inclusive (SP2, 1012 genomes collapsed to 221 after quality 

control). 

Finally, the sample from South Africa corresponds to the same period as SP1, June 24, 2021 

to July 12, 2021, inclusive ( SA, 1467 genomes collapsed to  1327 after quality control). 

These samples will allow us to compare population changes in space or time. We will 

compare genomes from different samples to study if there are genomic patterns that the JHAC

test identifies as potentially caused by selection (see below).

Rationale of the comparisons

Spatial comparisons: SP1-SA, EN3-SA, EN3-SP1

These comparisons involve samples from different countries obtained in the same time 

period of the pandemic. The interest in the comparison with South Africa is that on June 24, 

2021 to July 12, 2021, vaccination rates were high in Spain and England but very low in South

Africa. Virtually 100% of the Spanish and English population was vaccinated with at least one

dose and less than 10% of the South African population (https://ourworldindata.org/covid-

vaccinations?country=ZAF).
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Temporal comparisons: EN1-EN2, EN2-EN3, EN3-EN4

These comparisons affect the same country but in different periods of the pandemic from 

the beginning of the first wave to the beginning of 2024 with virtually the entire population 

already vaccinated several times and the majority variant being Omicron and its subvariants 

(Brüssow 2022; Wang et al. 2023; Wang et al. 2024). 

Spatial comparisons: EN4-SP2

At the end of 2023, the JN.1 subvariant of Omicron, originating from the BA.2.86 lineage, 

began to spread. This subvariant already carried more than 30 mutations in the spike protein

compared to previous subvariants. JN.1 includes the L455S mutation and, by the end of 

2023, exhibited a higher reproductive rate than previous sublineages in countries such as 

Spain, France, and England, with the number of detected JN.1 sequences being higher in 

England than in Spain (Kaku et al. 2024). During this period, DV.7.1, a sub-lineage of BA.2.75,

was highly prevalent in Spain (50% compared to 5% in the UK, 

https://cov-lineages.org/lineage_list.html) and was considered a variant to monitor, 

although it was later downgraded. Therefore, the comparison between EN4 and SP2, 

corresponding to October 2023 - January 2024, is of interest to study the potential patterns 

of divergent selection in the evolutionary dynamics of Omicron subvariants between these 

two countries.

Genome alignment and lineage classification

The pooled genomes for each comparison were aligned with the MAFFT FFT-NS-2 program

(Katoh  and  Standley,  2013)  with  the  specific  version  for  SARS-CoV-2  accessible  online

(https://mafft.cbrc.jp/alignment/server/add_sarscov2.html).  Sequences that had more than
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5% ambiguous sites were removed and also, to keep the alignment length the same as the

input, insertions were deleted. The remaining options were the default. After the alignment,

and following the protocol recommended by NextStrain given the possibility of artifactual

SNPs located at the beginning and end of the alignment (van Dorp et al. 2020), sites in the

first 130 base pairs and the last 50 were removed using the program Mega X (Kumar et al.

2018). Lineages were identified with Nextclade CLI  (Table 5).

Table 5. Percentage of SARS-CoV-2 lineages in the analyzed data.

Data %Alpha %Beta %Delta
(%AY.4/AY.45)

%Gamma %Omicron
(%JN.1/FLIP/DV.7.1)

%Other (pre-Alpha,
Lambda, Mu,

recombinants, undefined)

SP1 24 2 70  (2/0) 2 0 2

SA 1 3 94 (0/57) 0 0 2

EN1 0 0 0 0 0 100 (pre-Alpha)

EN2 98 1 0.1 0.1 0 0.8

EN3 1 0.02 98.9 (72/0) 0 0 0.08

EN4 0 0 0 0 96  (39/6/1) 4 (recombinants)

SP2 0 0 0 0 97  (26/12/28) 3 (recombinants)

Input settings for iHDSel

A minor allele frequency (MAF) value of 0.01 was used. The two methods already mentioned

were used to define the window size (automatic or outlier-centered blocks) and the results 

detected by either of the two methods are reported. All other parameters were the ones by 

default (see program manual). An example of the command line for the comparison 

between EN3 and SP1 where both samples are in the file EN3_SP1.fas located in the data 

folder and using the outlier-centered block calculation (-useblocks 0) is:

-path /home/data/ -input EN3_SP1.fas -format fasta -output EN3_SP1 -

useblocks 0 -tag ENGLAND &
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where -tag is the argument that defines the word included in the name from the England 

sequences and that allows to separate both samples.

Similarly, for the temporal comparison between EN2 and EN3

-path /home/data/ -input EN2_EN3.fas -runs 1 -format fasta -output EN2_EN3 

-useblocks 0 -tag 2021-03 -reference 2

where we have added the -reference tag to indicate that the EN3 sample should be used as a

sample to calculate the blocks and the reference haplotype.

The imprint of selection in the SARS-CoV-2 genomes

Spatial comparisons: SP1-SA (summer 2021)

The SP1 sample has a majority Delta (70%) and Alpha (24%) composition while SA is mostly

(94%) Delta (Table 5).  The pooled SP1-SA sample consists  of  247 SNPs with a frequency

greater than 1%. After genome-wide analysis, iHDSel did not find any significant haplotypic

blocks in the automatic search nor when focusing on outliers.

Spatial comparisons: EN3-SA (summer 2021)

Both samples are mostly Delta (99% EN3 and 94% SA, Table 5). The pooled EN3-SA sample

consists of 107 SNPs with a frequency higher than 1%. After whole genome analysis, iHDSel

found one site with the automatic block method (28,282) and five sites centered on outliers

(Table 6). 

The first site is 7,851, which corresponds to ORF1a 2,529. In the SA sample, 100% of the

sequences have the amino acid A, while in EN3, there is 27%A and 73%V, indicating the

change A2529V. It  is  noteworthy that A2529V is  one of  the main SARS-CoV-2 mutations

associated with virus fitness (Jankowiak et al. 2022). Moreover, in a recent study (Garcia et

al.  2024) analyzing  the  evolution  of  different  lineages  in  relation  to  the  progress  of

vaccination,  the  A2529V  mutation  in  ORF1a  showed  a  significant  positive  correlation
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between  the  prevalence  of  the  mutation  and  vaccination  in  Norway  during  the  first  9

months of 2021 (including the sampling period of EN3 and SA).

The second site is 13,812, which, after identifying the slippery region (Kelly et al. 2021) and

the start of ORF1b at 13,468, corresponds to amino acid 115 in ORF1b (NSP12). This site has

100%M in EN3 but 42%M and 58%I in SA. The change M115I is a characteristic mutation of

the AY.45 lineage (Gangavarapu et al. 2023), which is present in SA with a frequency of 57%

but is absent in EN3.

The third and fourth sites are mutations corresponding to amino acid changes in the Spike

protein. Specifically, T95I represents the change observed between SA and EN3, with I at a

frequency of only 8% in SA but 72% in EN3. The other mutation in Spike is G142D, with D

present at 62% in SA and 97% in EN3 (Table 6). Both mutations are characteristic of the Delta

variants  and increase in frequency in Delta Plus  (Cai  and Cai  2021; Dhawan et al.  2022;

Kannan et al. 2022; Mahmood et al. 2022).

The fifth site is position 25,413 of the genome, corresponding to amino acid 7 in ORF3a, with

amino acid I in both samples being EN3 (ATC) and SA (ATT|50%C). Therefore, the existence

of  a  significant  signal  due to different  HAC distribution must be caused by accumulated

variation in the surrounding sites. Similarly, the sixth and final site corresponds to amino acid

3 of the N protein, with the amino acid being D (GAT) in 99% of the cases in both samples,

with practically 1% being L (CTA). Again, the existence of a significant signal due to different

HAC distribution is caused by accumulated variation in the surrounding sites.

Table 6. Significant JHac tests (p-val<0.05) for EN3-SA comparison (with  107 SNPs and sample sizes nEN3 = 
5844, nSA=1327).

EN3-SA Gene (protein) AA %

Block size Site
(+1+130)

(AA in EN3)  (AA in SA) (p1 | p2 |... EN3) : (p1 |p2 |... SA)

41 7851 ORF1a (NSP3)  (V|A) 2529 (A) (73 | 27):(- | 100)

11 13812 ORF1b (NSP12) (M) 115 (M| I) (100):(42 | 58)

30 21846 ORF2 (S) (I|T) 95 (I|T) (76 | 24):(8 | 92)

14 21987 ORF2 (S)  (D|G) 142 (D|G) (97 | 3):( 62 | 38)
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11 25413 ORF3a  (I) 7 (I) (100):(100)

14 28282 ORF9 (N)  (D|L) 3 (D|L) (99 | 1):(99 | 1)

(+1+130): added to the program output position, the +1 to correct the program indexing to 0 and the +130 to correct the eliminated initial 
positions.

Spatial comparisons: EN3-SP1 (summer 2021)

We already saw that the EN3 genomes are predominantly Delta (99%), while SP1 has 70% 

Delta genomes and 24% Alpha (Table 5). The combined EN3-SP1 sample consists of 154 SNPs

with a frequency greater than 1%. After the whole genome analysis, iHDSel found one 

significant site. The nucleotide site 7851 corresponds to amino acid 2,529 in ORF1a, which 

was also significant in the EN3-SA comparison, and we saw that A2529V is one of the main 

SARS-CoV-2 mutations associated with virus fitness. In this comparison, the change is from 

98%A in SP1 to 73%V (27%A) in EN3.

Therefore, regarding the spatial comparisons in the summer of 2021, we see that in the SA 

and SP1 samples, amino acid 2529 of ORF1a was still A in virtually 100% of the sequences 

analyzed, while in EN3, only 27% had A and the remaining 73% were already V. This 

mutation is associated with an advantage for the virus and in relation to vaccination, and 

indeed, the JHAC statistic detects it as a site with a selective pattern.

Temporal comparisons: EN1-EN2 (March 2020 vs March 2021)

The comparison between the English genomes is between samples separated in time 

(different waves). These comparisons should be considered with caution as the 

differentiation between samples is very large. Indeed, the mean FST in all three comparisons 

(EN1-EN2, EN2-EN3 and EN3-EN4) is above 0.5. However, the sites detected in the three 
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comparisons correspond to sites with recognized impact on virus fitness.

The genomes in EN1 belong to pre-alpha variants, while the genomes in EN2 are Alpha. The 

combined EN1-EN2 sample consists of 77 SNPs with a frequency greater than 1%. After the 

whole genome analysis, iHDSel found six significant sites for the JHAC test. These sites 

correspond to six Spike mutations, namely amino acids 501, 570, 681, 716, 982, and 1118 

(Table 7). All of them correspond to the characteristic Spike mutations of Alpha 

(Gangavarapu et al. 2023). The only one missing is D614G, although it is included in the 

detected haplotypic regions. The fact that it does not come out as directly significant may be

because the program did not use that position as the center of a haplotypic block, as it 

detected the other sites as more extreme outliers since 614G has a presence of 61%G in EN1

and 99.9% in EN2. However, when the program is run proposing the nucleotide positions 

corresponding to tha amino acid 614 as candidates, the result is significant. Therefore, it 

seems that the haplotypic region including all these mutations has been detected. 

Table 7. Significant JHac tests (p-val<0.05) for EN1-EN2 comparison (with 77 SNPs and sample sizes nEN1 = 
4224, nEN2=4152).

EN1-EN2 Gene (protein) AA %

Block size Site (+1+130) (AA in EN1)
position (AA in EN2)

(p1 | p2 |... EN1) : (p1 |p2 |... EN2)

11 23063 ORF2 (S) N501Y (100):(1 | 99)

11 23271 ORF2 (S) A570D (100):(2 | 98)

11 23604 ORF2 (S) P681H (100):(1 | 99)

11 23709 ORF2 (S) T716I (100):(1| 99)

11 24506 ORF2 (S) S982A (100):(2| 98)

11 24914 ORF2 (S) D1118H (100):(1| 99)

(+1+130): added to the program output position, the +1 to correct the program indexing to 0 and the +130 to correct the eliminated initial 
positions.
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Temporal comparisons: EN2-EN3 (March 2021 vs June 2021)

This is a comparison of Alpha (EN2) with Delta (EN3) genomes. The pooled EN2-EN3 sample 

consists of 105 SNPs with a frequency greater than 1%.  After whole genome analysis, iHDSel

found seven significant sites using blocks centered on outliers (Table 8).

These included substitution of relevant Spike amino acids at sites such as 452, 478, 681, and 

950 (Kannan et al. 2021). For example, the L452R substitution appears to be associated with 

evasion of the immune response (He et al. 2022). As well as three sites in the N protein, 63, 

203 and 377, which correspond to significant mutations of the delta variant, namely, D63G, 

R203M, and D377Y (Bhattacharya et al. 2023). 

Table 8. Significant JHac tests (p-val<0.05) for EN2-EN3 comparison (with 105 SNPs and sample sizes nEN2 
= 4152, nEN2=5844). 

EN2-EN3 Gene (protein) AA

Block size Site (+1+130) (AA in EN2) position (AA in EN3)

18 22917 ORF2 (S) L452R

18 22995 ORF2 (S) T478K

13 23604 ORF2 (S) H681R

12 24410 ORF2 (S) D950N

12 28461 ORF9 (N) D63G

11 28881 ORF9 (N) K203M

13 29402 ORF9 (N) D377Y

(+1+130): added to the program output position, the +1 to correct the program indexing to 0 and the +130 to correct the eliminated initial 
positions.

Temporal comparisons:  EN3-EN4 (June 2021 vs January 2024)

This is a comparison of Delta genomes (EN3) with Omicron genomes (EN4). The pooled EN3-

EN4 sample consists of 239 SNPs with a frequency greater than 1%. After whole genome

analysis,  iHDSel  identified several  sites with  FST greater than 0.99 and 14 of them in the

center of significant blocks (Table 9). 
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The first  site occurs in ORF1a (NSP5)  and corresponds to the amino acid change P132H,

which  is  a  mutation  in  a  functionally  important  domain  and  characteristic  of  Omicron

(Hossain et al. 2022). The remaining sites presented in Table 9 correspond to core Omicron

mutations in Spike (Basheer et al. 2023; Chen et al. 2023) including some like S371F, S373P,

and S375F, which are related to alterations in binding and entry preference (Hu et al. 2022;

Zheng et al. 2023) and also the 'Kraken' subvariant immune escape F486P  (Parums 2023).

Finally, the synonymous change L18L in ORF7b is within the same haplotypic block as the

reversions A82V and I120T in ORF7a, which, when directly contrasted as candidates, were

significant.

Table 9. Significant JHac tests (p-val<0.05) for the EN3-EN4 comparison  (with 239 SNPs and sample sizes 
nEN3 = 5844, nEN4 = 3712). 

EN3-EN4 Gene (protein) AA 

Block
size

Site
(+1+130)

(AA in EN3) position (AA in SP2)

11 10447 ORF1a (NSP5) P132H

11 22674 ORF2 (S) S371F

11 22679 ORF2 (S) S373P

11 22686 ORF2 (S) S375F

11 22775 ORF2 (S) D405N

11 22786 ORF2 (S) R408S

11 22813 ORF2 (S) K417N

11 22898 ORF2 (S) G446S

11 22992 ORF2 (S) S477N

11 23019 ORF2 (S) F486P

11 23055 ORF2 (S) Q498R

11 23075 ORF2 (S) Y505H

11 25000 ORF2 (S) D1146D

11 27807 ORF7b L18L (ORF7a A82V, ORF7a I120T)

(+1+130): added to the program output position, the +1 to correct the program indexing to 0 and the +130 to correct the eliminated initial 
positions.

Spatial comparisons: EN4-SP2

The  genomes of  both  samples  are  Omicrom but  the subvariant  composition is  different
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(Table 5). The pooled EN4-SP2 sample consists of 218 SNPs with a frequency greater than

1%. After whole genome analysis, iHDSel identified four significant sites (Table 10).

The change  A427V in ORF1a  is characteristic mutation of the DV.7.1 Omicron sublineage

(Gangavarapu et al. 2023) wich is virtually absent in EN4 (0.6%) but has a 28% in SP2 (Table

5) which explains the absence of  427V in EN4 and the 29%V in SP2.  The same  scenario

applies to A520V in ORF1b. The other two significant sites belong to Spike. The mutation at

445 would be related to the V445H and V445P changes that seem to favor immune evasion

of the virus (Ao et al. 2023; Chen et al. 2023) with the presence of 445V being 30% in SP2 but

only 1% in EN4 (Table 10). Finally, L858I is also a characteristic mutation of DV.7.1.

Table 10. Significant JHac tests (p-val<0.05) for the EN4-SP2 comparison (with 218 SNPs and  sample sizes 
nEN4 = 3712, nSP2=221). Only amino acids with a frequency equal or greater than 1% are indicated.

EN4-SP2 Gene (protein) AA 

Block
size

Site
(+1+130)

(EN4 AA) position (SP2 AA)

11 1545 ORF1a (NSP2) A427(71%A|29%V)

13 15026 ORF1b (NSP12) A520(71%A|29%V)

11 22895 ORF2 (S) (51%H|47%P|1%V)445(31%H|39%P|30%V)

11 24134 ORF2 (S) L858(71%L|29%I)

(+1+130): added to the program output position, the +1 to correct the program indexing to 0 and the +130 to correct the eliminated initial 
positions.

Discussion

In this work, a new statistic called JHac is proposed to detect genomic patterns compatible 

with selective sweeps. The statistic is constructed from the interpretation in terms of 

information of the Price equation (Price 1972; Frank 2012a) and consists of the population 

stability index applied to the distribution of haplotype classes in two samples. The iHDSel 

program incorporates the statistic along with the calculation of haplotype blocks in such a 

way that each candidate site is located in the center of a block. JHac appears to work 
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optimally with simulated data where two populations are subjected to divergent selection 

under different mutation and recombination conditions.  However, if using the program 

mode that places the outlier sites in the center of the blocks, care must be taken because 

the false positive rate increases in bottleneck scenarios. A possible correction in these 

scenarios is to repeat the calculation with a slightly larger window size.

Real SARS-CoV-2 data have also been used to test JHac in both spatial and temporal 

comparisons. Some sites known to impact virus fitness and its ability to promote immune 

escape have been detected.

The Price equation for comparing genomic patterns

The general formulation of the Price equation describes a change between two populations 

at any scale, spatial or temporal (Frank 2017). The Price equation has been proposed as a 

unifying principle in evolutionary biology, allowing the formulation and systematization of 

different evolutionary models and motivating the development of equations and models 

that reveal invariances and general principles (Luque 2017; Luque and Baravalle 2021). Here,

we have used the selective component of the Price equation, specifically its interpretation in 

terms of information theory (Frank 2012a), which allows the expression of the covariance 

between fitness and the trait under study in terms of Jeffreys divergence or population 

stability index. We have defined the trait as the allelic class of haplotypes and used Jeffreys 

divergence to compare the distribution of the trait between two populations. The change in 

trait distribution would be compatible with the effect of selective sweeps, whether due to 

divergent or directional selection, depending on whether we are comparing populations in 
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space or time.

Limitations of the JHac method

The detection of selective sweeps is affected by different evolutionary and demographic 

scenarios. Throughout the space of the various parameters (mutation, recombination, 

background and deletereous selection, etc.) it is not difficult to find scenarios that generate an 

excess of false positives (Johri, Aquadro, et al. 2022; Soni et al. 2023). In our case, we have 

seen that some evolutionary scenarios, such as bottlenecks, can generate interpopulation 

genomic patterns that increase the false positive rate when using automatic window sizes 

centered on outliers. Although increasing the window size restores control over the false 

positive rate, it is possible that other scenarios without positive selection could also alter 

haplotype class patterns.

Moreover, as we have already indicated, the method proposed here arises from the 

informational interpretation of the selective component of the Price equation. However, it is a 

statistical decomposition based on covariance, and we know that correlation does not imply 

causation. There is also no a priori guarantee that the partition between selection and 

transmission is additive (Okasha and Otsuka 2020). Therefore, JHac is an indirect method that 

detects a genomic pattern possibly related to selection but which can also be generated under 

other circumstances. Hence, the detected sites should be verified through direct methods such 

as the study of gene function, fitness, etc.

Finally, some genomic patterns of selection correlate with environmental variables, making it 

difficult to separate both effects (Folkertsma et al. 2024). The method proposed here could be 

combined with other methods that take this correlation into account.
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Concluding remarks

There are many statistics for identifying regions of selective sweeps in genomes, see for 

example (Horscroft et al. 2019; Stephan 2019; Horscroft et al. 2020; Abondio et al. 2022; 

Panigrahi et al. 2023). The use of machine learning-based methods to detect selection 

patterns has been increasing due to their accuracy and ability to handle large amounts of 

complex data. The underlying idea of all these methods is to use classification algorithms 

trained with known response data (simulations). That is, if we aim to detect a selection 

pattern, we train the algorithm with data that we know contains that pattern and with other 

data without the pattern. Different types of algorithms have been applied: neural networks, 

extremely randomized trees, and boosting algorithms (Horscroft et al. 2019; Panigrahi et al. 

2023). A major advantage of these methods is their power and flexibility, partly due to the 

ease of incorporating new statistics with minimal changes to the structure of the method. 

Two recent machine learning methods have been designed to detect genomic signatures 

caused by natural selection, using a supervised multi-statistic machine learning approach 

(Arnab et al. 2023; Lauterbur et al. 2023). In this work, we have developed a new statistic, 

JHac, which, due to its known null distribution, allows us to efficiently and quite accurately 

test for the existence of genomic patterns compatible with selective sweeps. Therefore, JHac 

could be an additional measure to consider for future AI-based selection detection methods.

In addition, JHac has been incorporated into the iHDSel program 

(https://acraaj.webs.uvigo.es/iHDSel.html) along with an automatic haplotype block 

detection system, so it can be run independently or in conjunction with the heuristic EOS 

outlier detection method (Carvajal-Rodríguez 2017).
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