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Abstract

Understanding virus mutations is critical for shaping public health interventions. These muta-
tions lead to complex multi-strain dynamics often underrepresented in models. Aiming to under-
stand the factors influencing variants’ fitness and evolution, we explore several scenarios of virus
spreading to gain qualitative insight into the factors dictating which variants ultimately predomi-
nate at the population level. To this end, we propose a two-strain stochastic model that accounts
for asymptomatic transmission, mutations, and the possibility of disease import. We find that
variants with milder symptoms are likely to spread faster than those with severe symptoms. This
is because severe variants can prompt affected individuals to seek medical help earlier, potentially
leading to quicker identification and isolation of cases. However, milder or asymptomatic cases
may spread more widely, making it harder to control the spread. Therefore, increased transmissi-
bility of milder variants can still result in higher hospitalizations and fatalities due to widespread
infection. The proposed model highlights the interplay between viral evolution and transmission
dynamics. Offering a nuanced view of factors influencing variant spread, the model provides a
foundation for further investigation into mitigating strategies and public health interventions.

1 Introduction

The success of SARS-CoV-2 as a global pandemic can be largely attributed to its significant capacity
for genetic mutation, enabling rapid adaptation to various conditions, host populations, and modes
of transmission [1]. This mutation process leads to the emergence of new variants that may exhibit
changes in key characteristics like transmissibility, virulence, or resistance to treatments and immune
responses. Currently, global genomic sequencing and surveillance efforts have identified numerous
variants of SARS-CoV-2, with only a small fraction categorized as Variants of Concern (VOCs) due
to their potential public health implications [2]. Notably, variants such as Delta and Omicron have
attracted attention for their increased transmissibility and ability to evade immunity. The heightened
transmissibility of variants accelerated the spread of the virus, overwhelming healthcare infrastructure.
Furthermore, the VOCs’ capacity to evade acquired immunity from prior infection or vaccination raised
concerns about the effectiveness of existing control measures. The rise of VOCs has presented sub-
stantial obstacles to public health managing virus transmission and reducing the burden on healthcare
systems [3, 4].

Numerous modelling studies have been conducted to explore SARS-CoV-2 dynamics and guide
public health strategies during the pandemic [5, 6]. However, most modelling efforts have focused on
singular variants and only a relatively low number of studies has investigated multi-strain SARS-CoV-2
dynamics [2, 7, 8, 9, 10]. To effectively address SARS-CoV-2 variants, an integrated strategy is needed,
including enhanced surveillance, robust vaccination efforts, and targeted public health interventions.
Furthermore, to design successful interventions, it is essential to understand the drivers of viral fitness
and evolution. These factors include the speed of viral replication in host cells and its capacity for
efficient transmission between individuals [3].
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For SARS-CoV-2 and other viruses with relatively short infectious periods, transmissibility is ar-
gued to be the primary driver of evolution, especially in immunologically naive hosts [4]. One of the
key quantities used to quantify the transmissibility of a virus is its basic reproduction number R0

[11, 6, 12]. A virus can maximize its R0 by increasing its intrinsic transmissibility, such as enhancing
viral shedding, survival outside the host, and the ability to establish infection in new hosts. Viruses
that can maintain infectiousness over longer periods may have a better chance of persisting in a pop-
ulation and establishing ongoing transmission chains. Therefore, in addition to increasing intrinsic
transmissibility, a virus can increase its R0 by extending its duration of infectiousness [4]. In this
study, we develop a parsimonious two-strain stochastic SHAR model accounting for multiple factors,
including asymptomatic transmission, mutations, spillover events, and the potential importation of
diseases from external sources into the population of interest. The inclusion of asymptomatic trans-
mission acknowledges the role of individuals who may unknowingly transmit the virus, contributing
to its spread within the population. Additionally, incorporating mutations and/or consideration of
spillover events are essential for understanding the risks of the emergence of novel variants and their
potential to cause outbreaks [13, 14, 15]. Finally, by accounting for the possibility of disease importa-
tion from outside the population of interest, our model allows us to evaluate how infectious diseases
can be introduced into a population through travel and to quantify their impact on transmission pat-
terns and outbreak dynamics. Instead of providing quantitative predictions of disease spread, here
we explore various possibilities to gain qualitative insights into the factors influencing which variants
prevail at the population level.

2 Methods and results

The modelling framework used in this study is a two-strain stochastic epidemic model that builds upon
the classical SIR (susceptible-infectious-recovered) model. Three significant extensions are taken into
account. First, the infectious class I is divided into severe infections prone to hospitalization (H)
and individuals with mild or asymptomatic infection (A). Second, the model incorporates the strain
structure of pathogens, considering a two-strain framework that accounts for both a wild-type strain
of the virus and a mutant strain resulting from genetic mutations. Third, an import factor ρ is
considered to mimic the possibility of susceptible individuals acquiring the infection via an undetected
infection chain that started outside the population of interest. The parameter ρ can also account
for zoonotic spillover events in which animal reservoirs transmit the infection to a human [16]. To
properly explain the features of the framework, we first describe the mean-field version of the SHAR
(susceptible-hospitalized-asymptomatic-recovered) model that serves as a basis for the general two-
strain stochastic model. Then we formulate the two-strain deterministic SHAR model followed by its
stochastic counterpart.

2.1 The deterministic SHAR model with import

Besides the transmission rate β, the recovery rate γ and the waning immunity rate α presented in the
usual SIR model, the SHAR framework incorporates two additional parameters: the severity ratio η
represents the fraction of infected individuals who develop severe symptoms requiring hospitalization,
and a transmission enhancement factor ϕ which differentiates the infectivity of individuals in the
asymptomatic (A) class from the baseline infectivity β of the hospitalized (H) class.

Finally, incorporating the influence of import ρ on disease transmission within the population, which
reflects the potential introduction of infections from external sources, the SHAR model is formulated
as follows:

Ṡ = −βS

N
(H + ϕA+ ρN) + αR,

Ḣ = η
βS

N
(H + ϕA+ ρN)− γH,

Ȧ = (1− η)
βS

N
(H + ϕA+ ρN)− γA,

Ṙ = γ(H +A)− αR,

(1)
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where the total population size N = S + H + A + R is a positive constant. Observe that with a
positive import ρ > 0, the model (1) does not admit a disease-free equilibrium. Still, for low values of
ρ (around the order of 10−5) numerical simulations show a positive equilibrium very close to zero in
the subcritical regime (see Figures 2 and 3). Setting the right-hand side of model (1) equal to zero, a
direct computation shows that system (1) has a unique endemic equilibrium given by

E1 = (S∗, H∗, A∗, R∗) =

(
N − α+ γ

ηα
H∗, H∗,

1− η

η
H∗,

γ

αη
H∗

)
(2)

The hospitalized class at equilibrium H∗ is given by the solution of the following second-order
polynomial

a(H∗)2 + bH∗ + c = 0

where

a =
β

N

(
1 +

γ

α

)(
1 +

ϕ(1− η)

η

)
, b = −β

(
η + ϕ(1− η)− ρ

(
1 +

γ

α

)
− γ

)
, c = −ηβρN

Observe that a > 0 and c < 0, hence −4ac > 0 and
√
b2 − 4ac > |b|, therefore the only biologically

feasible equilibrium is

H∗ =
−b+

√
b2 − 4ac

2a
.

The basic reproduction number for the model (1) can be straightforwardly obtained using the next
generation method [11] as

R0 = (η + (1− η)ϕ)
β

γ
. (3)

Observe that the basic reproduction number R0 is the weighted average of the secondary infections
caused by the H class R0,H = β/γ and the number of secondary infections caused by the A class
R0,A = ϕβ/γ, so R0 = ηR0,H + (1− η)R0,A.
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Figure 1: Contour plot for the basic reproduction number R0 (3) as a function of the hospitalized
fraction η and the factor ϕ. Other parameters are fixed as γ = 1/7, β = 0.9γ.

If ρ = 0, that is, in the absence of import, the constant c is zero and the equilibria of the SHAR
model are determined by the solutions of a(H∗)2 + bH∗ = 0. Clearly, one solution is H∗ = 0 so the
disease-free equilibrium is E0 = (N, 0, 0, 0). The second solution i.e the disease endemic equilibrium
becomes
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H∗ = − b

a
=

ηN(R0 − 1)(
1 + γ

α

)
R0

.

Hence, for ρ = 0, a positive endemic equilibrium only exists if R0 > 1. The stability of the disease-free
equilibrium E0 can be obtained using the Jacobian matrix J of the SHAR model. Considering that
the population size is constant, we can exclude the equation for S and obtain the following expression
for the Jacobian evaluated at E0:

J(E0) =

 ηβ − γ ηβϕ 0
(1− η)β (1− η)βϕ− γ 0

γ γ −α

 .

The Jacobian matrix has an eigenvalue λ1 = −α, and the other two eigenvalues are determined by
eigenvalues of the 2× 2 sub-matrix

M =

[
ηβ − γ ηβϕ
(1− η)β (1− η)βϕ− γ

]
.

Observe that if R0 < 1 then (η + (1 − η)ϕ)β < γ. Hence, the determinant of M given by det(M) =
γ(γ − (η + (1 − η)ϕ)β) satisfies det(M) > 0 if and only if R0 < 1. Likewise, the trace of M given
by tr(M) = (η + (1 − η)ϕ)β − 2γ satisfies tr(M) < 0 if and only if R0 < 1. This implies that the
eigenvalues of M are negative if and only if R0 < 1 and therefore E0 is locally asymptotically stable
if R0 < 1 and unstable if R0 > 1.
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Figure 2: Endemic equilibria H∗ and A∗ of model (1) as a function of η for different values of ϕ and
the import ρ. Other parameters are fixed as γ = 1/20, β = 0.9γ, α = 1/180, N = 1.

It is important to remark that the transmission rate β can be decomposed as a product β = kq,
where k is the average number of contacts per person per unit of time and q is the probability of
transmission given a contact between a susceptible and an infectious individual [17]. In the context of
COVID-19, there has been some discussion about the transmission potential of asymptomatic carriers.
Some studies suggest that asymptomatic people have usually a lower viral load when compared with
symptomatic people and hence are less likely to transmit the virus [18, 19]. However, this only
implies that the transmission probability q is lower for asymptomatic individuals than for symptomatic
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Figure 3: Contour plot for the endemic equilibria H∗ and A∗ of model (1) as a function of η and ϕ.
The value of the import ρ is 1×10−6, and 1×10−3, for the first and second row, respectively. The rest
of parameters in the one-strain SHAR model (1) are fixed as γ = 1/20, β = 0.9γ, α = 1/180, N = 1.

individuals. Several other studies have argued that asymptomatic carriers are more prone to have social
interactions and therefore a higher contact rate k than people with severe symptoms [20, 21, 22, 23, 24,
25, 26, 10, 27]. Consistent with these studies, here we assume that the factor ϕ in the model (1) is equal
to or greater than one. The fraction 0 < η < 1 of infected individuals that develop severe disease is
also a critical parameter in the basic reproduction number (3). Figure 1 shows the basic reproduction
number (3) as a function of η and ϕ. Observe that although it is assumed that β = 0.9γ so the SIR
sub-system is below criticality, considering ϕ > 1 allows the SHAR model to reach a supercritical
regime with R0 > 1. Figure 2 depicts the endemic equilibria H∗ and A∗ of model (1) as a function of
η for different values of ϕ and the import factor ρ. For the first row in Figure 2, ϕ takes the values
1, 2, and 3 for the first, second, and third columns, respectively. For the second row in Figure 2, the
value of the import factor ρ is 1× 10−7, 1× 10−5, and 1× 10−3, for the first, second and third column,
respectively. Observe that the endemic equilibrium increases significantly as a function of ϕ. On the
other hand, the impact of ρ on the endemic equilibrium is mainly visible when the system is below or
close to criticality (R0 ≤ 1). These results can be observed more clearly in Figure 3 which shows a
contour plot for the hospitalized and asymptomatic infectious classes at the endemic equilibrium as a
function of η and ϕ for different values of the import factor ρ. Again, considering ϕ > 1, the SHAR
model can have a positive endemic equilibrium. Observe (see Figure 3) that for ϕ close to 1 and low
import factor the endemic equilibrium is very close to zero but considering ϕ > 1 or a higher value for
ρ the area of such region decreases significantly.

2.2 The two-strain deterministic extension of the SHAR model with import

We now extend the SHAR model described in section 2.1 by incorporating strain structure into the
system. Assuming that the wild-type strain of the virus (denoted by subscript w) undergoes mutations
at a rate ϵ, leading to the appearance of a mutant strain (denoted by subscript m). The transmission
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rate, the severity ratio, and the recovery rate are strain-dependent. For simplicity, it is assumed that
individuals in the recovered class R are immune to both strains. However, this immunity is not long-
lasting, and recovered individuals lose their immunity at a rate α. The total population (N) is the sum
of the six mutually exclusive epidemiological classes of the model, i.e., N = S+Hw+Aw+Hm+Am+R.
The model dynamics for the two-strain deterministic SHAR model are described by the following
system of differential equations:

Ṡ = −βwS

N
(Hw + ϕwAw + ρN)− βmS

N
(Hm + ϕmAm) + αR,

Ḣw = ηw(1− ϵ)
βwS

N
(Hw + ϕwAw + ρN)− γwHw,

Ȧw = (1− ηw)(1− ϵ)
βwS

N
(Hw + ϕwAw + ρN)− γwAw,

Ḣm = ηm

(
βmS

N
(Hm + ϕmAm)

)
+ ηw ϵ

βwS

N
(Hw + ϕwAw + ρN)− γmHm,

Ȧm = (1− ηm)

(
βmS

N
(Hm + ϕmAm)

)
+ (1− ηw) ϵ

βwS

N
(Hw + ϕwAw + ρN)− γmAm,

Ṙ = γw(Hw +Aw) + γm(Hm +Am)− αR.

(4)

Observe that, as before, if the import is ρ = 0, then at the disease-free equilibrium S = N and the
other variables in system (4) are equal to zero. If ρ > 0 there is no disease-free equilibrium. Due to
the high nonlinearity of the two-strain SHAR model (4) it is no longer possible to obtain an analytical
expression for the endemic equilibria as we did for the one-strain SHAR model. Hence, to understand
the long-term dynamics of the two-strain model (4) we perform a global sensitivity analysis (GSA).
Since the values for several important parameters in the model (4) such as the disease-severity ratios
(ηw, ηm), the change of baseline infectivities (ϕw, ϕm), the mutation rate (ϵ), the import factor (ρ),
and so on, present considerable uncertainty or at least wide ranges, the GSA becomes a useful tool to
measure the individual importance of each parameter as well as their joint effect on model outcomes.
To perform the GSA, we use Sobol’s method which is based on variance decomposition techniques and
provides a quantitative measure of the contributions of the input parameters to the output variance
[28]. Although there are several types of GSA (e.g. weighted average of local sensitivity analysis,
partial rank correlation coefficient, multiparametric sensitivity analysis), Sobol’s sensitivity analysis is
one of the most powerful techniques [29]. Using Sobol’s method, we compute the first-order indices to
measure the contribution from individual parameters and total-order indices which include all higher-
order interactions. Both first- and total-order indices are positive numbers (total-order sensitivity
indices are greater than the first-order sensitivity indices). Furthermore, in many settings, parameters
with sensitivity indices greater than 0.05 are considered significant [29].

The outcome of interest for the GSA is the fraction of individuals in the hospitalized and asymp-
tomatic classes for both strains at the equilibrium, that is, H∗

w, A
∗
w, H

∗
m, and A∗

m. The ranges used for
the parameter values were obtained from past studies on SARS-CoV-2 and are summarized in Table
1. The implementation used the open-source library SALib [30]. The results are presented in Figure
4 and are based on 105 model evaluations. In Figure 4 the left column shows the first- and total-order
sensitivity indices whereas the right column shows a histogram of the values of the hospitalized and
asymptomatic classes for both strains at the equilibrium. For H∗

w (see the first row in Figure 4), the
results indicate that the transmission rates βw and βm are the most relevant parameters as their first-
order indices above 0.1. Nevertheless, considering all higher-order interactions the mutant recovery
rate γm, the factors ϕw and ϕm, and the wild-type disease-severity ratio ηw are all relevant parameters
with total-order indices above 0.1. The histogram for H∗

w/N presents a right-skewed distribution which
shows that for the majority of the parameter values the number of people in the class Hw will tend
to zero and can be as high 5% of the population. It is important to remark that the extinction of the
infection in the class Hw might be due to the total eradication of the epidemic but also because the
mutant overcomes the wild-type virus. Similar dynamics are observed for A∗

w (see the second row in
Figure 4) but in addition to βw, and βm, the wild-type disease severity ratio ηw is now also a significant
parameter with a first-order index above 0.05 and is, therefore, the third most influential parameter
for A∗

w.
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Figure 4: (Left column) First and total order Sobol sensitivity indices. The vertical black lines rep-
resent 95% confidence intervals. (Right column) Histograms for the infectious classes at the endemic
equilibrium. The total population is fixed as N = 105. The ranges explored for the parameters are
summarized in Table 1.

For H∗
m (see the third row in Figure 4), the results indicate that the mutant recovery rate γm, the

loss of immunity α, the mutant transmission rate βm, and the mutant hospitalized fraction ηm are the
significant parameters, in which ηm is by far the dominant parameter with a first-order sensitivity index
being 0.49. The histogram for H∗

m/N no longer indicates that extinction is the most probable outcome.
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Instead, the percentage of people at the equilibrium for the class H∗
m is expected to be between 1−8%.

For A∗
m (see the fourth row in Figure 4), the simulations show that γm, α, βm, ϕm, and ηm are the

significant parameters. The histogram for A∗
m/N follows a bimodal distribution. The first peak shows

a relatively high probability of extinction. However, the second peak is way higher and shows that the
most frequent value for A∗

m/N is around 7.5% of the population. Yet the maximum value for A∗
m/N

is close to 18% of the population which is almost double the highest value reached by H∗
m/N . This

larger range for A∗
m/N can be explained by the assumption that the mutant generates, on average,

more asymptomatic than symptomatic infections. Observe that for the wild-type infectious classes,
the total-order indices are much larger than the first-order indices. This suggests that higher-order
interactions among several parameter values dominate wild-type dynamics and hence controlling one
or two parameters does not guarantee the successful reduction of wild-type prevalence.

Parameter Mean Range Units Source
γw recovery rate WT 1/7 [1/8, 1/3] d−1 [31]
γm recovery rate MT 1/7 [1/10, 1/4] d−1 [7, 9]
1/α duration of natural immunity 180 [0, 365] d [32]
βw transmission rate WT 0.2 [0.1, 1.38] d−1 [7, 9]
ϕw change of infectivity of Aw versus Hw 1.2 [0.9, 2.5] 1 [21, 22, 25]
βm transmission rate MT 0.4 [0.1, 1.8] d−1 [7, 9]
ϕm change of infectivity of Am versus Hm 1.6 [1.0, 3] 1 assumed
ηw hospitalized fraction for WT infection 0.4 [0.05, 0.60] 1 [18]
ηm hospitalized fraction for MT infection 0.1 [0.05, 0.30] 1 assumed
ϵ fraction of infections that mutate 10−4 [10−6, 10−3] 1 assumed
ρ import parameter 10−5 [10−7, 10−3] 1 [21, 22, 25]

Table 1: Parameters for the 2-strain SHAR model (4). WT: wild-type, MT: mutant type, d: days.

2.3 Reaction scheme and master equation of the two-strain SHAR model
with import

The deterministic model described in the previous section was obtained via the mean-field approxima-
tion of the stochastic system described by the following set of reactions. First, we have four reactions
related to the infection process via the import ρ,

S
ρβwηw(1−ϵ)−−−−−−−−→ Hw,

S
ρβw(1−ηw)(1−ϵ)−−−−−−−−−−−→ Aw,

S
ρβwηwϵ−−−−−→ Hm,

S
ρβw(1−ηw)ϵ−−−−−−−−→ Am.

(5)

The next reactions correspond to infections after a successful contact of a susceptible with an
individual in the Hw class,

S +Hw
βwηw(1−ϵ)−−−−−−−→ Hw +Hw,

S +Hw
βwηwϵ−−−−→ Hm +Hw,

S +Hw
βw(1−ηw)(1−ϵ)−−−−−−−−−−→ Aw +Hw,

S +Hw
βw(1−ηw)ϵ−−−−−−−→ Am +Hw.

(6)
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Likewise, we have four reactions corresponding to infections caused by individuals in the Aw class,

S +Aw
βwϕwηw(1−ϵ)−−−−−−−−−→ Hw +Aw,

S +Aw
βwϕwηwϵ−−−−−−→ Hm +Aw,

S +Aw
βwϕw(1−ηw)(1−ϵ)−−−−−−−−−−−−→ Aw +Aw,

S +Aw
βwϕw(1−ηw)ϵ−−−−−−−−−→ Am +Aw.

(7)

The infections caused by the mutant-type hospitalized infected individuals are,

S +Hm
βmηm−−−−→ Hm +Hm,

S +Hm
βm(1−ηm)−−−−−−−→ Am +Hm.

(8)

Whereas the infections caused by the mutant-type asymptomatic infected individuals are,

S +Am
βmϕmηm−−−−−−→ Hm +Am,

S +Am
βmϕm(1−ηm)−−−−−−−−−→ Am +Am.

(9)

Last, recovery and loss of immunity are described by the next reactions

Hw, Aw
γw−−→ R,

Hm, Am
γm−−→ R,

R
α−→ S.

(10)

The two-strain stochastic SHAR epidemic model with import is modelled as a time-continuous
Markov process to capture population noise. Defining the densities of all state variables as x1 := S/N ,
x2 := Hw/N , x3 := Aw/N , x4 := Hm/N , x5 := Am/N , x6 := R/N , and hence the state vector
for the densities x := (x1, x2, . . . , x6)

tr, the master equation can be formulated in a generic form
[33, 34]. Within this framework, the evolution of the probability p(x, t) that the system has a particular
composition as a function of time as

d

dt
p(x, t) =

9∑
j=1

(
Nwj(x+∆xj) · p(x+∆x, t)−Nwj(x) · p(x, t)

)
. (11)

The full expression for the master equation is given in Appendix A. The transitions wj(x) (j =
1, 2, . . . , 9) describe the reactions (5)-(10) and ∆xj = 1

N · rj is a small deviation from the densities
state vector x where rj (j = 1, 2, . . . , 9) are shifting vectors. The explicit form for the transitions and
shifting vectors is as follows:

w1(x) = βwηw(1− ϵ)x1(ρ+ x2 + ϕwx3), r1 = (1,−1, 0, 0, 0, 0)tr

w2(x) = βw(1− ηw)(1− ϵ)x1(ρ+ x2 + ϕwx3), r2 = (1, 0,−1, 0, 0, 0)tr

w3(x) = x1(βwηwϵ(ρ+ x2 + ϕwx3) + βmηm(x4 + ϕmx5)), r2 = (1, 0, 0,−1, 0, 0)tr

w4(x) = x1(βw(1− ηw)ϵ(ρ+ x2 + ϕwx3) + βm(1− ηm)(x4 + ϕmx5)), r4 = (1, 0, 0, 0,−1, 0)tr

w5(x) = γwx2, r5 = (0, 1, 0, 0, 0,−1)tr

w6(x) = γwx3, r6 = (0, 0, 1, 0, 0,−1)tr

w7(x) = γmx4, r7 = (0, 0, 0, 1, 0,−1)tr

w8(x) = γmx5, r8 = (0, 0, 0, 0, 1,−1)tr

w9(x) = αx6, r9 = (−1, 0, 0, 0, 0, 1)tr

(12)

From the two-strain SHAR model given as a master equation, we obtain realizations of the stochastic
process via the classical Doob–Gillespie algorithm which provides exact simulations of possible tra-
jectories of the master equation by using standard Monte Carlo techniques [35]. The algorithm is
implemented in StochSS [36].
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The strain-specific reproduction numbers for system (4) are given by the following expressions:

Rw0 = (ηw + (1− ηw)ϕw)
βw

γw
, Rm0 = (ηm + (1− ηm)ϕm)

βm

γm
. (13)

The above reproduction numbers quantify the strain-specific average number of secondary infections
that a typical infectious individual generates in a population and are a proxy to approximate variant
fitness at the between-host level [12]. All the VOCs that emerged during the COVID-19 pandemic
have evolved to maximize their reproduction numbers and hence spread more efficiently than previous
variants at the population level [3].

Different pathways can increase the fitness or reproductive success of an invading variant. For
instance, increasing transmissibility is a well-known evolutionary process of fitness maximization [4].
The Alpha variant detected at the end of 2020 presented a significant increase in transmissibility over
previous SARS-CoV-2 lineages. Later, Beta, Gamma, Delta, and Omicron also presented transmission
advantages over preceding variants and were 25-100% more transmissible than the original Wuhan
strain [37, 3, 4]. Hence, for the two-strain SHAR model is plausible to assume that the mutant has a
higher reproduction number. One can get Rw0 < Rm0 assuming that the mutant has a higher baseline
transmission rate, that is, βw ≤ βm. Since we are considering that asymptomatic and symptomatically
infectious individuals have different transmissibility, the reproduction numbers can also be affected by
the relative severity of SARS-CoV-2 variants. In particular, assuming that due to higher levels of
mobility infectious individuals with mild symptoms might transmit more than people with severe dis-
ease then a mutant variant can increase its fitness generating more asymptomatic infections (infections
with mild symptoms). For most cases, when a virus causes high fatalities in hosts its transmissibility
would be severely limited reducing its probability to survive [38]. Nevertheless, determining the rel-
ative severity of SARS-CoV-2 variants is a challenging task, and more work is needed to understand
how their virulence evolves [3]. For instance, the variants Alpha and Delta showed greater severity
and lethality than their predecessors, whereas Omicron exhibited lower severity and lethality as well
as exceptionally high transmissibility [38].

Figure 5 presents an ensemble of stochastic realizations that shows how changes in the mutant
variant disease severity ratio impact the population-level prevalence while other parameters are equal
for both strains. The disease severity ratio is assumed equal to ηw = 0.4 for the wild-type. Whereas
for the mutant it is assumed ηm = 0.2 (first row) and ηw = 0.1 (second row). In Figure 5 (and the
subsequent figures) the transparent thin lines correspond to stochastic realizations, whereas the re-
spective bold lines represent the mean-field solutions. The initial condition for the wild-type infectious
classes is assumed close to its endemic equilibrium value and for the mutant is assumed close to zero.
Since the factors are assumed to satisfy ϕw = ϕm > 1, the mutant total prevalence overcomes the
wild-type due to a relatively small reduction in disease severity. Nevertheless, even if the total preva-
lence of the infection and the number of people in the asymptomatic class are higher for the mutant,
the hospitalizations might still be bigger for the wild-type if the difference in disease severity is not
big enough (see the first row in Figure 5). On the other hand, as shown by Omicron, even if a new
variant is considerably less virulent, with a significant increase in transmissibility it can lead to more
hospitalizations and deaths than its predecessors since it can infect a huge part of the population (see
the second row in Figure 5).

The value of the reproduction numbers (13) can also increase if the infectious period is longer so the
duration of infectiousness is also an evolvable trait [4]. Figure 6 shows the role of the mean duration
of the infectious period on the spread of the infection at the population level. Figure 6 assumes that
the wild-type mean infectious period is 1/γw = 7 days and for the mutant is 1/γm = 8 days while the
rest of the parameters are the same for both variants. As a consequence of this one-day increase in
the mean duration of the infectious period, the mutant can easily prevail over the wild-type. These
results agree with the previous outcomes of the GSA where the recovery rates are highly influential
parameters. Hence, a virus with prolonged infectiousness may have a higher likelihood of transmitting
to new hosts, as the infected individual remains contagious for an extended period. This can lead to
increased opportunities for the virus to spread within a population [4].
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Figure 5: Infected classes for the two-strain stochastic SHAR model for ηm = 0.2 (first row) and
ηm = 0.1 (second row). The disease-severity ratio for the wild-type is ηw = 0.4 and the rest of the
strain-specific parameters are assumed equal for both strains: γw = γm = 1/7, βw = βm = 0.8 ∗ 1/7,
ϕw = ϕm = 1.6. The total population is fixed as N = 105. Other parameters are fixed with the mean
values in Table 1.
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Figure 6: Infected classes for the two-strain stochastic SHAR model. The wild-type recovery rate is
γw = 1/7 whereas for the mutant γm = 1/8. The rest of the strain-specific parameters are assumed
equal for both strains: ηw = ηm = 0.4, βw = βm = 1/7, ϕw = ϕm = 1.2. The total population is fixed
as N = 105. Other parameters are fixed with the mean values in Table 1.

3 Discussion

Aiming to understand better the emergence, coexistence, and spread of SARS-CoV-2 variants, we
developed a two-strain (wild-type and mutant-type) stochastic model that builds upon the classical
SIR (susceptible-infectious-recovered) model. The model follows a SHAR (susceptible-hospitalized-
asypmtomatic-recovered) structure and accounts for multiple factors, including asymptomatic trans-
mission, mutations, spillover events, and the potential importation of diseases from external sources
into the population of interest. First, we investigated the one-strain deterministic version of the SHAR
model. We showed that with a positive import ρ > 0, the model does not admit a disease-free equi-
librium and hence the complete eradication of the disease is not possible. In the absence of disease
importation, the one-strain SHAR model follows traditional threshold behaviour, showing a stable
disease-free equilibrium for R0 < 1 and a stable endemic equilibrium for R0 > 1. Furthermore, since
the SHAR model considers asymptomatic transmission, the basic reproduction number R0 is the
weighted average of the secondary infections caused by the hospitalized and asymptomatic classes.
Therefore, even if the SIR sub-system is below criticality, considering that the contact rate of the
asymptomatic class is significantly higher than the one for the hospitalized class allows the SHAR
model to reach a supercritical regime (see Figures 1-3). This underscores the role of asymptomatic
carriers in COVID-19 spread and emphasizes the need for extensive testing and contact tracing efforts.
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Due to the system’s high nonlinearity, it was not possible to perform an analytical analysis for
the equilibria of the two-strain deterministic SHAR model. Hence, we performed a global sensitivity
analysis (GSA) to understand the long-term dynamics of the two-strain model and to measure the
individual importance of each parameter as well as their joint effect on model outcomes (see Figure 4).
The outcome of interest for the GSA is the fraction of individuals in the hospitalized and asymptomatic
classes, H∗

w, A
∗
w, H

∗
m, and A∗

m, for both strains at the equilibrium. The histograms for H∗
w/N and

A∗
w/N exhibit a right-skewed distribution, indicating that a significant portion of individuals in these

classes tends towards zero, with a potential peak at around 5% of the population. The decline in the
wild-type infectious classes can be attributed to the complete eradication of the epidemic, although a
more probable explanation is the increased transmissibility of the mutant variant over the wild-type
virus. Analysis of the Sobol sensitivity indices reveals that the transmission rates βw and βm play
pivotal roles in determining the dynamics of H∗

w and A∗
w. Notably, the total-order sensitivity indices

outweigh the first-order indices for the wild-type infectious classes, suggesting that complex interactions
between various parameters significantly influence wild-type dynamics. Hence controlling one or two
parameters does not guarantee the successful reduction of wild-type prevalence. The histogram for
H∗

m/N suggests that the equilibrium percentage for this class typically falls within the range of 1-8%.
Additionally, the mutant-type disease severity ratio ηm emerges as the most influential parameter,
with a first-order sensitivity index approaching 0.5. In contrast, the histogram for A∗

m/N displays a
bimodal distribution, with one peak indicating a considerable probability of extinction and another
peak showing that the prevalent value for A∗

m/N can be in the order of magnitude of 10% of the
population. However, the upper limit for A∗

m/N is almost twice the peak value observed for H∗
m/N .

This broader range for A∗
m/N may be attributed to the hypothesis that the mutant variant generates

a higher proportion of asymptomatic infections compared to symptomatic cases.
Using the master equation formalism and stochastic realizations via the Doob-Gillespie algorithm,

we explored different pathways that may affect the reproductive success of an invading variant. The
simulations suggest that contrary to popular belief variants with lower severity are likely to spread
more rapidly compared to more severe variants (see Figure 5). However, in agreement with [39],
the explanation behind this phenomenon is that variants that cause more severe symptoms might
prompt affected individuals to seek medical care sooner, potentially leading to earlier identification
and isolation of cases. On the other hand, if a variant causes milder symptoms or is predominantly
asymptomatic, individuals may unknowingly transmit the virus to a larger number of people, making it
challenging to contain the infection [26, 10]. Furthermore, even if emerging variants are less pathogenic
than the wild type, once they become dominant in a population, they might lead to an increase in
hospitalizations and potential deaths since the mutant carriers can infect a significantly larger segment
of the population [38]. The simulations also show that extended infectiousness of SARS-CoV-2 variants
increases considerably the value of the reproduction number and this increase can result in rapid and
sustained community spread (see Figure 6) [4]. In other words, a longer period of infectiousness
means that individuals infected with these variants can shed the virus and transmit it to others for an
extended duration compared to variants with shorter infectious periods.

The primary aim of this study was to explore various scenarios of disease spread to better under-
stand the factors influencing variants’ fitness and evolution. The proposed model describes well the
interplay between viral characteristics and transmission dynamics, providing a foundation for further
investigation into mitigating strategies and public health interventions. Nevertheless, for future work,
accounting for mass vaccination campaigns, particularly concerning vaccine escape [40, 41], and con-
sidering the possibility of multiple epidemic waves or seasonal infection patterns could be considered
to improve modelling accuracy.
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Appendix A Master equation for the two-strain SHAR model

Let X = (S,Hw, Aw, Hm, Am, R)tr be the vector of states, then the temporal dynamics for the proba-
bility p(X, t) of having at time t an integer number of S susceptible, Hw hospitalized and Aw asymp-
tomatically infected with the wild-type, Hm hospitalized and Am asymptomatically infected with the
mutant, and R recovered can be described by the following master equation

d

dt
p(X, t) =

6∑
i=1

Ti − T7,

where the terms T1, T2, . . . , T6 are functions describing the reactions (5)-(10), respectively, and are
defined next:

T1 = ρ
βw

N
(S + 1)

(
ηw(1− ϵ)p(S + 1, Hw − 1, Aw, Hm, Am, R, t)

+(1− ηw)(1− ϵ)p(S + 1, Hw, Aw − 1, Hm, Am, R, t)

+ηwϵp(S + 1, Hw, Aw, Hm − 1, Am, R, t)

+ (1− ηw)ϵp(S + 1, Hw, Aw, Hm, Am − 1, R, t)
)

T2 =
βw

N
(S + 1)

(
ηw(1− ϵ)(Hw − 1)p(S + 1, Hw − 1, Aw, Hm, Am, R, t)

+(1− ηw)(1− ϵ)Hwp(S + 1, Hw, Aw − 1, Hm, Am, R, t)

+ηwϵHwp(S + 1, Hw, Aw, Hm − 1, Am, R, t)

+ (1− ηw)ϵHwp(S + 1, Hw, Aw, Hm, Am − 1, R, t)
)
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T3 =
βw

N
ϕw(S + 1)

(
ηw(1− ϵ)Awp(S + 1, Hw − 1, Aw, Hm, Am, R, t)

+(1− ηw)(1− ϵ)(Aw − 1)p(S + 1, Hw, Aw − 1, Hm, Am, R, t)

+ηwϵAwp(S + 1, Hw, Aw, Hm − 1, Am, R, t)

+ (1− ηw)ϵAwp(S + 1, Hw, Aw, Hm, Am − 1, R, t)
)

T4 =
βm

N
(S + 1)

(
ηm(Hm − 1)p(S + 1, Hw, Aw, Hm − 1, Am, R, t)

+ (1− ηm)Hmp(S + 1, Hw, Aw, Hm, Am − 1, R, t)
)

T5 =
βm

N
ϕm(S + 1)

(
ηmAmp(S + 1, Hw, Aw, Hm − 1, Am, R, t)

+ (1− ηm)(Am − 1)p(S + 1, Hw, Aw, Hm, Am − 1, R, t)
)

T6 = γw

(
(Hw + 1)p(S,Hw + 1, Aw, Hm, Am, R, t) + (Aw + 1)p(S,Hw, Aw + 1, Hm, Am, R, t)

)
+γm

(
(Hm + 1)p(S,Hw, Aw, Hm + 1, Am, R, t) + (Aw + 1)p(S,Hw, Aw, Hm, Am + 1, R, t)

)
+α(R+ 1)p(S − 1, Hw, Aw, Hm, Am, R+ 1, t)

The term T7 in the master equation describes the outflow of the system

T7 = p(X, t)

((
βw(Hw + ϕwAw + ρN) + βm(Hm + ϕmAm)

) S

N
+ γw(Hw +Aw) + γm(Hm +Am) + αR

)
.
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CoV-2 variant on the population: A mathematical modeling approach,” Math. Comput. Appl.,
vol. 26, no. 2, p. 25, 2021.

[9] S. Jing, R. Milne, H. Wang, and L. Xue, “Vaccine hesitancy promotes emergence of new SARS-
CoV-2 variants,” J. Theor. Biol., vol. 570, p. 111522, 2023.

[10] M. Massard, R. Eftimie, A. Perasso, and B. Saussereau, “A multi-strain epidemic model for
COVID-19 with infected and asymptomatic cases: Application to French data,” J. Theor. Biol.,
vol. 545, p. 111117, 2022.

[11] O. Diekmann, J. A. P. Heesterbeek, and J. A. Metz, “On the definition and the computation of
the basic reproduction ratio R0 in models for infectious diseases in heterogeneous populations,”
J. Math. Biol., vol. 28, no. 4, pp. 365–382, 1990.

[12] F. Saldaña, M. L. Daza-Torres, and M. Aguiar, “Data-driven estimation of the instantaneous
reproduction number and growth rates for the 2022 monkeypox outbreak in Europe,” PLoS One,
vol. 18, no. 9, p. e0290387, 2023.

[13] R. R. Harman and T. N. Kim, “Differentiating spillover: an examination of cross-habitat move-
ment in ecology spillover in ecology,” Proc. R. Soc. B, vol. 291, no. 2016, p. 20232707, 2024.

[14] M. N. Sparrer, N. F. Hodges, T. Sherman, S. VandeWoude, A. M. Bosco-Lauth, and C. E. Mayo,
“Role of spillover and spillback in SARS-CoV-2 transmission and the importance of one health
in understanding the dynamics of the COVID-19 pandemic,” J. Clin. Microbiol., vol. 61, no. 7,
pp. e01610–22, 2023.

[15] B. R. Wasik, E. de Wit, V. Munster, J. O. Lloyd-Smith, L. Martinez-Sobrido, and C. R. Parrish,
“Onward transmission of viruses: how do viruses emerge to cause epidemics after spillover?,” Phil.
Trans. R. Soc. B, vol. 374, no. 1782, p. 20190017, 2019.

[16] F. Saldaña, N. Stollenwerk, J. B. Van Dierdonck, and M. Aguiar, “Modeling spillover dynamics:
understanding emerging pathogens of public health concern,” Sci. Rep., vol. 14, no. 1, p. 9823,
2024.

[17] F. Saldaña, H. Flores-Arguedas, J. A. Camacho-Gutiérrez, and I. Barradas, “Modeling the trans-
mission dynamics and the impact of the control interventions for the COVID-19 epidemic out-
break,” Math. Biosci. Eng., vol. 17, no. 4, pp. 4165–4183, 2020.

[18] O. Byambasuren, M. Cardona, K. Bell, J. Clark, M.-L. McLaws, and P. Glasziou, “Estimating
the extent of asymptomatic COVID-19 and its potential for community transmission: systematic
review and meta-analysis,” JAMMI, vol. 5, no. 4, pp. 223–234, 2020.

[19] F. Saldaña and J. X. Velasco-Hernández, “The trade-off between mobility and vaccination for
COVID-19 control: a metapopulation modelling approach,” R. Soc. Open Sci., vol. 8, no. 6,
p. 202240, 2021.

[20] M. Aguiar, V. Anam, N. Cusimano, D. Knopoff, and N. Stollenwerk, “Understanding COVID-19
epidemics: a multi-scale modeling approach,” in Predicting Pandemics in a Globally Connected
World, Volume 1: Toward a Multiscale, Multidisciplinary Framework through Modeling and Sim-
ulation, pp. 11–42, Springer, 2022.

[21] M. Aguiar, E. M. Ortuondo, J. Bidaurrazaga Van-Dierdonck, J. Mar, and N. Stollenwerk, “Mod-
elling COVID-19 in the Basque Country from introduction to control measure response,” Sci.
Rep., vol. 10, no. 1, pp. 1–16, 2020.

[22] M. Aguiar and N. Stollenwerk, “Condition-specific mortality risk can explain differences in
COVID-19 case fatality ratios around the globe,” Public Health, vol. 188, pp. 18–20, 2020.

[23] M. Aguiar and N. Stollenwerk, “SHAR and effective SIR models: from dengue fever toy models
to a COVID-19 fully parametrized SHARUCD framework,” Commun Biomath Sci, vol. 3, no. 1,
pp. 60–89, 2020.

15

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 4, 2024. ; https://doi.org/10.1101/2024.06.04.24308411doi: medRxiv preprint 

https://doi.org/10.1101/2024.06.04.24308411
http://creativecommons.org/licenses/by-nc-nd/4.0/


[24] M. Aguiar, J. B. Van-Dierdonck, and N. Stollenwerk, “Reproduction ratio and growth rates:
Measures for an unfolding pandemic,” PLoS One, vol. 15, no. 7, p. e0236620, 2020.

[25] M. Aguiar, J. B. Van-Dierdonck, J. Mar, N. Cusimano, D. Knopoff, V. Anam, and N. Stollenwerk,
“Critical fluctuations in epidemic models explain COVID-19 post-lockdown dynamics,” Sci. Rep.,
vol. 11, no. 1, pp. 1–12, 2021.

[26] M. Aguiar, J. B. Van-Dierdonck, J. Mar, and N. Stollenwerk, “The role of mild and asymptomatic
infections on COVID-19 vaccines performance: a modeling study,” J. Adv. Res., vol. 39, pp. 157–
166, 2022.

[27] A. K. Srivasrav, N. Stollenwerk, J. Bidaurrazaga Van-Dierdonck, J. Mar, O. Ibarrondo, and
M. Aguiar, “Modeling the initial phase of COVID-19 epidemic: The role of age and disease
severity in the Basque Country, Spain,” Plos One, vol. 17, no. 7, p. e0267772, 2022.

[28] I. M. Sobol, “Global sensitivity indices for nonlinear mathematical models and their Monte Carlo
estimates,” Math. Comput. Simulation, vol. 55, no. 1-3, pp. 271–280, 2001.

[29] X.-Y. Zhang, M. N. Trame, L. J. Lesko, and S. Schmidt, “Sobol sensitivity analysis: a tool to
guide the development and evaluation of systems pharmacology models,” CPT: Pharmacomet.
Syst. Pharmacol., vol. 4, no. 2, pp. 69–79, 2015.

[30] T. Iwanaga, W. Usher, and J. Herman, “Toward SALib 2.0: Advancing the accessibility and
interpretability of global sensitivity analyses,” Socio-Environ. Syst. Model., vol. 4, p. 18155, May
2022.

[31] A. W. Byrne, D. McEvoy, A. B. Collins, K. Hunt, M. Casey, A. Barber, F. Butler, J. Griffin,
E. A. Lane, C. McAloon, et al., “Inferred duration of infectious period of SARS-CoV-2: rapid
scoping review and analysis of available evidence for asymptomatic and symptomatic covid-19
cases,” BMJ Open, vol. 10, no. 8, 2020.

[32] A. W. Edridge, J. Kaczorowska, A. C. Hoste, M. Bakker, M. Klein, K. Loens, M. F. Jebbink,
A. Matser, C. M. Kinsella, P. Rueda, et al., “Seasonal coronavirus protective immunity is short-
lasting,” Nat. Med., vol. 26, no. 11, pp. 1691–1693, 2020.

[33] N. Stollenwerk, S. van Noort, J. Martins, M. Aguiar, F. Hilker, A. Pinto, and G. Gomes, “A
spatially stochastic epidemic model with partial immunization shows in mean field approximation
the reinfection threshold,” J. Biol. Dyn., vol. 4, no. 6, pp. 634–649, 2010.

[34] N. Stollenwerk and V. Jansen, Population Biology and Criticality: From critical birth-death pro-
cesses to self-organized criticality in mutation pathogen systems. World Scientific, 2011.

[35] D. T. Gillespie, “A general method for numerically simulating the stochastic time evolution of
coupled chemical reactions,” J. Comput. Phys., vol. 22, no. 4, pp. 403–434, 1976.

[36] B. Drawert, A. Hellander, B. Bales, D. Banerjee, G. Bellesia, B. J. Daigle Jr, G. Douglas, M. Gu,
A. Gupta, S. Hellander, et al., “Stochastic simulation service: bridging the gap between the
computational expert and the biologist,” PLoS Comput. Biol., vol. 12, no. 12, p. e1005220, 2016.

[37] E. E. Bendall, A. P. Callear, A. Getz, K. Goforth, D. Edwards, A. S. Monto, E. T. Martin,
and A. S. Lauring, “Rapid transmission and tight bottlenecks constrain the evolution of highly
transmissible SARS-CoV-2 variants,” Nat. Commun., vol. 14, no. 1, p. 272, 2023.
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