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Abstract 

Because the SARS-CoV-2 (COVID-19) pandemic viral outbreaks will likely continue until effective 

vaccines are widely administered, (1) new capabilities to accurately predict incidence rates by 

location and time to know in advance the disease burden and specific needs for any given 

population are valuable to minimize morbidity and mortality. In this study, a random forest of 

9,250 regression trees was applied to 6,941 observations of 13 statistically significant predictor 

variables targeting SARS-CoV-2 incidence rates per 100,000 across 88 days in 157 countries. 

One key finding is an algorithm that can predict the incidence rate per day of a SARS-CoV-2 

epidemic cycle with a pseudo-R2 accuracy of 98.5% and explain 97.4% of the variances. Another 

key finding is the relative importance of 13 demographic, economic, environmental, and public 

health modulators to the SARS-CoV-2 incidence rate. Four factors proposed in earlier research 

as potential modulators have no statistically significant relationship with incidence rates (2)(3). 

These findings give leaders new capabilities for improved capacity planning and targeting stay-

at-home interventions and prioritizing programming by knowing the atypical social 

determinants that are the root causes of SARS-CoV-2 incidence variance. This work also proves 

that machine learning can accurately and quickly explain disease dynamics for zoonoses with 

pandemic potential. 

  



Methods 

In this study, machine learning – a robust statistical version of artificial intelligence – was 

applied to a data set of 6,941 observations to identify the relative importance of 13 

demographic, economic, environmental, and public health factors in modulating the incidence 

rate per 100,000 population of SARS-CoV-2 across 88 days in 157 countries. The data was 

sourced from the public domain, such as the World Bank and United Nations, select journal 

articles, and weather stations. (4) The period of the epidemic curve measured began the day 

after cases in a country began to grow until case growth stopped or the 88-day period expired 

between January 23 and April 18, 2020. 

Specifically, the author used the Rattle library (version 5.3.0; Togaware) in the programming 

language R (version 3.6.2, CRAN) to apply generalized linear models to learn the P-values of 

each term. From which four terms believed to be potential modulators of incidence rate were 

excluded because of P-values in excess of .05: maximum ultraviolet (UV) index (P-value = .348), 

minimum temperature (P-value = .896), humidity (P-value = .956), dengue fever incidence rate 

(P-value = .131), and median age (P-value = .062. Where after, the author applied a series of 

differently sized random forest algorithms, ranging from 500 to 10,000 regression trees, to 

learn the optimum number of regression trees to minimize error. The lowest error rate was 

approximately 9,250 regression trees, which the author applied, using four variables at a time, 

which was the closest whole number to the square root of the number of predictors. 

The algorithm randomly partitioned the data to select and train on 70% (n=4858), validate on 

15% (1041), and test on 15% (1041) of observations. The algorithm also imputed missing 



numbers with the median from each data category. The author used two evaluation methods: 

(1) plots of predicted versus observed linear fits; and, (2) a pseudo-R-squared measure 

calculated as the square root of the correlation between the predicted and observed values. He 

compared results from a random forest of 9,500 regression trees, and against results from a 

single regression tree (with 7 and 20 as the minimum and the maximum number of 

observations per split), a generalized linear model, and a neural network model. The author 

evaluated the pseudo-R-squared measure results twice, each using the validation and testing 

hold-back data sets that were randomly selected during partitioning and used the average of 

the two accuracy findings for the results. Minitab 19 (version 19.2020.1, Minitab LLC) was used 

to calculate means, medians, and 95% confidence intervals. 

Results 

Based on the artificial intelligence and statistical analysis, 13 independent variables, each 

demonstrating a statistically significant relationship with incidence rate by a P-value < .05, 

explains 97.4% of the variability between incidence rates during the growth phase of the SARS-

CoV-2 epidemic cycle across 88 days in 157 countries. Moreover, the algorithm predicts 

incidence rate per 100,000 with an average pseudo-R2 accuracy of 98.5% (validation = 98.7%, 

test = 98.2%; see Figure 1). The mean of squared residuals was 229.7, making the mean residual 

+/- 15.2 per 100,000. The mean incidence rate per 100,000 was 25.4 (95% CI 23.4 to 27.5), with 

a standard deviation of 86.7 (95% CI 85.3 to 88.2). An Anderson-Darling normality test indicated 

the data does not follow a specific, or normal, distribution (P-value < .005). 



The relative importance of independent predictor variables was computed by percent increase 

in mean squared error (see Figure 2). The mean error is the average distance between the 

predicted and observed values. It is squared to ensure positive values and to weight greater 

distances. The percent increase in mean squared error is the proportional increase in the error 

of predictions when a variable is randomly excluded, or muted. For example, when the number 

of days since the index case was muted, the mean squared error increased by 212.4%, making it 

the most comparatively significant input predictor. Scores of tests of statistical significance, 

Spearman rho correlation strengths and directions, 95% confidence intervals, and high-level 

interpretations are in Figure 3. 

Discussion 

The primary importance of this work is a new capability to know in advance the order of 

magnitude of the disease burden of SARS-CoV-2 for any given population and time in a growth 

cycle. This new capability will enable leaders to make more accurate and precisely targeted 

decisions regarding public health interventions to minimize morbidity and mortality. For 

example, the incidence rates of those with a high BMI, smoke tobacco and have ABO blood type 

A are in three elevated risk groups for infection. (5) 

The secondary importance of this work is new knowledge quantifying the relative importance 

of the social determinants that are root causes of incidence variance. This knowledge will 

enable leaders to target and prioritize programming more accurately. It is distinctly crucial 

because several of the findings are atypical from historic viral modulators. For example, to 

reduce SARS-CoV-2 morbidity and mortality, leaders may want to prioritize public health 



interventions focused on reducing body mass index, smoking, and pediatric mortality 

contributors because traditional infectious disease vulnerability and economic strength have a 

negative association with incidence rates. (6) Moreover, humidity and ultraviolet light 

exposure, which previous research suggests modulate the virus, have no statistically significant 

relationship with SARS-CoV-2 incidence variances. 

The tertiary importance of this report is proof that machine learning methodologies can 

accurately and quickly inform our understanding of zoonoses' disease dynamics with pandemic 

potential. For example, by entering dozens of possible demographic, economic, environmental, 

and public health measurements as independent predictors into machine learning algorithms, 

they can accurately determine within hours or days which factors explain inequalities in 

incidence, prevalence, or disease transmission. Moreover, the algorithms can also quantify and 

ordinally rank the social determinants to the root causes of variances. 

This report has several limitations related to data dependencies of the model. One, because the 

current pandemic was seeded first and most heavily in more developed countries, it may have 

contributed to paradoxical findings such as higher incidence where infectious disease 

vulnerability is lower, and economies are more robust. Two, in geographically large countries, 

environmental measurements vary widely. Three, approximately 3,557 (3.7%) of 97,174 data 

points were missing and imputed with a median; actual observations may differ from the 

categorical medians. Four, the analysis was conducted mid-pandemic across only 88 days. 

Findings after the pandemic across its duration will be more definitive. Five, because testing 

availability was scant during the period of observation, the incidence rates measured probably 



reflect more severe cases that were symptomatic and hospitalized for testing rather than the 

actual incidence rate. This limitation could be significant if a large portion of those infected are 

asymptomatic but still contagious. 

One implication of these findings is the importance of basic public health behaviors such as 

weight control and tobacco use, and the factors that contribute to pediatric survivability (e.g., 

education, nutrition, vaccinations). The second implication of these findings is that while 

previous research indicates viruses are modulated by temperature and humidity, these factors 

may only nominally slow the transmission of more contagious viruses. A third implication of 

these findings is that the causes of disease incidence variances are complex and sometimes 

surprising. A fourth and final implication of these findings is that the usefulness of machine 

learning as a public health tool is encouraging. 
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Figure 1: Fit of predicted vs. observed linear fit of SARS-CoV-2 incidence rate per 100,000 and pseudo-R2 of 15% validation hold-
back data set (top) and 15% of test hold-back data set (bottom) 

  



 

Figure 2: Comparative importance of independent predictors ranked by percent increase in mean squared error from exclusion 

 

 

Figure 3: Table of independent predictor variable scores of probabilities of statistical insignificance, strength of correlation, 
confidence intervals, and interpretations 
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