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Abstract 1 

As of early June, 2020, approximately 7 million COVID-19 cases and 400,000 deaths have been 2 

reported. This paper examines four demographic and clinical factors (age, time to hospital, 3 

presence of chronic disease, and sex) and utilizes Shapley values from coalitional game theory 4 

and machine learning to evaluate their relative importance in predicting COVID-19 mortality. 5 

The analyses suggest that out of the 4 factors studied, age is the most important in predicting 6 

COVID-19 mortality, followed by time to hospital. Sex and presence of chronic disease were 7 

both found to be relatively unimportant, and the two global interpretation techniques differed in 8 

ranking them. Additionally, this paper creates partial dependence plots to determine and 9 

visualize the marginal effect of each factor on COVID-19 mortality and demonstrates how local 10 

interpretation of COVID-19 mortality prediction can be applicable in a clinical setting. Lastly, 11 

this paper derives clinically applicable decision rules about mortality probabilities through a 12 

parsimonious 3-split surrogate tree, demonstrating that high-accuracy COVID-19 mortality 13 

prediction can be achieved with simple, interpretable models. 14 

 15 

Introduction 16 

Interpretable machine learning is critically important in healthcare, and clinicians seek 17 

explanations that justify and rationalize model predictions [1]. Medical professionals also prefer 18 

parsimonious machine learning methods because of their explainability and because they are 19 

more likely to conform to operational guidelines, which often include fixed attribute scores [2]. 20 

Thus, feature extraction is often eschewed in medical research because it reduces interpretability 21 

[2]. 22 
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The incubation period of COVID-19 is about 5.2 days [3], and there is a median length of 14 24 

days between onset of symptoms and death [4]. COVID-19 symptoms include pneumonia, fever, 25 

fatigue, and dry cough [5], and risk factors include pre-existing health conditions (asthma, 26 

chronic lung/kidney disease, diabetes, hemoglobin disorders, being immunocompromised, 27 

liver/heart disease), old age, and obesity [6]. COVID-19 mortality also varies among different 28 

ethnicities, potentially due to discrimination, economic disadvantages, unequal access to health 29 

care, and other factors [7]. 30 

 31 

ICU resources are scarce and ethical dilemmas arise in deciding how to allocate limited hospital 32 

resources [8]. The demand for ICUs and beds in hospitals is increasing as the number of cases 33 

rise, and ICUs already had high occupancy before the pandemic. Previous estimates of mean 34 

hourly occupancy of ICUs put the number at about 68.2% [9]. 35 

 36 

Much of the current COVID-19 informatics literature focuses on macro-level disease forecasting 37 

using machine learning and statistical techniques, with few studies focusing on individual-level 38 

predictions. For example, [10] utilizes a SEIR (Susceptible-Exposed-Infectious-Removed) 39 

differential equation-based model to predict the sizes and peaks of the COVID-19 pandemic, and 40 

[11] utilizes a logistic model to understand the COVID-19 case trend. One study published in 41 

Nature Machine Intelligence used various biomarkers (lactic dehydrogenase, lymphocyte and 42 

high-sensitivity C-reactive protein) to achieve advanced individual-level COVID-19 mortality 43 

predictions with 90% accuracy [12]. We hypothesize that demographic and temporal risk factors 44 
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can explain COVID-19 mortality as well, avoiding the time and cost associated with biomarker 45 

measurement. 46 

 47 

Recently, epidemiological datasets with demographic, geographic, and temporal data have 48 

become available and have opened up new dimensions for COVID-19 modeling. One such 49 

dataset is [13]. This study focuses on ranking the relative importance of age, time to hospital 50 

after symptom onset, sex, and presence of chronic disease in COVID-19 mortality prediction and 51 

developing a framework for local interpretation of COVID-19 mortality predictions in clinical 52 

settings. 53 

 54 

Methods 55 

Sourcing and Preprocessing 56 

This analysis utilized publicly available individual-level epidemiological data as of June 4th, 57 

2020 [13]. The dataset includes various temporal, demographic, geographic, and environmental 58 

attributes, including age, sex, city, province, country, sourced from Wuhan or elsewhere, 59 

latitude, longitude, etc. It was aggregated from various sources and is extremely sparse. Several 60 

preprocessing steps were employed to filter and clean the data. 61 

 62 

4 suspected risk factors were studied as explanatory variables: age, time from onset of symptoms 63 

to hospital admission, sex, and presence of chronic disease. The outcome variable was binary: 64 

either recovery or mortality. The dataset was subsetted to include only relevant columns. The sex 65 

binary categorical variable was encoded to numeric values. Samples were removed from the 66 

analysis if they had missing values for any of the relevant variables. There was heterogeneity in 67 
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clinical variable annotation, so various values of outcome ('discharge', 'discharged', 'Discharged', 68 

'recovered') were coded to 0 (recovery) and other values ('died', 'death') were coded to 1 69 

(mortality). Patients with other outcome values ('severe', 'stable,' ‘Symptoms only improved with 70 

cough. Currently hospitalized for follow-up.’) were removed from the analysis. For samples 71 

where an age range was given instead of a single number, the lower and upper limits of the range 72 

were averaged to produce a single number. One sample was assumed to have a coding error in 73 

the date_onset_symptoms column and was removed. A new derived column to represent time 74 

from onset of symptoms to hospital admission was created (time_to_hospital = 75 

date_admission_hospital - date_onset_symptoms). One sample had a negative value for 76 

time_to_hospital, which was assumed to be the result of a coding error and was removed. 77 

 78 

After filtering and cleaning the dataset, 184 viable patients remained. These 184 patients may not 79 

necessarily be representative of the global population (in terms of geographic location, 80 

healthcare quality, etc.) because many samples had to be discarded in the preprocessing steps; 81 

nonetheless, we hope that the relative importance of age, sex, time to hospital, and presence of 82 

chronic disease will be relatively consistent between this sample and the global population. 83 

Furthermore, some individuals may have experienced mortality after being discharged from the 84 

hospital, but that information was not included in the dataset. Here, we provide visualizations 85 

and descriptive statistics to understand the 184-patient dataset. Fig 1 provides histograms of the 86 

continuous covariates and Table 1 provides summary statistics for the dataset. As shown in Table 87 

1, the mean age of patients was about 48.02 (SD 18.62). 63.59% of patients were male. Chronic 88 

disease was present in 20.11% of individuals, and the average time to hospital was 5.17 (SD 89 

4.28). Approximately 25.54% of individuals in the dataset experienced mortality. 90 
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Fig 1: Histograms for the two continuous covariates (age and time_to_hospital) 91 

 92 

Table 1. Descriptive statistics for variables in the 184-patient dataset. 93 

 age (yrs) time_to_hospital (days) sex chronic_disease_binary outcome 

mean 48.019022 5.168478 0.635870 0.201087 0.255435 

std 18.615785 4.279687 

Not applicable for binary data 

min 1 0 

Q1 33 2 

median 46 5 

Q3 61 7 

max 89 26 

 94 

An XGBoost model was trained for binary classification of patient mortality/recovery. XGBoost 95 

utilizes a gradient tree boosting algorithm and provides state-of-the-art classification 96 

performance in many scenarios [14]. The algorithm is highly scalable and utilizes minimal 97 
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machine resources [14]. The model was trained with default parameters using the Python 98 

xgboost package. Table 2 shows various classification metrics of the XGBoost model when it 99 

was trained on 70% of the data and tested on the remaining 30%. The model achieves an testing 100 

accuracy of 0.91. 101 

Table 2: Classification report for XGBoost model predictions on test set 102 

 Precision Recall F1 Score Support 

0 (Recovery) 0.95 0.93 0.94 44 

1 (Mortality) 0.77 0.83 0.80 12 

Accuracy   0.91 56 

Macro Avg 0.86 0.88 0.87 56 

Weighted Avg 0.91 0.91 0.91 56 

 103 

Shapley Additive Explanations (SHAP) 104 

SHAP is a method for model interpretation that relies on the Shapley value, a solution concept in 105 

coalitional game theory. In coalitional game theory, the Shapley value represents a distribution 106 

of a collective payoff/prediction among multiple participants/features. In feature interpretation 107 

using Shapley values, predictions are compared between models with and without each feature 108 

so that importance values can be assigned to each feature. Shapley values are given by the 109 

following formula, where F is the feature set, the summation is over all the possible feature 110 

subsets, the expression in brackets is the difference in predictions between a model trained on the 111 

feature subset and a model trained on the same feature subset but also with feature i, and the 112 

fraction is a factor for averaging [15]: 113 
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 114 

Intuitively the Shapley value can be interpreted as the expected value of the marginal 115 

contribution to the coalition, and it is computed by adding each feature to a model and 116 

understanding how it impacts the prediction. Shapley feature attribution methods possess several 117 

desirable properties, including local accuracy, missingness, and consistency [15]. The method 118 

used in this paper is Tree SHAP, which is a variant of SHAP for decision tree models. Tree 119 

SHAP improves the time complexity of SHAP from exponential to polynomial [16]. 120 

 121 

Skater 122 

The Skater package was also employed for model interpretation. The package was used to create 123 

model-agnostic partial dependence plots and perform local interpretation using LIME (Local 124 

Interpretable Model-Agnostic Explanations). Additionally, parsimonious tree surrogates were 125 

created. Partial dependence plots specify the marginal effect of features on the response variable 126 

in a model. According to [17], the partial dependence is given by the following formula, where S 127 

is a subset of predictor indices and C is the complement of S: 128 

𝑓𝑓𝑆𝑆 = 𝐸𝐸𝑥𝑥𝐶𝐶[𝑓𝑓(𝑥𝑥𝑆𝑆, 𝑥𝑥𝐶𝐶)] = �𝑓𝑓(𝑥𝑥𝑆𝑆, 𝑥𝑥𝐶𝐶)𝑑𝑑𝑑𝑑(𝑥𝑥𝐶𝐶) 129 

In practice, partial dependence is estimated using the following formula, where N is the number 130 

of samples in the training set and 𝑥𝑥𝐶𝐶1 through 𝑥𝑥𝐶𝐶𝐶𝐶 are observed values of 𝑥𝑥𝐶𝐶 from the training set 131 

[17]: 132 

𝑓𝑓𝑠𝑠� =
1
𝑁𝑁
�𝑓𝑓(
𝑁𝑁

𝑖𝑖=1

𝑥𝑥𝑆𝑆, 𝑥𝑥𝐶𝐶𝐶𝐶) 133 
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LIME is a technique that uses local approximations to a machine learning model to provide 134 

interpretations of the prediction of any sample [18]. Roughly speaking, LIME perturbs the model 135 

many times to determine the influence of each explanatory variable on the outcome variable. 136 

LIME allows for rapid and clinically useful local interpretation of the model's predictions. 137 

Furthermore, LIME explanations are locally faithful [18]. Surrogate trees are approximations of 138 

complex models (such as those produced by the XGBoost algorithm). They are model-agnostic 139 

since they can be trained by observing inputs and outputs of the underlying model [19]. 140 

Unfortunately (but unsurprisingly), a tradeoff exists between fidelity (how well the surrogate can 141 

approximate the original model) and model complexity [19]. 142 

 143 

Results 144 

Shapley Additive Explanations 145 

A TreeExplainer from the shap package in Python was used to calculate Shapley values. The 146 

TreeExplainer object can be used for global interpretations of the model as well as local 147 

interpretations of the prediction for any individual. In Fig 2, the relative importance of 148 

explanatory variables is plotted. According to the Shapley values, age is the most important of 149 

the 4 features, followed by time_to_hospital, chronic_disease_binary, then sex.  150 
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Fig 2: Barplot of relative feature importance of explanatory variables as assessed by mean 151 

absolute value of Shapley value 152 

 153 

Fig 3 shows example local interpretations for two patients. In the figure, values of certain 154 

features 'push' the prediction from an initial base value (bias) to a final model output value. In the 155 

first patient, the low age (38) was the major factor that pushed the patient towards a smaller 156 

model output value, whereas in the second patient, the high age (82) pushed the patient towards a 157 

higher value. Also, being male pushed the model output up in the first patient and being female 158 

pushed the model output down in the second patient. In the first individual, absence of chronic 159 

disease pushes the model output down, while presence of chronic disease pushes the output up in 160 

the second individual. Interestingly, a time to hospital value of 7 pushes one individual down and 161 

the other up.  162 
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Fig 3: Sample local explanations for a negative and positive individual 163 

 164 

Fig 4, created using the shap package, shows local interpretations for all patients on one graph. 165 

The magnitude of the SHAP value quantifies the importance of the feature in the model, and 166 

each dot signifies a Shapley value for an individual’s feature. 167 

Fig 4: SHAP Interpretation for all patients 168 

 169 

Partial dependence plots were created for each of the four explanatory variables (Fig 5). Higher 170 

values of age are associated with higher SHAP values. Values of 1 for sex (male) are associated 171 

with higher SHAP values than 0 for sex (female). Likewise, values of 1 for 172 

chronic_disease_binary (chronic disease present) are associated with higher SHAP values than 0 173 

for chronic_disease_binary (chronic disease absent). The partial dependence plot for 174 

time_to_hospital exhibits heteroskedasticity and cannot be easily interpreted.  175 
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Fig 5: Partial dependence plots for each of the 4 explanatory variables 176 

 177 

Fig 6 shows the partial dependence plot for age, and points are colored by time_to_hospital to 178 

elucidate potential interactions between age and time_to_hospital. 179 

Fig 6: Partial dependence plot for age with interaction index set to time_to_hospital 180 

 181 
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Skater Interpretations 182 

The skater package in Python was also used to perform interpretation analyses. Skater, like shap, 183 

has global and local interpretation abilities. As shown in Fig 7, the skater packages provides a 184 

similar ordering of feature importance as the shap package. Age is the most important feature by 185 

far, followed by time_to_hospital. However, skater ranks sex as more important than 186 

chronic_disease_binary, while shap ranks chronic_disease_binary as more important than sex. 187 

Fig 7: Barplot of relative feature importance of explanatory variables as assessed by skater 188 

package 189 

 190 

A LimeTabularExplainer object was then created using the skater package. LIME (Local 191 

Interpretable Model-Agnostic Explanations) was used to perform local interpretations. Fig 8 lists 192 

the factors contributing to recovery/death and summarizes them in a table, where orange colored 193 

factors are those that contribute to mortality and blue colored factors are those that contribute to 194 

recovery. For example, in the bottom patient (predicted to experience mortality), the high age, 195 

presence of chronic disease, and time to hospital all contribute to the high probability of death. 196 
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Fig 8: LIME local interpretations for a patient who experienced recovery and was 197 

predicted to recover (top) and for a patient who experienced mortality and was predicted 198 

to die (bottom). 199 

 200 

Skater also provides functionality for creation of partial dependence plots. Fig 9 shows one-way 201 

partial dependence plots created by the skater package. These appear to be similar to the plots 202 

created using the shap package. 203 

Fig 9: Partial dependence plots with error bars as created by the skater package 204 

 205 
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Surrogate Trees 206 

Although tree-based models are generally considered to be interpretable [20], XGBoost (like 207 

other gradient boosting algorithms) combines many trees (100 by default) as weak predictors. 208 

More parsimonious trees are required to find simple decision rules (heuristics) for use in a 209 

clinical setting. Therefore, we create a parsimonious surrogate tree using the skater package (Fig 210 

10). 211 

Fig 10: A parsimonious 3-split surrogate decision tree. X0, X1, X2 and X3 are age, sex, 212 

chronic_disease_binary, and time_to_hospital respectively. 213 

 214 

Rules of thumb can easily be extracted from this parsimonious tree. In this tree, four simple 215 

decision rules can be extracted: 216 

1. If the person’s age is 57.5 or less and they do not have chronic disease, the probability of 217 

mortality is 3.5%. 218 

2. If the person’s age is 57.5 or less and they have chronic disease, the probability of 219 

mortality is 66.7%. 220 

3. If the person’s age is greater than 57.5 and they get to the hospital in 2 days or less (after 221 

symptom onset), the probability of mortality is 42.9%. 222 
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4. If the person’s age is greater than 57.5 and they get to the hospital after more than 2 days, 223 

the probability of mortality is 93.3%. 224 

Note that in this tree, the sex variable was not used, but different trees using different 225 

combinations of explanatory variables can be created by tweaking the random seed of the 226 

surrogate explainer. Various classification metrics were calculated to assess the prediction 227 

performance of the parsimonious model on the test data (Table 3). Interestingly, the more 228 

parsimonious model still achieves a classification accuracy of 84% despite only having 3 splits. 229 

Table 3: Classification report for 3-split surrogate tree predictions on test set 230 

 Precision Recall F1 Score Support 

0 (Recovery) 0.95 0.84 0.89 44 

1 (Mortality) 0.59 0.83 0.69 12 

Accuracy   0.84 56 

Macro Avg 0.77 0.84 0.79 56 

Weighted Avg 0.87 0.84 0.85 56 

 231 

Discussion 232 

This paper developed an XGBoost model for prediction of individual-level COVID-19 mortality 233 

and performed global and local model interpretations using Shapley values from coalitional 234 

game theory. Global and local intepretations were also performed using the skater package. Both 235 

methods resulted in the similar ranking of the relative importance of the four explanatory 236 

variables studied, placing age as the most important feature and time to hospital after symptom 237 

onset as the second most important. The interpretation techniques differed in that one ranked sex 238 

as more important than chronic disease presence while the other ranked chronic disease presence 239 
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as more important than sex. Lastly, a surrogate tree model was developed by perturbing the 240 

XGBoost model’s inputs and observing the outputs. The surrogate tree achieved a high degree of 241 

parsimony while retaining a relatively high predictive accuracy of 84%. Because of its 242 

parsimony, the surrogate tree model retains interpretability and can potentially be used in a 243 

clinical setting. Furthermore, rules-of-thumb about COVID-19 mortality probabilities can easily 244 

be derived by tracing different root-to-leaf paths on the tree. 245 

 246 

Hospital systems are not generally well-equipped to handle pandemics, and many hospitals are 247 

facing resource shortages. Some estimates suggest that at the peak of the COVID-19 outbreak in 248 

the US, the number of ICU beds required would be 3.8 times the number in existence [21]. 249 

COVID-19 mortality prediction models can potentially be used to help allocate resources to 250 

those with the highest risk of dying in hospitals with limited resources and high load. In addition 251 

to developing as a potential tool for clinical resource allocation, this study determines the relative 252 

importance of four suspected risk factors and demonstrates the viability of local model 253 

interpretations for data-driven clinical decision-making. 254 

 255 

To the best of our knowledge, no other published studies have predicted COVID-19 mortality 256 

solely off of demographic and temporal variables. This paper demonstrates that COVID-19 257 

mortality prediction can be accomplished with 91% accuracy (or 84% in the parsimonious 258 

model) without the use of cellular, molecular, and chemical biomarkers. 259 

 260 
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Future analysis is required to determine the joint effect of multiple features on outcome and 261 

explore other demographic, spatial, temporal, and environmental factors as data on them 262 

becomes readily available. 263 
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