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Abstract

Genomic sequencing’s adoption in public health laboratories (PHLs) for pathogen
surveillance is innovative yet challenging, particularly in the realm of bioinformatics.
Low- and middle-income countries (LMICs) face increased difficulties due to supply
chain volatility, workforce training, and unreliable infrastructure such as electricity and
internet services. These challenges also extend to high-income countries (HICs) where
bioinformatics is nascent in PHLs and hampered by a lack of specialized skills and
computational infrastructure. This underlines the urgency for flexible and
resource-aware strategies in genomic sequencing to improve global pathogen surveillance.
In response to these challenges, the present research was conducted to identify and
analyse key variables influencing the quality and accuracy of amplicon sequence data.
An extensive benchmark dataset was developed that encompassed a diverse collection of
isolates, viral loads, primer schemes, library preparation methods, sequencing
technologies, and basecalling models, totalling 750 sequences. This dataset was analysed
with bioinformatic workflows selected for varying levels of technical capacity. The
evaluation focused on quality metrics, consensus accuracy, and common genomic
epidemiological indicators. The analysis uncovers complex interactions between multiple
parameters in laboratory and bioinformatic processes. emphasising resource-constrained
PHLs, practical guidelines are proposed. Insights from the benchmark dataset aim to
guide the establishment of specific laboratory and bioinformatics protocols for amplicon
sequencing in these settings. The findings can also be used to guide the creation of
specialised training curricula, further advancing genomic equity. The benchmark dataset
itself allows laboratories to customise and evaluate workflows, catering to their distinct
requirements and capacities. Such a holistic approach is imperative to build the
capacity to monitor pathogens worldwide.
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Author summary

This study marks a step toward equity in the field of pathogen genomics, especially for
resource-constrained PHLs. It develops and evaluates a comprehensive amplicon
sequencing benchmark dataset, offering vital insights for PHLs engaged in genomic
surveillance. In particular, the study finds that the choice of basecaller model has a
minimal impact on the quality and accuracy of consensus sequences derived from ONT
data, which is crucial for labs with limited computational resources. It also highlights
the effectiveness of longer amplicons in ensuring consistent coverage and reducing
amplicon dropouts at higher viral loads. While Illumina remains a gold standard for
data quality, the combination of the Midnight primer scheme with ONT’s Rapid library
preparation is shown to be a viable alternative, reducing costs, procedural complexity,
and hands-on time. The study synthesises these findings into practical guidelines to aid
in the development of amplicon sequencing workflows for SARS-CoV-2 with
implications for other pathogens.

Introduction 1

The COVID-19 pandemic has demonstrated the transformative role of genomics in 2

public health, transitioning from a predominantly academic tool to an essential 3

component in pathogen surveillance and public health strategy. The integration of 4

genomic data into public health frameworks has profoundly influenced global and 5

regional surveillance of SARS-CoV-2 [1, 2], improving our understanding of the 6

dynamics of virus transmission [3], evolutionary patterns [4], and the emergence of novel 7

variants [5]. This information has been instrumental in shaping informed and effective 8

public health responses [6]. 9

The World Health Organization’s (WHO) call for widespread genomic sequencing to 10

strengthen disease surveillance highlights its critical role in global health [7, 8]. However, 11

there is a stark contrast in the sequencing capacity between high-income countries 12

(HICs), which report more sequences per capita, and low- and middle-income countries 13

(LMICs), despite the commendable efforts in some African nations [9–11]. Moreover, 14

the urgent demand for genomic sequencing in public health from the pandemic has 15

exposed several challenges in all economic contexts. In LMICs, limited access to 16

genomic technologies, lab infrastructure, supply chain reliability, training of the 17

workforce, and data quality assurance prevail [12, 13]. In contrast, HIC PHLs face the 18

need to expand their bioinformatics personnel and improve their computational 19

infrastructure to handle the surge in genomic data [14]. These opposing sets of 20

challenges emphasise the need for versatile and resilient genomic surveillance strategies 21

that are effective in varying economic and resource contexts. 22

In addressing these challenges, the potential of benchmark datasets in public health 23

genomics, particularly for quality assurance, should be explored. These datasets, which 24

offer high-quality genomic sequences and annotations, are crucial for the validation of 25

bioinformatic tools and methods used in outbreak surveillance [15,16]. By engaging 26

with these datasets, laboratories can critically evaluate and adapt sequencing workflows 27

to their resource availability, establishing nuanced quality control parameters. However, 28

existing benchmark datasets for SARS-CoV-2 often cover only a limited range of 29

variables (e.g. primer scheme, sequencing platform). For example, recent 30

interlaboratory validation studies have highlighted discrepancies in variant calling at 31

mixed allele sites, such as those arising from intrahost variation, attributed to 32

platform-specific bioinformatic workflows [17,18]. The multitude of variables inherent in 33

laboratory and bioinformatic workflows underscores the need for more comprehensive 34

datasets that can more effectively address the wide range of challenges encountered in 35
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diverse global contexts. 36

This study provides a benchmark dataset for SARS-CoV-2 amplicon sequencing, 37

reflecting a wide range of isolates, primer schemes, sequencing technologies, and 38

bioinformatic approaches. Our analysis determines how different laboratory and 39

bioinformatic workflows affect data quality and consistency. The insights gained aim to 40

guide the formulation of evidence-based practices for effective amplicon sequencing 41

across all PHLs, regardless of resource availability. This work supports the advancement 42

of training initiatives around the world, promoting equitable genomic technology 43

proficiency for enhanced global health surveillance. 44

Materials and methods 45

Sample preparation 46

This benchmark dataset’s contrived specimens were sourced from five isolates, courtesy 47

of the Victorian Infectious Disease Reference Laboratory (VIDRL) (S1 Table). Their 48

isolation and preparation adhered to established protocols previously used for 49

SARS-CoV-2 interlaboratory assessments [19,20]. Briefly, the negative sample matrix 50

was prepared by pooling 1 mL of viral transport medium (VTM) from 300 throat and 51

deep nasal swabs, all previously confirmed negative by the Aptima® SARS-CoV-2 assay. 52

This pooled VTM was divided into 10 aliquots and retested to verify negativity. 53

Subsequently, 3 ml of this confirmed negative matrix was mixed with 55 µL of 54

heat-killed viral stock in a sterile 5 mL tube, followed by inverting five times. A 500 µL 55

sample was then transferred to a Panther Fusion specimen lysis tube for analysis using 56

the Hologic Panther Fusion SARS-CoV-2 PCR assay. To simulate varying viral 57

concentrations, the samples were serially diluted 1:10 in triplicate using the remaining 58

negative matrix and quantified with the SARS-CoV-2 PCR E-gene assay. 59

Amplicon sequencing 60

Specimens were processed using multiplexed amplicon sequencing with the ARTIC 61

V4 [21] and Midnight [22] primer schemes. Libraries for Illumina sequencing were 62

prepared using the Nextera XT kit. For Nanopore sequencing, libraries were prepared 63

using the ONT Native Barcoding Kit (EXP-NBD104) (hereafter referred to as Ligation) 64

and the ONT Rapid Barcoding Kit (SQK-RBK004) (hereafter referred to as Rapid). 65

Sequencing was performed on the Illumina iSeq and Nanopore GridION platforms, using 66

MinION flow cells (S2 Table). A breakdown of the entire workflow is depicted in Fig. 1. 67

Bioinformatic workflows 68

Established methods commonly utilised in PHLs were employed for the generation of 69

consensus sequences. Short-read data were processed using iVar software (version 70

1.4.2) [23], where primer trimming and consensus sequence generation were conducted. 71

Parameters were set at a quality threshold of 20 (-q 20), a variant calling threshold of 72

zero (-t 0), and a minimum depth of 10 (-m 10), conforming to standards widely 73

accepted in the field [16]. This approach aligns with web-based pipelines [24] and the 74

methods prevalent in PHLs [1], ensuring compatibility with current practices. 75

Nanopore reads were basecalled using Guppy (v6.2.11) super high accuracy 76

(hereinafter referred to as ’Super’) and fast (hereinafter referred to as Fast) models, 77

representing variability in computational infrastructure. Basecalled, demultiplexed reads 78

were processed using the wf-artic (v0.3.30) workflow [25]. This workflow, available 79

through ONT’s EPI2ME bioinformatics platform, offers both a graphical user interface 80
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Isolate Dilution Primer Scheme Library Preparation Sequencing Platform

N = 5 N = 25 N = 50 N = 150
3X Replicates

N = 450

VIC01
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Fig 1. Sample preparation workflow. Sankey diagram depicting the sample
preparation workflow for the SARS-CoV-2 amplicon sequencing benchmark dataset.
Beginning with five distinct isolates, each undergoes serial dilution before proceeding
through two primer schemes: ARTIC V4 and Midnight. Subsequent library preparation
is conducted using ONT Ligation and ONT Rapid library preparation for sequencing on
ONT MinION, and Nextera XT for the Illumina iSeq platform. Technical replicates
were performed for all samples totaling 450 sequences. Additionally, positive and
negative controls were processed concurrently.

(GUI) and command-line functionality. wf-artic is a derivative of the widely utilised 81

artic pipeline [26], with notable modifications. These include optimised primer 82

trimming for fragmented reads, a common occurrence in transposase-based rapid 83

barcoding systems 84

(https://github.com/artic-network/fieldbioinformatics/issues/99). 85

Performance evaluation 86

Quality metrics were collected using ncov-tools (v1.9.1) 87

(https://github.com/jts/ncov-tools), QualiMap (v2.3) [27], and nextclade 88

(v2.14.0) [28]. Metrics included read count, error rates, base quality, amplicon depth, 89

breadth of coverage, lineage assignment, phylogenetic clustering, and consensus 90

accuracy. Accuracy was evaluated by comparing the variants identified in specimen 91

sequences with those in the primary isolate sequence (Table ??). Within this framework, 92

the variants detected in both the specimen and the primary isolate were classified as 93

true positives (TP). Variants identified in the specimen but not in the primary isolate 94

were considered false positives (FP). In contrast, variants identified in the primary 95

isolate but absent in the specimen were deemed false negatives (FN). The following 96

measures were used for statistical evaluation: 97
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recall =
tp

tp + fn
. (1)

precision =
tp

tp + fp
. (2)

F1 score = 2× (precision× recall)

precision + recall
. (3)

All subsequent statistical analyses were performed in R (v4.3.0) and SciPy (v1.11.4). 98

Results and discussion 99

Benchmark sample characteristics 100

The benchmark dataset was made up of contrived specimens N = 75, including two 101

biological replicates in five lineages and dilutions, and one set of technical replicates 102

performed in triplicate. TCID50 values ranged from 0.01 to 1000 (mean (x̄=129.10); 103

median (x̃=0.05); inter-quartile range (IQR)=9.97) (Fig. 2). Amplicon sequencing was 104

performed using the ARTIC V4 and Midnight schemes, with library preparations from 105

Nextera XT, ONT Ligation, and ONT Rapid kits, resulting in 450 samples for 106

sequencing. Furthermore, ONT sequences were basecalled using Super and Fast models, 107

totalling 750 sequences for comprehensive analysis. 108
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Fig 2. TCID50 estimates for contrived specimen. Quantitative assessment of
SARS-CoV-2 viral titers across various dilutions and isolates prepared for this study.
TCID50 values were extrapolated from Ct values obtained via the Panther Hologic
fusion assay, guided by a predefined standard curve (S1 Fig.
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Basecaller performance 109

Nanopore run summaries 110

Each scheme and library preparation pair were run on an individual MinION flow cell. 111

Initial pore scans ranged from 371 (18.12%) to 1714 (83.70%) active pores (Fig. 3A). 112

Among the Midnight scheme runs, Ligation achieved a basecall pass rate of 74.22% with 113

a total output of 65.92 Mb (Fig. 3B). In contrast, Rapid obtained a pass rate of 64.00% 114

and a total output of 886.17 Mb, reflecting the low initial pore activity (Fig. 3). With 115

respect to ARTIC V4, Ligation showed a notable basecall pass rate of 85.87% with a 116

total output of 712.11 Mb. Rapid had the lowest pass rate of 28.02%. Considering the 117

high initial pore activity, the low pass rate may be indicative of poor library purity. 118
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Fig 3. Comparative characteristics of Nanopore sequencing runs. A)
Distribution of initial pore statuses across multiple runs, reflecting the operational
efficiency of the flowcells used. B) Aggregate basecalling output for each run,
categorized into bases that passed or failed the quality threshold (Q ≥ 7).

Basecaller performance 119

The ONT base caller models were evaluated for average base quality (avgBQ), mismatch 120

count, and consensus accuracy. The Fast model showed a mean avgBQ of 25.09 with a 121

median of 27.90 and an IQR of 10.90 (S2 FigC), while Super had a mean of 24.75, a 122

median of 24.45, and a smaller IQR of 8.00, indicating a more consistent avgBQ. No 123

significant difference in avgBQ was observed between Super and Fast (Wilcoxon rank 124

sum, p = 9.654e-01). Stratification by library preparation (S2 FigB) revealed Rapid 125

preparation improved avgBQ with Super (x̄=20.75) over Fast (x̄=17.78; Wilcoxon 126

rank-sum, p=3.313e-34), unlike Ligation. Primer scheme analysis (S2 FigA) showed 127

that with Midnight, Super’s avgBQ (x̄=25.12) exceeded Fast’s (x̄=23.41; Wilcoxon 128

rank-sum, p=1.160e-04), whereas with ARTIC V4, Fast outperformed Super (x̄=28.43 129

vs. x̄=25.70; Wilcoxon rank-sum, p=6.709e-10). In particular, Midnight with Rapid was 130

the only significant differential, favouring Super (Wilcoxon rank sum, p = 4.308e-26), 131

aligning with the trend that Rapid avgBQ improves when using the Super model. 132

Sparse Midnight with Ligation data likely influenced these scheme-specific divergences. 133

Despite variations in avgBQ across multiple strata, a regression analysis found no 134

significant correlations between avgBQ and mismatches (S2 FigD) or accuracy (S2 135

FigE) for both Fast and Super models. Pearson’s correlation coefficients (r) for Fast 136

showed negligible relationships ((r = -0.03 )) for mismatches and percent consensus 137
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accuracy ((r = -0.03 )). Similarly, Super only exhibited weak correlations ( (r = 0.21 )) 138

for mismatches and precision ( (r = -0.08)). 139

Furthermore, no statistically significant differences were observed in the number of 140

mismatches (Mann-Whitney U test, p = 0.899) or in the percentage of accuracy 141

(Mann-Whitney U test, p=0.896) between the Super and Fast models. In particular, the 142

Fast model, while maintaining comparable performance, offers computational efficiency, 143

making it suitable for resource-limited environments. Subsequent analyses will primarily 144

focus on the Fast model data, aligning with the study’s objectives unless otherwise 145

specified. 146

Benchmark dataset characteristics 147

Taking into account the importance of achieving a breadth of coverage ≥ 90% as a key 148

QC threshold for the subsequent genomic epidemiological analysis [16,18], the study 149

evaluated consensus sequences against this standard. A total of 30 sequences met this 150

criteria (6.67%). The Midnight primer scheme paired with Nextera XT library 151

preparation attained the greatest genome completeness rate of 19.74% (n=15), closely 152

followed by Midnight paired with Rapid, with 17.33% (n=13) (Fig. 4A). ARTIC V4 153

paired with Nextera XT showed comparable results, while ARTIC V4 paired with 154

Ligation lag significantly, with only 2. 67% (n = 2) achieving the required coverage. 155

Both Midnight paired with Ligation and ARTIC V4 paired with Rapid did not meet the 156

≥ 90% coverage threshold. Consequently, further analyses concentrated on the 100 157

dilution series, as only one sample met the breadth threshold in subsequent dilutions 158

(S3 Table). 159

In this narrowed scope of the 100 dilution series, the Pass rate in nextclade QC 160

status became a focal point. Here, Pass was defined as receiving an overall QC status of 161

”good” or ”mediocre”. Both Midnight paired with Nextera XT and ARTIC V4 paired 162

with Nextera XT demonstrated a Pass rate of 73.33%, indicating their efficiency. In 163

contrast, Midnight paired with Rapid outperformed slightly with a Pass rate of 78.57%, 164

whereas ARTIC V4 paired with Ligation exhibited a significantly lower rate of 13.33% 165

(Fig. 4B). 166

Benchmark dataset performance 167

Breadth of coverage 168

The performance of various sequencing schemes and library preparation methods was 169

evaluated, with a focus on the breadth of coverage at different dilution levels. The 170

analyses were concentrated in dilutions 100 and 101 due to the low viral concentrations 171

in the prepared sample. 172

In the 101 dilution analysis, the Midnight scheme paired with Nextera XT showed a 173

high mean coverage of 76.06% (x̃=99.33%; IQR=48.02%), while Midnight with Rapid 174

had a x̄ coverage of 68.87% (x̃=85.12%; IQR=65.14%). ARTIC V4 paired with Nextera 175

XT reported a x̄ coverage of 65.38% (x̃=68.72%; IQR=62.74%), and with Ligation, it 176

had the lowest x̄ coverage of 47.27% (x̃=36.81%; IQR=71.04%). 177

At the 100 dilution, the results differed significantly. Midnight with Nextera XT 178

showed a high and consistent coverage, with a x̄ of 99.51% (x̃=99.52%; IQR=0.04%). 179

Similarly, Midnight with Rapid also demonstrated high coverage (x̄=98.63%; x̃=99.17%; 180

IQR=0.18%) . In ARTIC V4 sequencing, Ligation exhibited a x̄ coverage of 62.85% 181

(x̃=74.40%, IQR=55.46%), while Nextera XT had a mean coverage of 88.69% 182

(x̃=99.03%, IQR=1.23%). 183

The stratified analysis revealed significant variations in the breadth of coverage ≥ 184

90% between different primer schemes and library preparation methods. For example, 185
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Fig 4. Characteristics of consensus sequences. Excluding samples processed with
the the Super-basecalling model, which showed negligible influence on quality control
(QC) metrics, panel A illustrates the breadth of coverage across serial dilutions. Here,
individual data points denote the breadth of coverage for each sample, with boxplots
providing a summary of the overall data distribution. Panel B examines the proportion
of sequences that met the nextclade QC criteria, segregated by library preparation
method and primer scheme, specifically focusing on the 100 dilution subset.

Midnight with Nextera XT achieved 14. 67% high-coverage samples (n = 11/75) in the 186

Nextera XT and Rapid preparations, compared to only 2.67% (n=2/75) high-coverage 187

samples for ARTIC V4 with Ligation. 188

In general, these findings emphasise the significant impact of primer schemes and 189

library preparation methods in achieving the high breadth of coverage needed for 190

accurate genomic epidemiological analysis of SARS-CoV-2. The Midnight scheme 191

consistently showed high coverage across different library preparations, while ARTIC V4 192

displayed more variability. This is in agreement with Freed et al., who found the length 193

of the 1200 bp amplicon of Midnight to be optimal for uniform coverage across viral 194

concentrations [22]. However, it should be noted that Midnight outperformed ARTIC 195

V4 with higher viral loads (∼TCID50 ≥ 5, or, Cτ ≤ 30) (S3 Fig). Furthermore, dilution 196

100 generally led to higher and more consistent coverage, especially with Nextera XT, 197

underscoring the importance of considering viral load when prioritising candidate 198

samples for genomic sequencing. 199

Consensus sequence evaluation 200

Comparison of consensus sequence accuracy metrics across various primer schemes and 201

library preparation methods indicated significant performance differences. The 202

Midnight scheme, when used with Rapid library preparation, exhibited the highest 203

metrics, demonstrating a recall of 59. 27%, precision of 92. 95%, and an F1 score of 65. 204

44%. In contrast, the combination of Midnight with Nextera XT displayed moderate 205

performance, with a recall of 55. 36%, precision of 78. 48%, and an F1 score of 59. 03%. 206

The ARTIC V4 scheme showed more variability in its performance. Together with 207

Ligation, it achieved a recall of 49. 83%, precision of 93. 33%, and an F1 score of 57. 208
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57%. However, when ARTIC V4 was combined with Nextera XT, it resulted in the 209

lowest performance metrics among the evaluated groups, with a recall of 29. 33%, 210

precision of 43. 74%, and a F1 score of 31. 97%. This relatively lower performance of 211

the ARTIC V4 scheme with Nextera XT, particularly in samples with higher Cvalues τ , 212

aligns with the findings of Mboowa et al., who reported that the ARTIC SARS-CoV-2 213

sequencing protocol on the Illumina MiSeq platform was sensitive and accurate to Cτ of 214

24 in Ugandan settings [29]. This context highlights the importance of selecting 215

appropriate sequencing protocols based on the characteristics of the samples being 216

analysed. 217

At the 100 dilution level, the Midnight scheme with Nextera XT achieved the highest 218

scores, achieving perfect recall, precision, and F1-Score. The Midnight scheme with 219

Rapid also showed high efficiency, with recall at 98.91%, precision at 100%, and 220

F1-Score at 99.44%. ARTIC V4 with Ligation showed moderate results (recall = 66. 221

00%, precision = 100%, F1-Score = 72. 75%), with slight improvement when paired 222

with Nextera XT (recall=88.73%, precision=91.67%, F1-Score=90.02%). 223

Combined, these results indicate that the Midnight scheme yields the greatest 224

coverage and accuracy overall. Illumina continues to produce more accurate results, as 225

has been continuously reported [30,31]. However, read accuracy continues to improve 226

with advances in ONT technology and basecalling models [32,33]. 227

Examining lineage assignment and phylogenetic clustering in our study reinforced 228

the importance of stringent QC thresholds in genomic epidemiology. Despite variations 229

in sequencing accuracy between different methods, 100% concordance was observed for 230

both lineage assignment and phylogenetic clustering in all combinations with a coverage 231

breadth greater than 80% (Fig. 5). Similarly, concordance was observed when 232

nextclade designated overall QC status as ”good” or ”mediocre”. All pairs showing a 233

steep decline in concordance when overall QC status was designated as ”bad” (S4 234

Table). 235

Limitations 236

Although it provides valuable information, this study is not without limitations. A 237

primary challenge was the high Cτ values of the specimens, indicative of low viral 238

concentrations. This aspect posed difficulties across all sequencing methods, impacting 239

their efficiency and consequently limiting the number of sequences available for 240

thorough analysis. 241

The study’s challenges with two failed ONT runs, resulting in low yield and quality, 242

limited the comprehensive evaluation of all primer scheme and library preparation 243

combinations. This shortfall could bias interpretations due to missing data points. 244

These issues, characteristic of ONT sequencing’s variable quality and yield [34,35], are 245

particularly pertinent for resource-constrained PHLs in developing effective sequencing 246

workflows. Despite these constraints, the study’s findings are valuable, emphasising the 247

need for adaptable sequencing methodologies to accommodate such inherent 248

uncertainties in genomic sequencing. 249

This benchmark dataset, designed primarily for SARS-CoV-2, presents a flexible 250

model suitable for various pathogens. The increasing use of multiplexed amplicon 251

sequencing in pathogen surveillance, including Dengue [36], Mpox [37], and Plasmodium 252

falciparum drug resistance and analysis of vaccine targets [38], underscores its 253

importance. Our findings reveal a complex interplay of variables in the sequencing 254

process, highlighting the need for meticulous quality assurance. Developing 255

comprehensive benchmark datasets is crucial to ensure data quality in various settings, 256

particularly in resource-constrained PHLs, and promotes genomic equity, thereby 257

significantly improving global health surveillance. 258
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Fig 5. Clustering and characteristics of consensus sequences. Consensus
sequences with breadth of coverage ≥ 80% were selected for phylogenetic analysis in
with ncov-tools. Tip colors denote breadth of coverage, followed by columns of
sequence characteristics. The internal table show variants called colored by allele along
the genome.
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Conclusion 259

The comprehensive evaluation of primer schemes and library preparation methods in 260

this study, using a robust benchmark dataset, offers essential guidance for 261

resource-limited PHLs. Key findings include the minimal impact of basecaller model 262

selection on the quality and accuracy of consensus sequences, which is advantageous for 263

laboratories with limited computational resources. The research further reveals the 264

benefits of longer amplicons at elevated viral concentrations, such as more uniform 265

coverage and reduced susceptibility to dropouts, thus decreasing the need for frequent 266

monitoring and replacement. Although Illumina remains the gold standard for data 267

quality, the combination of Midnight primer schemes with ONT Rapid library 268

preparation achieved comparable metrics. A synthesis of the findings, along with the 269

existing literature, is presented in Table 1. This collated guide is designed to support 270

the development and evaluation of SARS-CoV-2 amplicon sequencing workflows and 271

can be adopted for other pathogens. In general, this study significantly contributes to 272

the advancement of global genomic surveillance equity and the strengthening of public 273

health strategies in the rapidly evolving domain of genomic sequencing. 274
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Table 1. Guidelines for developing amplicon sequencing workflows in
resource-constrained settings. The resource intensity is denoted as high , medium ,
and low .

C
o
st

In
fr
a
st
ru

c
tu

re

W
o
rk

fo
rc
e

Summary

Primer Scheme

ARTIC V4

Short amplicons are more susceptible to
dropouts, affecting sequencing consistency [39].
However, it shows greater sensitivity at high Cτ
values (S3 Fig), ideal for degraded samples or low
viral loads.

Midnight

Amplicons of this length yield uniform coverage,
even at high Cτ values [22, 40]. Longer amplicons
are less prone to dropouts, reducing the need for
frequent monitoring and replacements.

Library Preparation

Nextera XT

Despite its complexity, Nextera XT, an
Illumina-based library preparation method,
provides efficient end-to-end workflows like
COVIDSeq [41]. This feature aids in simplifying
processing from sample to data analysis,
although it demands advanced equipment and
infrastructure.

ONT Ligation

Offers the advantage of longer read lengths,
crucial for structural variation analysis [30], and
increased data yield (Fig 3B) [42,43]. However,
its complex procedure demands higher sample
input and technical expertise.

ONT Rapid

Reduces turnaround time and costs [22], but may
compromise library purity and read quality (Fig
3B), affecting accuracy, especially for
low-frequency variants in low-yield samples.

Platform

Illumina

Gold-standard for accurate, high-throughput
viral sequencing [30], but entails high initial and
operational costs, complex library preparation,
and substantial infrastructure.

Continued on next page
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Table 1 continued from previous page

C
o
st

In
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c
tu
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W
o
rk

fo
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e

Summary

Nanopore

Offers portability, cost-effectiveness, and quick
turnaround [30], suitable for remote
testing [44–46]. Real-time sequencing capability
aids rapid outbreak responses. However,
sequencing data quality varies based on sample
and preparation quality, impacting consistency
(Fig 3B).

Basecalling

Illumina

Conducted on-board, eliminating the need for
external computational power and ensuring
accuracy, but delays data availability until run
completion.

Fast

Provides rapid, near-real-time basecalling even on
standard laptops, producing lower quality reads
that can still yield accurate consensus genomes
with appropriate QC thresholds.

Super

Requires GPU for efficient processing, delivering
higher quality reads. Can be performed on-board
Mk1C, GridION, and PromethION devices,
otherwise needs to be performed post-hoc using
High Performance Computing (HPC) resources.

Analysis

On-board

Illumina’s Dragen platform offers cloud-based
workflows, needing internet and incurring service
fees. In contrast, ONT’s EPI2ME, free and
locally runnable, offers an alternative.

GUI

Sequence QC and assembly often rely on licensed
or fee-based workflows like CLC Genomics and
TheiCov, with varying access requirements. Free
options like Galaxy exist but need internet access
for remote servers.

CLI

Provides detailed control over parameters,
demanding high technical expertise. While recent
developments focus on reducing computational
intensity, CLI typically operates on
high-performance systems and is generally free.
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Supporting information 275

S1 Table. Strains used in this study and their PANGO Lineage with WHO 276

designations, if applicable. Primary specimens were previously sequenced and are 277

available on GISAID. The dilution values represent the mean cycle threshold (Cτ) of 278

the replicates of the specimen. 279

S2 Table. Flow cells used in ONT sequencing experiments. 280

S3 Table. Proportion of samples with coverage ≥ 0.9 stratified by primer scheme, 281

library preparation method, and dilution. Each strata consisted of 15 contrived 282

specimens. 283

S4 Table. Proportion of observations that meet the expected lineage (n = count of 284

meets) by primer scheme, library preparation method, and QC status. 285

S1 Fig. Standard curve used to approximate TCID50 using the Hologic 286

Panther Fusion SARS-CoV-2 PCR assay. 287

S2 Fig. Effect of ONT basecalling models across variables. A) Overall mean 288

avgBQ and average mapping quality (avgMQ) by schemes; B) avgBQ and avgMQ 289

stratified by ONT library preparation and basecalling model; C) Distribution of avgBQ 290

by ONT basecalling model; D) Linear relationship between avgBQ and mismatches by 291

ONT basecalling model; E) Linear relationship between avgBQ and consensus sequence 292

accuracy by ONT basecalling model. 293

S3 Fig. Linear relationship between breadth of coverage and Cτ for two 294

high performing variables. This plot illustrates the relationship between breadth of 295

coverage and Cτ values for the Midnight paired with Rapid (in purple) and ARTIC V4 296

with Nextera XT (in blue). The regression line for the Midnight with Rapid scheme 297

exhibits a slope of -0.0887, indicating a substantial negative correlation where coverage 298

significantly decreases with increasing Cτ values. In contrast, the ARTIC V4 with 299

Nextera XT scheme shows a less steep slope of -0.0575, suggesting a more moderate 300

negative correlation. Notably, the Midnight with Rapid scheme demonstrates greater 301

breadth of coverage when Cτ ≥ 30, whereas ARTIC V4 with Nextera XT is more 302

effective in achieving higher coverage when Cτ < 30. Samples with ’Undetermined’ Cτ 303

values are excluded from this analysis. 304
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