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Abstract 

 

In early 2020, South Korea experienced a large coronavirus disease 2019 (COVID-19) outbreak. 

However, despite its proximity to China, where the virus had emerged, and the high population 

density of the Seoul metropolitan area, a major international hub, South Korea effectively 

contained the spread of COVID-19 using non-pharmaceutical interventions until vaccine 

distribution in 2021. Here, we built a metapopulation model with a susceptible-exposed-

infectious-quarantined-recovered (SEIQR) structure and combined it with the ensemble 

adjustment Kalman filter to infer the transmission dynamics of COVID-19 in South Korea from 

February 2020 until vaccine deployment. Over the study period, the fraction of documented 

infections (ascertainment rate) was found to increase from 0.50 (95% credible interval (CI): 

0.26—0.77) to 0.62 (95% CI: 0.39—0.86). The cumulative number of total infections, including 

both documented cases and undocumented infections, was less than 1% of the South Korean 

population at the end of the simulation period, indicating that the majority of people had yet to be 

infected when vaccine administration began. These findings enhance understanding of the 

COVID-19 outbreak in South Korea and highlight the importance of preparedness and response 

in managing global pandemics. 
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Introduction 

 

The coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome 

coronavirus 2 (SARS‑CoV‑2) emerged in Wuhan, China, in late 2019 and rapidly spread across 

the world, escalating into a global health crisis. In March 2020, the World Health Organization 

(WHO) declared a pandemic; over the next year, COVID-19 overwhelmed healthcare systems, 

disrupted economies, and caused millions of deaths.  

 

South Korea was one of the first countries outside China to face a major COVID-19 outbreak 

during early 2020. The Korea Disease Control and Prevention Agency (KDCA) recorded its 

initial case on January 20, 2020, and sporadic outbreaks linked to imported cases continued in 

the following weeks. The first major outbreak, began on February 18, 2020, in the city of Daegu, 

with the confirmation of the 31st case linked to a religious gathering and an additional 7,000 

cases over the following three weeks. This sudden surge significantly strained South Korea's 

public health infrastructure; however, building on its experience with the Middle East respiratory 

syndrome coronavirus (MERS-CoV) outbreak in 2015, which resulted in nearly 186 confirmed 

cases and 38 deaths [1], South Korea had a strategy to address the challenges posed by COVID-

19 [2-4]. The government swiftly implemented non-pharmaceutical measures such as scaled-up 

testing, isolating confirmed cases, and contact tracing, effectively flattening the infection curve 

and curtailing further spread [5]. Despite facing continual sporadic outbreaks and two significant 

waves centered around the Seoul metropolitan area during 2020, South Korea maintained its 

control strategies along with social distancing protocols without enforcing a complete lockdown, 

and kept per capita rates of cases, hospitalizations, and deaths low [6-8]. 
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Modeling of COVID-19 can provide insight into infectious disease outbreaks and inform public 

health response and policy decisions. For the first major outbreak in Daegu, a deterministic 

model was previously utilized to estimate the basic reproduction number and predict future 

infections [9]. Public health interventions, such as quarantine, social distancing, and school 

closure were evaluated focusing on the entire country. Some studies segmented time horizons 

according to intervention policy changes to estimate piecewise transmission rates using 

deterministic models [10-13]. One study integrated the spatial structure of infection spread by 

dividing the country into two regions: Daegu and North Gyeongsang and the rest of South Korea 

[14], and other models have been used to generate forecasts and inform policymaking; however, 

most of these approaches did not represent the spatial structure of spread or consider unreported 

infections [15]. 

 

Studies on COVID-19 outbreaks in China and the US, using metapopulation models, have 

highlighted a substantial number of undocumented infections [16, 17]. Using a probabilistic 

model, the number of undetected infections in South Korea was estimated to range from 10,400 

to 139,900 by February 2, 2021 [18]. From this range, another study derived that, on average, 

half of total infections were not reported [19], an estimate that is lower than the numbers inferred 

for China and the US. These undetected numbers may include asymptomatic or mildly 

symptomatic infections who do not seek testing or medical care, but still are infectious and 

contribute to the ongoing outbreak [16, 20]. Failing to account for these cases can underestimate 

the true infection rate and reproductive number, impacting the accuracy of forecasts and the 

modeling of intervention effectiveness. 
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In this study, we developed a metapopulation model coupled with Bayesian inference to analyze 

the transmission dynamics of COVID-19 in South Korea until the introduction of vaccines. The 

model is stratified into 17 si/do (city/province) levels, integrating mobility data and daily 

confirmed case data. Using this model-inference system, we estimated the transmission rate and 

ascertainment rate at the end of major outbreak waves, along with the reproduction number and 

the number of undocumented cases.   
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Methods 

 

Data: Two datasets were used to initialize the metapopulation model. The first is demographic 

data obtained from the Statistics Korea (KOSTAT) [21]; here, we used the 2020 population 

census by si/do (city/province) level administrative districts in South Korea. The numbers in this 

dataset represent the number of residents, including both local and foreign, living in an area for 

that year. The second is mobility data sourced from the Korea Transportation Database (KTDB) 

[22], which provides annual data obtained from national transport surveys and categorized into 

seven purposes: going to work, going to school, business, shopping, returning home, leisure, and 

others. Each category has a corresponding origin and destination matrix, with its components 

describing the average number of daily movements from the origin to the destination. For our 

model, the returning home matrix for 2019 was utilized, as it represents the volume of people 

coming back home after going out for any reason for the year immediately prior to the COVID-

19 pandemic. 

 

To incorporate changes in mobility over time, we employed weekly updated regional movement 

data [23] derived from mobile phone usage of SK Telecom, which had a market share of 

approximately 41% in South Korea during 2021. These data provide daily intra- and inter-

regional movement but at a finer administrative district (gu) level than the structure of our 

model. For example, Seoul consists of 25 gus. In these data, movements within a particular 

district, e.g. Gangnam-gu, were counted as intra-regional movements and movements from 

Gangnam-gu to other districts were counted as inter-regional movements. However, to be of use 

in our model, these inter-regional movements should be distinguished by destination. If the 
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destination is one of the districts in Seoul, it is considered a movement within Seoul; if the 

destination is some district in a city other than Seoul, it is considered a movement to another 

si/do subpopulation. Owing to the absence of specific destination information, we aggregated 

both the intra- and inter-regional movement data from all 25 districts of Seoul, and this 

aggregation was used to adjust the baseline mobility of people moving from Seoul to other 

regions during the day. The same approach was applied to rescale mobility patterns for the other 

locations. 

 

To calibrate the model, we used daily confirmed cases by si/do from February 8, 2020 to 

February 25, 2021, as reported by the Korea Disease Control and Prevention Agency (KDCA) 

[24]. These case numbers represent both local and imported cases. 

 

Metapopulation model: We built a metapopulation model with a susceptible-exposed-infectious-

quarantine-recovered (SEIQR) structure to simulate COVID-19 transmission in South Korea. 

The model is stratified into 17 si/do levels to describe inter-regional movements. Its structure 

was informed by earlier COVID-19 models specific to South Korea [9, 13], as well as 

metapopulation models used for China and the US [16, 25]. 

 

In general, people leave their homes in the morning to go to work or school and return to their 

neighborhoods and homes in the evening. The model mirrors this daily pattern by dividing the 

entire population into 17×17 subpopulations based on origin (residence) and destination and 

formulating the transmission differently during the day and at night. Concretely, people who live 

in region j and move to region i during the day (𝑁!") mix with people in region i during the day 
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and can spread infection among people in region 𝑖. In the evening, these people return to their 

residential area j, where they mix with people in that area and can spread infection. The time step 

sizes for day and night were adjusted to 1/3 and 2/3 of a day in accordance with previous 

modeling work [25], which showed that similar results could be obtained when the length of day 

and night is equal. 

 

Each subpopulation was then compartmentalized according to its epidemiological stage as shown 

in Figure 1 and equations (1)—(6). Susceptible (𝑆!") individuals are infected at a rate 𝜆!" through 

contact with infectious individuals and become latent (𝐸!"). The rate 𝜆!", known as the force of 

infection, is the per capita rate at which susceptible individuals become infected through contact 

with infectious individuals, and is proportional to the transmission rate and proportion of 

infectious individuals at time 𝑡. In this model, 𝜆!" was defined as shown in equation (7), with the 

transmission rate (𝛽!) specified for each region, allowing for different mixing patterns during the 

day and night with infectious individuals. After an average of 𝑍 days, the latent period, 

individuals become infectious and bifurcate into cases that are reported (i.e. at some point tested 

and quarantined) with probability 𝛼 and unreported with probability 1 − 𝛼. During the day, it is 

assumed that both reported infectious individuals (𝐼!"# ) and unreported infectious individuals (𝐼!"$ ) 

move to other regions for work or school, but for 𝐼!"$  a reduced infectivity, scaled by 𝜇, is 

assumed. The daytime population size of region 𝑖 is computed according to equation (8). Note 

that reported infectious individuals are assumed to move normally until testing and quarantine. 

At night, both 𝐼!"#  and 𝐼!"$  are assumed to stay within their residential areas, and the population 

size of region 𝑗 is the sum of the number of people living in region 𝑗 as shown in equation (9). 

Reported individuals (𝐼!"# ) are infectious for 𝐷# days on average until testing and quarantine, 
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whereas unreported individuals (𝐼!"$ ) are infectious for 𝐷$ days on average and then recovered or 

removed (𝑅!"). All reported cases (𝐼!"# ) are quarantined (𝑄!") immediately after being tested, 

reflecting South Korea’s measure, where self-quarantine was advised until receiving test results. 

After an average 𝐺-day quarantine, individuals recover or are removed (𝑅!"). Given South 

Korea’s centralized public health governance, we assumed parameters 𝜇, 𝛼, 𝐷#, 𝐷$, and 𝐺 have 

the same value across the entire region. We also assumed no individuals enter or leave the model 

and no immunity loss following the primary infection as the simulation time period is relatively 

short. 

 

 

Figure 1. Transmission model diagram. 𝑆!": susceptible, 𝐸!": exposed, 𝐼!"# : reported infectious, 

𝐼!"$ : unreported infectious, 𝑄!": quarantined, and 𝑅!": recovered. Parameters are described in Table 

1. 
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and 

𝑁!6(𝑡) = 𝑁!! + ∑ 𝑄7!# (𝑡)78! + ∑ A𝑁!7 − 𝑄!7# (𝑡)B78! ,      (8) 

𝑁"9 = ∑ 𝑁7"7 ,           (9) 

𝑁!" = 𝑆!"(𝑡) + 𝐸!"(𝑡) + 𝐼!"# (𝑡) + 𝐼!"$(𝑡) + 𝑄!"(𝑡) + 𝑅!"(𝑡).     (10) 

 

To impose stochasticity on the model, we assumed each term on the right hand side of equations 

(1)—(6) is a random variable (𝑢!) that follows a Poisson distribution with a mean value 

described in equations (11)—(16). We then updated the state variables, as shown in equations 

(17)—(22), by randomly drawing a positive integer (𝑢!) at each time step. 

 

𝑢3(𝑡) ∼ PoisA𝜆!"(𝑡)𝑆!"(𝑡)𝑑𝑡B,        (11) 

𝑢5(𝑡) ∼ Pois I𝛼 %!"(')
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𝑢4(𝑡) ∼ Pois I(1 − 𝛼) %!"
(')

)
𝑑𝑡J,        (13) 

𝑢:(𝑡) ∼ Pois K
*!"
# (')

+#
𝑑𝑡L,         (14) 

𝑢;(𝑡) ∼ Pois K
*!"
$(')

+$
𝑑𝑡L,         (15) 
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𝑢<(𝑡) ∼ Pois I,!"
(')

-
𝑑𝑡J.         (16) 

 

𝑆!"(𝑡 + 1) = 𝑆!"(𝑡) − 𝑢3(𝑡),         (17) 

𝐸!"(𝑡 + 1) = 𝐸!"(𝑡) + 𝑢3(𝑡) − (𝑢5(𝑡) + 𝑢4(𝑡)),      (18) 

𝐼!"# (𝑡 + 1) = 𝐼!"# (𝑡) + 𝑢5(𝑡) − 𝑢:(𝑡),        (19) 

𝐼!"$(𝑡 + 1) = 𝐼!"$(𝑡) + 𝑢4(𝑡) − 𝑢;(𝑡),        (20) 

𝑄!"(𝑡 + 1) = 𝑄!"(𝑡) + 𝑢:(𝑡) − 𝑢<(𝑡),       (21) 

𝑅!"(𝑡 + 1) = 𝑅!"(𝑡) + 𝑢;(𝑡) + 𝑢<(𝑡),       (22) 

 

Model calibration: The Ensemble Adjustment Kalman Filter (EAKF) infers the state of a 

dynamic system by assimilating a series of observations in conjunction with integration of an 

ensemble of simulations with varying initial conditions. Initially developed for numerical 

weather prediction, the EAKF has been adopted for use with infectious disease forecasting and 

analysis, including influenza models [26] and, more recently, COVID-19 models [16, 17, 25]. 

 

To estimate the distribution of the system state at time 𝑡 given observations up to the current time 

𝑡 (𝐘'), the Kalman filter approach uses Bayes’ rule, as shown in equation (23), and assumes 

normality of the likelihood and prior distribution, allowing the posterior distribution to be 

completely characterized by the mean and covariance.  

𝐩(𝐳'|𝐘') ∝ 𝐩(𝐲'=|𝐳')𝐩(𝐳'|𝐘'>3),        (23) 

where 𝐳' = (𝐱'? , 𝐡'(𝐱' , 𝑡)?)? is the joint state-observation vector, combining the state vector (𝐱') 

and the expectation of the observation vector (𝐡'(𝐱@, 𝑡)), 𝐘' is the set of all observations that are 
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taken at or before time 𝑡, and 𝐲'= = 𝐡'(𝐱' , 𝑡) + 𝛜'(𝐱' , 𝑡) is the observation vector taken at time 𝑡, 

and 𝛜'(𝐱' , 𝑡) is the error vector at time 𝑡.  

 

In the EAKF, the prior and posterior mean and covariance are computed from the ensemble mean 

and covariance. Given observations from multiple locations, the filter processes these data 

sequentially to avoid more expensive computation [27]. Detailed computation of the posterior 

ensemble is presented in Algorithm 1 in the Supplementary Information. 

 

Filter divergence: A common challenge in the application of filtering methods is filter 

divergence, a situation in which the filter estimates deviate gradually from the truth over time. 

This divergence occurs when the ensemble variance of the model shrinks over successive 

assimilation of observations to values much less than the observational error variance (𝜎A)5.	As 

a consequence, the filter gain becomes small, and new observations have a minimal impact on 

the observed state estimate [28]. To counter potential divergence, we applied multiplicative 

inflation [29, 30], as described in equation (24). To further improve the inference, we also 

utilized the space re-probing technique that randomly replaces a small proportion of ensemble 

members [31]. 

𝐳'9 = 𝛾(𝐳'9 − 𝒛') + 𝒛',         (24) 

where 𝒛'9 is the 𝑛th ensemble member of 𝒛', 𝛾 is the multiplicative inflation factor, and 𝒛' is the 

mean vector of 𝒛' across the ensemble. 

 

Model initialization: The size of each subpopulation was derived from 2020 census data from the 

KOSTAT [21] and 2019 mobility data from the KTDB [22]. The census data provided the 
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population size of each si/do, which we denote as 𝑃" (𝑗 = 1, 2, … , 17). The mobility data were 

assembled into a matrix, 𝑀!" 	(𝑖, 𝑗 = 1, 2, … , 17), where 𝑖 represents the destination and	𝑗 

represents the origin location. We initialized the off-diagonal subpopulations (𝑁!" , 𝑖 ≠ 𝑗) with 

𝑀!" and the diagonal subpopulations (𝑁"") with 𝑃" −∑ 𝑀!"!8" . 

 

Changes in the mobility matrix over time were also considered using regional population 

movement data updated weekly by the KOSTAT [23]. We first computed the relative change in 

the movement of the current week compared to the prior week from the data and multiplied it by 

the mobility matrix (𝑀!"). We then reinitialized each subpopulation 𝑁!" according to the newly 

updated mobility matrix as described above, while preserving the proportions of each 

epidemiological stage. 

 

The first wave in South Korea began with a sudden surge of case numbers after the identification 

of the 31st case in Daegu on February 18, 2020 [24]. This patient was reported to have had 

symptoms and visited a medical facility, church, and hotel several days before being confirmed 

[32, 33]. Given these circumstances, it is presumed that multiple people had already been 

infected prior to February 18th, and one study estimated that 4 people (95% CI: 2—11) were 

already infectious but undocumented in Daegu on February 7th [34]. Based on these reports, we 

began our simulation on February 7th 2020 and initialized 𝐸!! and 𝐼!!$ by randomly sampling from 

a uniform distribution with limits between 0 and 5. The initial value of 𝐸!" and 𝐼!"$  for all other 

subpopulations (𝑖 ≠ 𝑗), 𝐼!"# , and 𝑄!" were set to zero. For 𝑆!", we sampled from a uniform 

distribution, where the lower limit is 90% of the population (𝑁!"), and the upper limit is 𝑁!" − 

sum of upper limits of 𝐸!", 𝐼!"# , and 𝐼!"$  to have 𝑆!" + 𝐸!" + 𝐼!"# + 𝐼!"$ ≤ 𝑁!". Lastly, 𝑅!" was 
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initialized by subtracting 𝑆!" + 𝐸!" + 𝐼!"# + 𝐼!"$  from 𝑁!", so that 𝑆!" + 𝐸!" + 𝐼!"# + 𝐼!"$ + 𝑄!" + 𝑅!" =

𝑁!". 

 

The initial prior ranges for model parameters were derived from previous COVID-19 studies. For 

each parameter we sampled ensemble members from a uniform distribution with the initial prior 

ranges shown in Table 1. 

 

Table 1. Model parameters with descriptions, initial prior ranges, limits, and references. 

Parameter Description Initial prior range Limits References 

𝛽! Transmission rate of region 𝑖 

(𝑖 = 1, 2, …, 17). 

0.3—1.6 0—5 [9, 10, 16, 35] 

𝜇 Relative infectivity of 

unreported infections. 

0.1—0.7 0—1 [16, 35] 

𝑍 Average latency period 2—5 days 1—6 days [9, 16, 35, 36] 

𝛼 Ascertainment rate 0.1—0.75 0—1 [16, 17, 25, 35] 

𝐷# Average infectious period of 

reported cases 

1—3 days 0.01—4 days [16, 35, 36] 

𝐷$ Average infectious period of 

unreported cases 

2—6 days 1—7 days [16, 35, 36] 

𝐺 Average quarantine period 12—15 days 10—17 days [36] 

 

We initialized 300 ensemble members per simulation and carried out ten independent simulations 

to accommodate the stochasticity inherent in the initialization process. The dynamics of the state 
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variables evolved based on the model equations, and the EAKF updated all variables including 

model parameters within the predefined ranges outlined in Table 1. 

 

Observational data: We utilized the daily number of confirmed cases reported by the KDCA as 

observations. Specifically, we acquired the data at the si/do level for all 17 regions in South 

Korea, from February 8, 2020 to February 25, 2021. This period covers three waves of COVID-

19 prior to vaccine introduction. These daily time series data exhibited significant noise and 

variability, potentially due to factors like reporting delays, testing availability, and policy 

changes. Using such data in the EAKF process produces spiky model fitting that captures short-

term fluctuations rather than underlying trends. To reduce such overfitting, we smoothed the data 

by applying a 7-day moving average and used the smoothed time series data as 𝑦=. The 

corresponding observed variable in the model was computed by integrating 
*!"
#

+#
 in equation (3) 

over time, equivalent to 𝑢: in equation (19), and aggregated by residence to obtain the daily 

incidence for each of the 17 regions. The observational error variance A𝜎!,'
A B5 was set to 

max K5, CA!,)D
*

;
L, following a structure used in previous studies [16, 17, 25]. 

 

Parameter estimation: We estimated 𝛽! separately for each region and 𝛼 at a nationwide level 

while keeping the remaining parameters, 𝜇, 𝑍, 𝐷#, 𝐷$, and 𝐺 constant. For each parameter, we 

sampled ensemble members from a uniform distribution of the initial prior ranges specified in 

Table 1. By including 𝛽! and 𝛼 in the EAKF process and excluding the other parameters, we let 

𝛽! and 𝛼 move within the boundary specified in Table 1 while the other parameters retain their 

initial values over time. A daily 1% multiplicative inflation (𝛾 =1.01 in equation (24)) was 
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applied to the observations and 𝛽!, and a weekly 1% re-probing was implemented for 𝛽! and 𝛼. If 

a variable moved outside the range of its prescribed limits during the EAKF, inflation, or re-

probing, its value was resampled to remain within the permissible range.  

 

Basic reproduction number: The basic reproduction number (𝑅E) is defined as the number of 

secondary infections in a completely susceptible population caused by a single infected 

individual. Here, we approximated 𝑅E as 𝛽!(𝛼𝐷# + (1 − 𝛼)𝜇𝐷$), computed using the next 

generation matrix approach [37] for a model that assumes no movement between locations. The 

full model, equations (1)—(6), coupled with EAKF, produces time-varying parameter estimates. 

We thus defined two hyperparameters: 1) the time-varying basic reproduction number, 𝑅' =

𝛽!,'{𝛼'𝐷# + (1 − 𝛼')𝜇𝐷$}; and 2) the time-varying effective reproductive number, 𝑅F(𝑡) =

𝛽!,'{𝛼'𝐷# + (1 − 𝛼')𝜇𝐷$}
G!(')
2!

= 𝑅'
G!(')
2!

. The key difference between 𝑅' and 𝑅F is that 𝑅' 

assumes a fully susceptible population, whereas 𝑅F reflects a partially susceptible population. 

Initially, these two measures start at the same value, but over time, they diverge as the number of 

infected people increase and the susceptible population is depleted. Here, we primarily focused 

on estimating 𝑅F over the course of multiple COVID-19 waves in South Korea.  

 

Synthetic test: To verify the identifiability of the model parameters, we generated synthetic 

outbreaks using the SEIQR model run with prescribed parameter combinations and then 

conducted tests to determine if the full SEIQR-EAKF system could accurately identify those 

parameter combinations from the synthetic observations. Concretely, we created 100 

combinations of parameters (𝛽!, 𝜇, 𝑍, 𝛼, 𝐷#, 𝐷$, and 𝐺), by randomly drawing values from a 

uniform distribution of the given initial prior ranges (Table 1) and then used these parameters in 
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free simulation to generate 100 different synthetic outbreaks. We estimated 𝛽! and 𝛼 and fixed 

the remaining parameters. To examine the overall convergence of the parameters we measured 

the error between the truth and the mean posterior estimate at the end of the outbreak. After 

analyzing the parameter identifiability with the synthetic data, we applied the identical inference 

framework and settings to the real data, aiming to estimate the identifiable parameters.  
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Results 

 

South Korea experienced three waves of COVID-19 prior to broad administration of vaccines, as 

shown in Figure 2. To explore estimates at specific time points, we picked dates before and after 

each wave. The first wave in South Korea hit Daegu on February 18, 2020, and spread to the 

adjacent area, North Gyeongsang. This outbreak lasted until the spring season and subsided by 

May 5, 2020 (date 1). Afterwards, sporadic outbreaks occurred across the region for 

approximately three months. On August 3, 2020 (date 2), the second wave began in Seoul and 

spread to the neighboring region of Gyeonggi. The number of cases in both regions returned to a 

low level by October 11, 2020 (date 3); however, the third wave arrived shortly thereafter. This 

wave affected all regions and continued until February 25, 2021 (date 4), immediately before 

vaccinations began. 
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Figure 2. COVID-19 outbreaks in South Korea until February 25, 2021. The time series graph 

shows the total number of daily cases in South Korea and the vertical black lines represent the 

four selected dates, May 5, August 3, October 11, 2020, and February 25, 2021. Three 

geographic heat maps represent cumulative cases during each wave. 

 

The estimates and error distributions for 𝛽! and 𝛼 obtained from synthetic data are presented in 

the Supplementary Information (Figure S1). The posterior distribution of the model fitted to 

actual smoothed si/do data captures observed case levels across all regions. The mean closely 

aligned with the smoothed data and the 95% credible interval captured the unsmoothed original 

data (Figure 3, Figure S2). 
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Figure 3. Daily confirmed cases data and posterior estimates for Seoul, Daegu, Gyeonggi, and 

North Gyeongsang from February 8, 2020 to February 25, 2021. The blue dots represent daily 

confirmed cases reported by the Korea Disease Control and Prevention Agency, the orange dots 

represent these data smoothed using a 7-day moving average, the yellow line and shaded area 

represent the posterior mean and 95% credible interval. Model fit for the remaining 13 regions 

are provided in the Supplementary Information (Figure S2). 

 

During the entire simulation period, the model estimated similar transmission rates (𝛽!) for Seoul 

and Gyeonggi due to their geographical proximity and substantial volume of inter-regional 

movement (Figure 4, Table 2). Meanwhile, the transmission rate estimates between Daegu and 

North Gyeongsang exhibited a little more difference with greater uncertainty in North 

Gyeongsang. The nationwide ascertainment rate (𝛼) gradually increased over time (Figure 5, 

Table 2). After the first wave alone, the posterior mean estimate of the nationwide 𝛼 reached 0.5 

and over the course of the subsequent waves it increased to 0.62 due to the widespread testing 

and contact tracing in South Korea. The mean effective reproduction numbers (𝑅F) of Daegu 

decreased and remained below 1 after the first wave (Figure 4) . In the North Gyeongsang 

region, adjacent to Daegu, the mean 𝑅F estimate showed a similar pattern. In the Seoul and 

Gyeonggi regions, the mean estimate of 𝑅F fluctuated around 1 during sporadic outbreaks (May 

3 – August 2, 2020). As the second wave began 𝑅F increased to 2.14 in Seoul and 1.75 in 
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Gyeonggi in mid-August but decreased to near 1 in early October. The third wave began in Seoul 

and spread nationwide, but the mean 𝑅F in all regions hovered around 1. 

 

    

     

     

Figure 4. Posterior mean and credible intervals of parameters from February 8, 2020 to February 

25, 2021. The posterior mean effective reproduction number for the Seoul, Daegu, Gyeonggi, 

and North Gyeongsang areas during the same time horizon. The transmission rates for the 

remaining 13 regions are provided in the Supplementary Information (Figure S3). 

 

Table 2. The mean and 95% credible interval (CI) of 𝛽!, 𝛼, and 𝑅F. 
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 Mean (95% CI) 

Parameter May 5 2020 Aug 3 2020 October 11 2020 February 25 2021 

𝛽!	($%&'()  0.38 (0.00—1.47) 0.62 (0.15—1.58) 0.63 (0.20—1.56) 0.61 (0.22—1.47) 

𝛽*	(+,%-')  0.53 (0.01—1.67) 0.41 (0.00—1.83) 0.44 (0.00—1.79) 0.58 (0.14—1.44) 

𝛽.	(/0%&1--2)	  0.39 (0.00—1.36) 0.57 (0.10—1.60) 0.67 (0.27—1.54) 0.62 (0.23—1.38) 

𝛽!3	(4&567	/0%&1-8,1-)  0.52 (0.00—1.88) 0.52 (0.01—2.68) 0.50 (0.00—2.36) 0.91 (0.25—2.98) 

𝛼  0.50 (0.26—0.77) 0.52 (0.27—0.78) 0.57 (0.34—0.84) 0.62 (0.39—0.86) 

𝑅9!	($%&'()  0.51 (0.00—1.43) 0.92 (0.34—1.39) 0.98 (0.42—1.44) 0.96 (0.45—1.43) 

𝑅9*	(+,%-')  0.77 (0.02—1.99) 0.54 (0.00—1.79) 0.63 (0.00—1.74) 0.90 (0.30—1.42) 

𝑅9.	(/0%&1--2)  0.54 (0.00—1.38) 0.84 (0.21—1.37) 1.05 (0.54—1.51) 0.96 (0.47—1.33) 

𝑅9!3	(4&567	/0%&1-8,1-)  0.62 (0.00—2.20) 0.55 (0.01—2.29) 0.55 (0.00—1.37) 1.18 (0.47—2.00) 

 

As of February 25, 2021, the total infection rates, including reported and unreported infections, 

in Seoul and Daegu were higher than in other regions, as these locations were the epicenters of 

major waves. The next highest total infection rates were estimated for the Gyeonggi and Incheon 

regions, which are included in the Seoul metropolitan area. Overall, the mean estimate of 

cumulative total infection rates was less than 1% across all regions, and the nationwide estimate 

was also less than 1%. 

 

Table 3. Total cumulative number of infections by region as of February 25, 2021. Total 

infection includes both reported and unreported infections. Total infection rates = Total infections 

/ Population × 100 (%). CI: credible interval. 

Region (Si/Do) Population Total infections (95% CI) 
Total infection 

rates (95% CI) 

Seoul 9,586,195 57,651 (35,085—121,415) 0.60 (0.37—1.27) 

Busan 3,349,016 6,833 (4,089—13,192) 0.20 (0.12—0.39) 

Daegu 2,410,700 19,180 (8,977—51,679) 0.80 (0.37—2.14) 
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Incheon 2,945,454 9,291 (5,704—19,578) 0.32 (0.19—0.66) 

Gwangju 1,477,573 4,219 (2,613—8,818) 0.29 (0.18—0.60) 

Daejeon 1,488,435 2,601 (1,527—6,017) 0.17 (0.10—0.40) 

Ulsan 1,135,423 2,138 (1,273—4,816) 0.19 (0.11—0.42) 

Sejong 353,933 651 (294—2,065) 0.18 (0.08—0.58) 

Gyeonggi 13,511,676 47,799 (29,398—91,507) 0.35 (0.22—0.68) 

Gangwon 1,521,763 3,909 (2,439—9,097) 0.26 (0.16—0.60) 

North Chungcheong 1,632,088 3,693 (2,234—8,365) 0.23 (0.14—0.51) 

South Chungcheong 2,176,636 5,147 (3,174—10,380) 0.24 (0.15—0.48) 

North Jeolla 1,802,766 2,484 (1,479—5,457) 0.14 (0.08—0.30) 

South Jeolla 1,788,807 1,961 (1,123—4,601) 0.11 (0.06—0.26) 

North Gyeongsang 2,644,757 7,244 (3,985—16,647) 0.27 (0.15—0.63) 

South Gyeongsang 3,333,056 4,672 (2,864—9,744) 0.14 (0.09—0.29) 

Jeju 670,858 1,313 (712—3,171) 0.20 (0.11—0.47) 

Nationwide 51829023 180,788 (109,827—355,983) 0.35 (0.21—0.69) 
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Discussion 

 

This study presents a metapopulation model combined with the EAKF and describes the 

characteristics of the first 13 months of the COVID-19 pandemic in South Korea. During that 

period, COVID-19 cases, hospitalizations, and deaths were fewer per capita than in most other 

countries. Simulations with the SEIQR-EAKF system were used to infer the transmission rate, 

ascertainment rate, and reproduction number over the courses of three waves and cumulative 

infections just before vaccination. 

 

Our 95% credible interval estimates of the transmission rate in Daegu (0.01—1.67) and North 

Gyeongsang (0.00—1.88) on May 5, 2020 (Table 2), cover the findings from another study, 

which inferred country-level transmission rates of 0.162 and 0.449 for the periods February 29–

March 13 and March 14–April 29, respectively [10]. That study utilized a SEIHR (Susceptible-

Exposed-Infectious-Hospitalized-Recovered) model structure with the hospitalized compartment 

analogously functioning as the quarantine compartment in our model. However, the SEIHR 

model did not represent undocumented infections and simulated the entire Korean population, 

i.e. it had no spatial structure. Another study reported a higher transmission rate of 4.62 for 

Daegu and North Gyeongsang [13]. Similar to our approach, this study employed a SEIQR 

model structure, but introduced an additional susceptible population (𝑆H) consisting of 

individuals whose behavior changed in response to disease control interventions. Individuals 

from the regular susceptible population (𝑆) transitioned into the behavior-changed population 

(𝑆H) at a fixed rate, and the transmission rate for this group was set at 2% of the rate for the 
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regular susceptible population. These distinctions played a crucial role in driving the higher 

transmission rate. 

 

The estimate of the ascertainment rate (𝛼) suggests that around half of infections were tested and 

confirmed, whereas the other half were not documented, and that this ratio increased steadily 

across the first three waves of the pandemic in South Korea. This finding is in close alignment 

with a prior study that used a probabilistic model to quantify undetected COVID-19 cases in 

South Korea and which estimated between 10,400 and 139,900 undetected infections by 

February 2, 2021, leading to a total estimated infection range of 89,244 to 218,744 [18]. Dividing 

the cumulative number of confirmed cases as of February 2, 2021 (78,844) by the total cases 

(89,244—218,744) yields a range of 0.360—0.883, closely matching the 95% credible interval 

estimated here for 𝛼 on February 25, 2021 (0.39—0.86) (Table 2). This contrasts significantly 

with the numbers from China and the United States, where the proportion of documented cases 

was estimated at 0.14 (0.10—0.18) before the initiation of travel restrictions on January 23, 2020 

in China [16], and 0.245 (0.186—0.323) during December 2020 in the US [17]. South Korea's 

success in identifying and containing a higher proportion of infected individuals throughout 2020 

may have been facilitated by its immediate and comprehensive implementation of testing and 

screening protocols from the very beginning the pandemic. 

 

The estimated total number of infections from our model largely corroborates, yet slightly 

exceeds, the previous study estimate of 89,244 to 218,744 [18]. Comparatively, South Korea's 

cumulative total infection rate were markedly lower than those in many other countries. A study 

from the US estimated 69.0% (63.6—75.4%) population susceptibility at the end of 2020, 
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implying that about 30% of population had been infected [17]. The reported cases alone in the 

US were more than 18.9 million, corresponding to about 5.7% of the population in 2020. In other 

countries, documented case rates by the end of 2020 were 2.0% in Germany, 3.4% in Italy, 3.5% 

in UK, 4.1% in Spain, 4.4% in Netherland, 2.5% in Türkiye, 2.1% Russia, 1.2% in Mexico, 3.5% 

in Brazil, and 3.6% in Argentina [38].  All these values exceed the estimated total infection rate 

(0.35%) for South Korea on February 25, 2021. 

 

The mean estimate of effective reproduction number (𝑅F) also clearly demonstrates the impact of 

South Korea’s efforts to contain COVID-19. Even before the initial surge in cases, South Korea 

had already increased diagnostic capacity by producing test kits and securing testing facilities 

[2]. Upon the arrival of the first wave they implemented meticulous contact tracing, using credit 

card transaction history and closed-circuit television footage. These measures coupled with 

social distancing and mask wearing, but without locking down cities or closing the borders, 

quickly reduced the reproduction number during the first and second waves, preventing the 

spread of infection nationwide, and kept the reproduction number around one after the second 

wave. Our findings corroborate the effectiveness of the Korean government’s systematic 

preparedness and rapid response to COVID-19. 

 

In interpreting the findings of our study, it is crucial to recognize its limitations. The mobility 

trend data we employed to adjust the mobility matrix over time did not differentiate between 

intra- and inter-regional movements at the si/do level. As a consequence, we used aggregated 

data to adjust the subpopulations involved in inter-regional movements. In the model structure, 

loss of immunity and reinfection after primary infection were not explicitly included because the 
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simulation time horizon was short. Another potential limitation is that delays in diagnosis and 

reporting were not considered in our analysis. In South Korea, the testing turnaround time and 

the time from testing to reporting were both less than a day [39-41], which was short relative to 

other countries. To address and minimize the impact of such delays, we smoothed the case data 

by averaging over 7 days, which enabled focus on underlying outbreak trends. Lastly, the 

synthetic data used to test the model-inference system lacked real-world complexities, such as 

control interventions that could alter parameter values during an outbreak. Nevertheless, 

employing synthetic data remains an effective strategy for understanding the identifiability of 

stochastic models such as the SEIQR used here. 

 

In summary, our study provided insights into COVID-19 transmission dynamics in South Korea 

by estimating the transmission rate and ascertainment rate through the SEIQR-EAKF model 

framework. Our findings highlight the critical role that swift public health interventions, 

including extensive testing and proactive contact tracing, had in controlling the spread of the 

virus. As we navigate forward, these lessons reinforce the importance of pandemic preparedness 

and response efforts, offering a valuable reference point for other countries. 
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