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Abstract 

The CODIV-19 outbreak in early 2020 generated a tremendous effort of 

epidemiologists and researchers to fit the experimental data with the 

solutions of the SIR model equations [1] or with more sophisticated models. In 

this paper we show that under same hypotheses, a closed form solution exists 

that reasonably fits the experimental data for Italy, and the results can be 

extended to any other area. 

Introduction 

The COVID-19 epidemic in 2020 has aroused the interest of epidemiologists and researchers  with 

the aim to validate the most common models that describe the evolution of a epidemic and to 

provide a reliable forecast of the epidemic dynamics ([2][3][4][5]). 

Since the beginning of the outbreak, first in China and Far East, then in Italy and Europe, a lot of 

information was available on the Web [6]. Normally data about total infected, actual infected, 

recovered, dead are reported daily ([7][8] for Italy) and allow to carry out analyses to verify the 

fit of same model with experimental data. 

The following figure 1 refers to Italy [7] and reports the daily new infected, from the 20th of 

February to mid-May. Data are affected by statistical fluctuations and by systematic biases that 

make them difficult to be interpreted. It is noted, for instance,  that there is a sinusoidal behavior 

of the curve, around a mean value, with a period 7 days, that can be due to test results 

accumulated for a few days and accounted the days after.  

 

Figure 1: Daily new infected in Italy [7] 
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An interesting point is to find a curve that fits these experimental data. Among several functions 

considered, a very good fit has been obtained by using a Gumbel probability density function 

(pdf)[9], given by: 

���� = ���	�
��
�� 
where � = �	�

� ,  being � the mode of the function, that identifies its maximum. The question was to 

understand whether  this “double exponential” function is simply a good fit of the experimental 

data or it is a good fit because this type of functions are the solution of the differential equations 

that govern the dynamics of the epidemic evolution. 

The model taken for the investigation is a compartmental model called SIR model, proposed by 

Kermack and McKendrick in 1927 ([10],[11]). The model consists of three compartments: “S” for 

the number of susceptible, “I” for the number of infectious, and “R” for the number of removed 

(recovered or deceased) individuals. 

The dynamics of the epidemic according to this model is a set of non-linear differential equations 

involving ����, ����	and	���� and a closed form solution is not trivial ([12], [13]). In the following 

we make some assumptions (later on verified through the experimental data) and on the basis of 

these assumptions we find a very simple closed form solution, that fits the experimental data.  

 

The SIR model 

The SIR model can be expressed by the following set of ordinary differential equations [1]:  

 

��
�� = 	−� ��� 																				�1� 

��
�� = 	� ��� − !�																�2� 

��
�� = 	!�																												�3� 

where S(t) is the susceptible population, I(t) is the infected population and R(t) is the removed 

population (either by death or recovery), and N = S(t)+ I(t) + R(t). N is constant, being the model 

without vital dynamics (birth and death). 

Normally S(t) decreases and R(t) increases significantly, until the herd immunity is achieved. In 

the case of COVID-19 the social distancing has been put in place immediately and the epidemic 

slowed down in few weeks.  

S(t), starting from an initial value S0, is reduced by less than 0,06% worldwide and 0,4% in Italy 

[7], one of the most affected countries. On this ground we make the assumption that S/N ≅ 1, 

therefore the second SIR equation becomes: 

�����
�� = 	�������� − !����															�4� 

in which we assume that !, the removal rate, is nearly constant  and ���� , the transmission 

rate, is a function of time, varying according to the social  distancing measures put in place. 
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Equation (4) is a linear differential equation of the first order, whose solution, for ��0� = �� is 

([14]): 

���� = ��	�	' ()	*�+�,-+.
/ 															�5� 

 

Let us assume that ���� has an exponential shape, i.e. ���� = ���	1�. This conjecture will be 

verified by fitting experimental data. The exponent of the previous equation becomes: 

 

−2 (! − ��3�,�3 = 	��2 �	1+
�

�

�

�
�3 − !� = ��

4 �1 − �	1�� − !� 

 

and finally: 

���� = ���
*/1 �	)�		*/1 �
5. 															�6� 

 

The function is of the “double exponential” type and it looks like the Gumbel pdf, i.e. 

���	�
��
��. We define now: 

 

78��� = 	�������� , the new infected in the unit of time 

79��� = 	!���� , the removed ones, from the infected population,  in the 

unit of time 

then: 

���� = 	 78������� 													�7�	
	

! = 	 79������� 																		�8�	
	
The	previous	equations	can	be	used	to	estimate	����	and	!	from	the	experimental	data.	
We	take	the	data	relevant	to	Italy	[7].	The	t=0	corresponds	to	the	20th	of	February	2020.	The	
unit	of	time	is	the	day.	
In	 the	 following	 diagram	 we	 show	 ����	 calculated	 accordingly	 to	 �7�,	 and	 based	 	 on	 the	
experimental	data	for	78���,	the	new	daily	infected,	and	����,	the	active	cases,	found	in	[7]	.	Experimental	 data	 in	 fig.	 2	 confirms	 that	 ����	 has	 a	 negative	 exponential	 behavior,	 thus	
validating	the	conjecture	leading	to	equation	�6�.	
	

 
Figure 2: estimation of ���� – x-axis: number of days from the 20th of February  
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The	 !	 parameter	 is	 not	 constant.	 Also	 averaging	 the	 daily	 value	 over	 7	 days,	 its	 moving	
average	 lies	 between	 0,04	 and	 0,02	 �]�	^.	 We	 decided	 to	 retain	 a	 constant	 value,	 then		
! ≅ 0,03	�]�	^.	
	

 
Figure 3: estimation of ! – x-axis: number of days from the 20th of February  

 

Now	��, 4	and	!	are	estimated	and	we	can	use	equation	�6�	to	fit	the	experimental	data	for	
����,	trying	to	tune	the	 ��  initial value. Figure 4 shows the results for  �� = 65. 

	

 
Figure 4: experimental [7] and theoretical curves for ����  

 

By	using	the	same	parameters,	the number of daily new cases has been calculated from the 

following equation:	
 

78��� = 	�������� = �����
*/1 �	�)�1��		*/1 �
5. 															�9� 

 
 

Also	 78��� is of the “double exponential” type. Next	 figure	 5	 shows	an	 acceptable	 fit	 of	 the	
experimental	data	with	equation	�9�. 
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Figure5: experimental  [7] and theoretical curves for 78���, the daily new infected 

 

Finally, by numerically integrating equation (9), we get the total number of infected during 

the epidemic, that is shown in figure 6: 

��b�cd��� = 2 78
�

�
�e��e																									�10� 

 

Figure 6: experimental  [7] and theoretical curves for ��b�cd 	���, the total infected vs. time 

 

The asymptotic value can be calculated by integrating equation (10) for � → ∞, i.e.: 

��b�cd�∞� = 2 78
h
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Putting (9) in (11) we get: 

 

2 78
h

�
����� = 	 �����

*/1 2 �	�)�1��		*/1 �
5.h

�
		��																�12� 

 

The integral  is resolved making reference to the formulas (3.331) in [15] and it can be 

expressed in terms on the Incomplete Gamma Function, defined, according to Nielsen notation 

[16]: 

i+�e� ≜ 2 �	k�l	^
+

�
�� 

After same calculation we get: 

��b�cd�∞� = 2 78
h

�
����� = 	 ���

*/1 m��4 	n
		)1 ∙ 	i*/1 	�1 +

!
4	�												�13� 

 

All the parameters are known (�� = 0,45, 4 = 0,046, ! = 0,03, �� = 65�	and the asymptotic 

value given by  (13) is around 234.000 total infected. It will be reached in the month of June 

in Italy. 

 

Conclusions 

On the basis of the classical SIR model, a closed form solution of the differential equations 

governing the epidemic dynamics has been found. The assumptions made to find the solution are 

S/N ≅ 1, i.e. most of the population still lies on the susceptible compartment at the epidemic end, 

and ���� has a negative exponential shape. This last conjecture has been verified through the 

experimental data for Italy.  

The solution is of the “double exponential” type and it looks like the Gumbel pdf, i.e. ���	�
��
��. 
The good fit with experimental data has been finally checked.  
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