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Abstract  
The emergence of SARS-CoV-2 has had a profound adverse impact on global health and 

continues to remain a threat worldwide. The disease spectrum of COVID-19 ranges from 

asymptomatic to fatal clinical outcomes especially in the elderly population and in 

individuals with underlying medical conditions. The impact of COVID-19 on host immune 

responses and immune cells at the protein and DNA levels remains largely ambiguous. In a 

case-control study, here we explored the impact of COVID-19 on DNA methylation patterns 

in the upper respiratory airway to determine how SARS-CoV-2 infection altered the immune 

status of individuals requiring hospitalization for COVID-19. We performed DNA methylation 

arrays on nasopharyngeal swabs at inclusion/hospitalization as well as 6 weeks post-

inclusion. Our study reveals a distinct DNA methylation pattern in COVID-19 patients 

compared to healthy controls, characterized by 317 779 differentially methylated CpGs. 

Notably, within the transcription start sites and gene body, COVID-19 patients exhibited a 

higher number of genes/CpGs with elevated methylation levels. Enrichment analysis of 

methylated genes at transcription start sites highlighted the impact on genes associated with 

inflammatory responses and immune functions. Some SARS-CoV-2 -induced CpG 

methylations were transient, returning to normal levels by 6 weeks post-inclusion. Enriched 

genes of interest included IL-17A, a pivotal cytokine implicated with inflammation and 

healing, and NUP93, associated with antiviral innate immunity. Further, six genes in our data 

set, OAS1, CXCR5, APP, CCL20, CNR2, and C3AR1, were found in enrichment analysis with 

previous COVID-19 studies. Additionally, RNAse1 and RNAse2 emerged as key regulators, 

while IL-18 played a role in various biological processes in COVID-19 patients. Overall, our 

results demonstrates that COVID-19 has a major impact on the upper airway by modifying 

the methylation pattern of many genes and this could have implications for the conditioning 

of the airways and how the individual response to future airway infections. 
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Introduction 

The rapid spread and consistent evolution of SARS-CoV-2 variants continues to widen the 

magnitude of health threat inflicted by COVID-19 on humankind. Since  the onset of the 

COVID-19 pandemic in 2020, substantial advances have been achieved in the realm of 

therapeutics, together with the development of a wide array of vaccines to combat the  

SARS-CoV-2  pandemic 1.  Despite increased control measures, the world has witnessed an 

high death toll due to SARS-CoV-2  infection largely among non-vaccinated individuals 2. 

Furthermore, the spectrum of symptoms and the long lasting negative effects among people 

with severe COVID-19 3, 4 together with the viral evolution leading to possible new SARS-

CoV-2  variants of concern 5, 6, continue to pose formidable challenges to effective disease 

prevention. The severity of COVID-19 has been linked to dysregulation of immune responses 

induced by an exaggerated and prolonged inflammation 7. Hence, a thorough understanding 

of the nature of immune responses elicited against SARS-CoV-2 is of paramount importance 

and relevance.  

 

A large proportion of COVID-19 research has been devoted to phenotype, proteomic 8, 9 

and/or transcriptomic studies 10, 11, 12, which has given vital information on the dynamics of 

the immune cell landscape heretofore. In a previous study, we revealed persistent 

alterations within the monocytic, dendritic cell, and T cell compartments induced by SARS-

CoV-2 infection, which manifested even six to seven months post-hospitalization 13, 14. This 

underscores the enduring impact of the virus on immune cell dynamics, highlighting the 

necessity for continued exploration into the intricacies of the immune responses against 

SARS-CoV-2. 

 
More recently, there have been multiple epigenetic studies aimed to unravel the 

complexities of SARS-CoV-2 pathogenesis and its enduring impact on the host 15, 16, 17.  Of the 

various epigenetic modifications, DNA alterations, particularly methylation, exhibit 

remarkable stability, and form an integral component of a cell's programming, persisting 

throughout its life cycle and divisions. The activation or silencing of certain genes by DNA 

modifications is one of the immune regulatory mechanisms implicated in the control of 

infection and attrition of inflammatory responses to avoid tissue damage in the host 18. The 

regulatory influence of DNA methylation extends to transcriptional accessibility of genes and 
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the subsequent effects, i.e., activity and expression, depending on the region in the 

genome/gene affected 19, 20. Many biological and environmental factors appear to influence 

the DNA methylation patterns such as age, biological sex, and body mass index (BMI) 21, 22. 

Likewise, infections, both viral and bacterial, can elicit rapid epigenetic alterations, such as 

DNA methylation, and thereby regulate gene expression in cells 5, 6, 23.  

  

Blood DNA methylation patterns in asymptomatic and mild COVID-19 cases differed from 

patterns found in healthy individuals, and genes such as Wnt, and signaling pathways such as 

muscarinic acetylcholine receptor signaling, and gonadotropin-releasing hormone receptor 

pathways were enriched in COVID-19 24. Unique SARS-CoV-2-specific methylation patterns 

were found in COVID-19 patients compared to pre-pandemic healthy controls and to 

patients with other upper respiratory infections due to rhinovirus and influenza B virus 25.  In 

addition, the immune functions in SARS-CoV-2-infected individuals are also affected by DNA 

methylation, and certain methylation profiles have been linked to disease severity, such as 

respiratory distress and intensive care unit (ICU) admission 25, 26. 

 

COVID-19 patients with acute respiratory distress syndrome (ARDS) had 14% differently 

methylated genes in the promoter regions compared to healthy controls. These promoter 

regions regulate genes involved in regulating immune pathways, such as IFN-γ and IFN-α 27. 

In addition, higher methylation, i.e., hypermethylation of genes in the ‘apoptotic execution 

pathway’ has been linked to higher mortality risk in COVID-19 patients 27. Furthermore, 

several DNA methylations occurred in the inflammasome component absent in melanoma 

(AIM) gene during COVID-19 progression, which were linked to heightened immune 

responses among patients who recovered from SARS-CoV-2 infection 27.  

 
Several epigenetic studies have investigated the methylation patterns in blood samples of 

individuals with mild to severe COVID-19 24 25, 26 27. Given that SARS-CoV-2 infection is 

initiated in the upper airway, establishing a microenvironment involving the respiratory 

airway mucosa, and that immune cells of the airway mucosa considerably differ from those 

distributed in the blood, we aimed to explore the methylation status in the upper respiratory 

airway using nasopharyngeal specimens obtained from hospitalized patients with moderate 

to severe COVID-19. We observed a significant difference in the methylation patterns among 
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COVID-19 patients at hospitalization/inclusion and at 6 weeks post-inclusion relative to 

healthy controls. We found that several genes were differentially methylated revealing 

significance at hospitalization as compared to 6 weeks post-inclusion. Unsupervised 

hierarchical clustering of DNA methylation β-values at both overall and transcription start 

sites revealed distinct differences between COVID-19 patients and controls. Enrichment 

analyses of methylated genes at transcription start sites in COVID-19 patients highlighted 

impacts on inflammatory response and immune processes. Some SARS-CoV-2 -induced CpG 

methylations were transient, reverting to normal levels within 6 weeks post-infection. At 

inclusion, certain unique gene ontology biological processes were observed, including 

response to stimulus and cellular process. Notably, the pro-inflammatory factor IL-17A was 

enriched at inclusion and the antiviral NUP93 factor was enriched at 6-week post inclusion. 

RNAse1 and RNAse2 emerged as top regulators as well as IL-18, a vital factor that influences 

various biological processes in COVID-19. This is, to our knowledge, the first instance of 

investigation of DNA methylation patterns in the nasal area in COVID-19 patients, providing 

new insight to immune events in the upper airways during COVID-19. 
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Materials and methods 

Participants and sample collection   

The study was approved by the Swedish Ethical Review Authority (Ethics No. 2020-02580) 

and was carried out in accordance with Good Clinical Laboratory Practices, the International 

Conference on Harmonization Guidelines, and the Declaration of Helsinki. The patient cohort 

included hospitalized COVID-19 patients (N=27; age range 26-91 years), and SARS-CoV-2- 

negative healthcare workers as healthy controls (HC) (N=12; age range 26-62 years), which 

were selected from recruited individuals previously described 13, 14. All individuals provided 

written informed consent prior to enrolment. The COVID-19 patient clinical data and 

additional information are described in Table 1.  

 
COVID-19 disease score was defined according to the criteria advocated by the National 

Institutes of Health 4, 28, and slightly modified based on the requirement for supplementary 

oxygen and the highest level of care required. Patients in this cohort were classified mostly 

as moderate to severe based on the above criteria (Table 1). Nasopharyngeal specimens 

were collected at inclusion (baseline) (timepoint 1) and at 6 weeks post-inclusion (timepoint 

2). The samples were transferred into microfuge tubes and centrifuged at 1800 RPM for 6 

minutes at 4°C, and the pellets were frozen at -80°C for the extraction of genomic DNA 

(gDNA) for later use in the experiments. 

 

Genomic DNA isolation  

Genomic DNA (gDNA) was isolated using the Qiagen AllPrep DNA/RNA Mini kit (Qiagen) 

according to the manufacturer’s instructions. Briefly, 600 µl of lysis (RLY) buffer was added 

to thawed pellets and mixed. The lysate was transferred to the AllPrep DNA column and 

centrifuged at 11000 g for 1 min. The column was washed with 500 µl AW1 buffer 

(centrifuged at 11000 g for 1 min) and washed with 500 µl AW2 buffer. Finally, the columns 

were placed in 1.5 ml microfuge tubes, and 30 µl extraction buffer (EB) was added for a 1 

min incubation, before eluting the gDNA by centrifuging at 11 000 g for 1 min. The elution 

step was repeated with the eluant to increase the gDNA concentration.  

 

Quantification of genomic DNA 
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The quality and concentration of the genomic DNA was measured using the broad range (BR) 

dsDNA Quantitation Qubit assay (Invitrogen, USA) according to the manufacturer’s 

instructions. Briefly, the samples were prepared with the Qubit working solution (Qubit 

reagent diluted 1:200 in Qubit buffer). The standards as well as nasopharyngeal samples 

were prepared in working solution and were vortexed for a few seconds before incubation 

for 2 min at room temperature. The amount of genomic DNA was then quantified by 

measuring the fluorescence with the Qubit™ dsDNA BR Assay Kit (Invitrogen, USA) on a 

QubitTM 2.0 Fluorometer (InvitrogenTM by Life TechnologiesTM, Thermofisher, USA). 

 
Sample preparation for DNA methylation microarray  

Quantified genomic DNA samples (69-552 ng) were transported to the Bioinformatics and 

Expression Analysis Core facility (BEA) based at the Karolinska Institute, Stockholm, Sweden. 

Here, the samples were subjected to bisulfite conversion using the Zymo Research EZ-96 

DNA Methylation™ Kit (D5004). The samples were quantified with the Qubit assay, and 70-

250ng was used as input for the Illumina Infinium Methylation EPIC 850K BeadChip array 

(Illumina Inc., San Diego, USA) following the protocol outlined by Illumina. QC, normalized 

data, and IDAT files were obtained and used for further analysis. 

 

 

Data processing and statistical analysis: Differential methylation analysis 

The IDAT files from Illumina® HumanMethylation EPIC arrays were analyzed using R 

(v4.2.1)32 and Bioconductor packages (v3.16), Chip Analysis Methylation Pipeline (ChAMP)33 

analysis package (v2.28.0). The data initially contained 865918 probes. The files were pre-

processed to filter out CpGs with detection p value >0.01 (removing 32515   probes), with a 

bead count of <3 in at least 5% of samples (removing 5192 probes), all non CPG probes and 

only keeping CpGs (removing 5192 probes); those with SNPs 30 (probes that align to multiple 

locations as identified in Nordlund et al 31; and finally, filtering probes located on X and Y 

chromosomes. 715410 probes and all 48 samples were left remaining for analysis. 

. A quality assessment on the filtered data was performed and using beta-mixture quantile 

normalization (BMIQ) function and normalized dataset was calculated. The β- and M-values 

for each CpG per sample was estimated in a distribution plot. To reduce the batch effect in 

relation to biological variation on the data matrix, deconvolution (singular value 
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decomposition, SVD) was performed on the normalized data using runCombat function and 

corrected against the confounding factors lactate dehydrogenase (LDH), and BMI. The 

differential methylation analysis was done on the corrected data with the linear modeling 

(lmFit) and eBayes algorithm between two sample groups. The differentially methylated 

CpGs were considered significant at the Bonferroni-Hochberg (BH)-corrected p value (p 

valueBH) <0.05. The hierarchical cluster analysis was performed using the Euclidean distance 

calculation within the ape package  34(v5.7). The principal component analysis was 

performed using FactoMineR 35(v2.8) and factoExtra 
36 (v1.0.7) packages with in house R 

script. 

 

Downstream analysis: Feature analysis of differentially methylated CpGs 

The resulted differentially methylated CpGs were annotated using AnnotationDbi package 37 

(v1.60.2) (Human Genome version 38) using the in house script to visualize the genomic 

distribution. The volcano plot displayed the distribution of hypermethylated and 

hypomethylated (log2FC cut-off <0.3) significant differentially methylated CpGs (p valueBH 

<0.05) using in house R script with ggplot2 package 38, 39 (v3.4.2). The cut-off score was 

calculated using the β-value distribution of all samples with mean±2SD. Heatmaps were 

calculated using in-house R script with Complex. Heatmap package 40(v2.14.0) from 

individual β-value. The differentially methylated CPGs result was filtered based on the 

genomic location, selecting the transcription start site (TSS) regions (TSS200 and TSS1500) 

and gene body regions using log2FC cut-off score of >0.3 for hypermethylated and <0.3 for 

hypomethylated and genomic location. Separated heatmaps were created to visualize the β-

value distribution. The differentially methylated CpGs were annotated with their respective 

official gene symbols.   

Enrichment analysis was performed using the Metascape database 

(http://metascape.org){Zhou, 2019 #3} to determine any biological significance of the 

pooled 1000 differentially methylated genes, i.e. top 500 hypomethylated and 500 

hypermethylated genes, in the transcription start site regions TSS1500 and TSS200 in the 

COVID-19 patients. Further analysis was performed using the CORONASCAPE database 

(https://metascape.org/COVID/){Zhou, 2019 #3} to identify any similarities between our 

data, i.e. the pooled 1000 differentially methylated genes, and differentially methylated 

genes from other COVID-19 datasets. The Ingenuity Pathway Analysis (IPA) software was 
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used for pathway, top regulator analysis and network summary of the differently methylated 

genes in the TSS1500 and TSS200 regions. The data set included 5077 mapped ID that gave 

2831 analysis-ready molecules with log FC -0.5503 to 0.5475.    

Statistical analysis 

All differences with a p valueBH[<0.05 were considered significant, if not stated otherwise. 

We calculated family-wise error rate (FWER) using the Bonferroni-Hochberg (BH)-correction 

method. All analyses were performed using R (v4.2.1) with the aforementioned packages.  
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Results 

Patients and clinical characteristics 

To assess the DNA methylation profiles in the upper respiratory airways of hospitalized 

COVID-19 patients (N=27), a total of 36 nasopharyngeal swabs were collected, with 21 

samples from hospitalization/inclusion (T1), and 15 samples 6 weeks post-inclusion (T2). In 

addition, nasopharyngeal swabs from healthy subjects (N=12) were used as controls (Figure 

1). Participants were recruited between July 2020 to October 2021, and represented 

hospitalized patients with moderate to severe COVID-19 manifestations, as determined by 

the Guidelines of the National Institutes of Health, based on the maximum oxygen required 

and the highest level of care needed 28. At this time the following SARS-CoV-2 strains 

circulated in Sweden: alpha, beta, gamma, and delta. Of the total patients, 25.9% had at 

least two of the following underlying conditions, i.e., cardiovascular disease, pulmonary 

disease, and diabetes mellitus. The median number of days with symptoms prior to inclusion 

into the study was nine (Table 1). Nasopharyngeal swabs (N=12) were obtained from healthy 

controls at enrollment. Standard clinical and blood parameters were assessed at inclusion 

for COVID-19 patients (Table 1) as well as controls. 

 

Raw DNA methylation data revealed high quality and beta distribution 

Genomic DNA (gDNA) from nasopharynx samples were prepared for bisulfite conversion, 

and we performed a DNA methylation array (Illumina Infinium Methylation EPIC 850K). The 

data were processed and filtered with bioinformatics analysis to identify methylation 

patterns and determine their biological significance (Figure 1). Initial quality control 

assessment of the raw methylation data indicated a good continuous probability 

distribution, i.e., beta distribution, between samples (Supplementary Figure 1A), and 

separation of healthy control samples and inclusion and 6-week time-points samples from 

COVID-19 patients in the multidimensional scaling plot (Supplementary Figure 1B). Lactate 

dehydrogenase and BMI were estimated as significant components of variation/confounding 

factors in the methylation dataset, and the effect of these factors were corrected using 

singular value decomposition, i.e., deconvolution. LDH was disregarded due to being a 

patient-related factor, and the dataset was adjusted for the BMI (Supplementary Figure 1C). 

  

COVID-19 patient DNA methylation pattern differs from that of healthy controls   
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For the identification of differentially methylated CpG sites, an assessment of the samples 

from COVID-19 patients, both at inclusion and 6-week timepoints, and healthy controls 

samples was performed. A total of 317779 statistically significant differentially methylated 

CpGs were identified in the pooled COVID-19 patient inclusion (T1) and 6-week timepoint 

(T2) samples as compared to healthy controls. Inclusion versus control samples showed 

321428 significant differentially methylated CpGs, and 6-week timepoint samples versus 

control samples gave 235708 significant differentially methylated CpGs. Hierarchical 

clustering was performed to visualize global correlation among T1, T2, and healthy control 

samples. Two major clusters obtained from the analysis showed a cluster with healthy 

controls and a cluster with patients, which indicated a general separation between COVID-19 

patients and healthy controls (Figure 2A). Principal component analysis, an unsupervised 

learning method, to show variation in the data sets revealed a clear separation of 

hospitalized COVID-19 patients from healthy controls, revealing a highest variation in data 

set (PC1) i.e., 32.2% and second most variation (PC2) of 8.8% (Figure 2B). There were 

exceptions with two patient samples at inclusion (P02, and P03) and three samples at the 6-

week time point (P07, P09, and P24), which clustered with the healthy controls, as well as 

one healthy control sample (HC01) that clustered with COVID-19 patients. The reason for 

patients clustering with healthy controls or overlap of some patient samples with healthy 

controls could be the underlying conditions that had led to moderate/severe COVID-19 that 

was not linked to altered airway/lung pathology or medications that protected the airway 

compared to the other COVID-19 patients. The latter appears to be the case for all patient 

outliers besides one since they had been on anti-inflammatory medication for chronic 

pulmonary conditions. Regarding the healthy control individuals that clustered with the 

patient samples, we could not find an obvious explanation from the clinical data/history.  

 
Majority of the COVID-19 altered methylated CpGs remained stable over 6 weeks, but a 

substantial fraction was found only at inclusion  

Next, we compared the difference and overlap in CpGs between inclusion versus healthy 

controls (T1-HC), and between 6-week timepoint versus healthy controls (T2-HC). A unique 

set of 94382 differentially methylated CpGs were found in the T1-HC that did not exist in the 

T2-HC, and a unique set of 8609 differentially methylated CpGs in the T2-HC that was not 

found in the T1-HC (Figure 3A), indicating that most of the differentially methylated CpGs 
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still persisted more than 6-week post infection. This suggests a major difference in DNA 

methylation patterns between COVID-19 patients and healthy individuals, and that most of 

the alterations in CpG methylation remained for at least 6-week post infection (Figure 2 and 

3A).  Based on these findings, we used the pooled inclusion and 6-week timepoint samples 

versus control samples for additional analysis.  

Next, we identified the amount of significant differentially methylated CpGs in the various 

genomic regions, i.e., gene body (body), intergenic region (IGR), exon boundaries (ExonBnd), 

1st Exon, 3’UTR, 5’UTR, and the transcription start sites (TSS) 1500 and 200, in COVID-19 

patients versus HCs (Figure 3B). The greatest number of differentially methylated CpGs in 

the different genomic regions appeared in the body region (Figure 3B). There were no major 

differences in the levels of the significant differentially methylated CpGs in the different 

genomic regions between groups, although in general, the 6-week post samples had less 

significantly differently methylated CpGs in the different regions compared to the inclusion 

timepoint (Figure 3B).   

 

Differently hypomethylated and hypermethylated sites/genes with highest significance 

diverge in the COVID-19 patients between the inclusion and 6-week time points  

Methylation can affect gene transcription either by enhancing, decreasing, or silencing 

transcription 19, 20. Hypomethylated and hypermethylated CpG sites specific for COVID-19 

were identified based on log2FC values with a set cut-off ±0.3 and p valueBH <0.05 and the 

top 20 differentially hypomethylated- and hypermethylated CpG sites/genes were 

emphasized (Figure 3C, Table 2). The hypermethylated genes with the lowest -log10adjusted 

p value included, SGIP1, SH3GL3, RAD54L2, TMEM63C, and PACRG, associated with the 

differentially methylated CpGs for hospitalized COVID-19 patients at inclusion and at 6-

weeks post-inclusion versus HCs, while the top five hypomethylated genes were, TMEM2, 

MECOM, XBP1, DLX5, and GRP77 (Figure 3C, T1 & T2 vs HC). The hypermethylated genes 

with the lowest -log10 adjusted p value at inclusion (T1) encompassed SPOCK3, SMC6, 

SHANK2, RAD54L2, and RUNX1T1, and top hypomethylated genes, DLX5, TMEM2, ZNF664-

FAM101A, PLEKHM3, MECOM (Figure 3C). By 6-weeks post inclusion (T2), COVID-19 

hypermethylation of genes with lowest -log10 adjusted p value included FBN1, TSHZ2, 

GNA13, CRYL1, and EEPD1, and hypomethylated genes included TNFAIP8, PARL, NISCH, 

INPP5D, and NOD2 (Figure 3C). There were no overlapping methylated genes when 
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comparing genes with the highest p valueBH between inclusion and 6-weeks post-inclusion 

(Figure 3C, T1 vs T2) in COVID-19 patients versus healthy controls. Of note, there was a 

remarkable decline in the hypomethylated and hypermethylated genes’ -log10 adjusted p 

values between the inclusion and 6-weeks post-inclusion, with a decline from ~5 to 3, 

indicating that the altered CpG methylation induced by COVID-19 was getting restored to the 

levels found in healthy, i.e., as before the infection. When exploring the top 

hypermethylated genes according to the highest fold change in the patients at inclusion 

compared to healthy controls we found BAG3, EHF, FAM178B, TMX2-CTNND1, and MCC, and 

for top hypomethylated genes we found NISCH, PMP22, SFMBT2, FAM124A, and FCER1G 

(Supplementary Table 1). By 6 weeks post-inclusion, COVID-19 hypermethylation of genes 

with highest fold-change compared to healthy controls included RALGAPA2, PDGFD, 

C1orf228, MCC and FAM178B, while the top five hypomethylated genes were LOC400867, 

TNFAIP8, GIT2, CANX and PARL (Supplementary Table 1). 

 

Different methylated CpGs patterns in COVID-19 patients versus healthy controls  

For a snapshot of the overall pattern of differently methylated CpGs covering all the 

different genomic regions in hospitalized COVID-19 patient at T1 and T2 versus HCs, a 

heatmap with hierarchical clustering of the DNA methylation beta-values was constructed 

with top 20000 methylated CpGs. This showed a clear difference in methylation between the 

COVID-19 patients and controls (Figure 4). Following this, we focused on the specific 

methylation patterns for the transcription start sites TSS1500 and TSS200, as methylations in 

these areas are good predictor of activation versus silencing of genes 41.  The DNA 

methylation beta-value was analyzed using hierarchical clustering with the top 1000 

differentially methylated CpGs and the distribution of other associated parameters, 

timepoint, age and biological sex; and clinical parameters associated with disease, i.e., LDH 

and C-reactive protein (CRP) (Figure 5). There was a distinct pattern of differently 

methylated CpGs in the TSS1500 and TSS200, but we found no specific relation to age or 

biological sex, CRP, or LDH, with the pattern of differently methylated CpGs (Figure 5). The 

gene body methylation had similar patterns as seen for transcription start sites 

(Supplementary Figure 2). Of note, the COVID-19 patients had, within the selected 

transcription start sites TSS1500, TSS200, and the gene body, more genes/CpGs with high 

beta values than the healthy controls, i.e., higher level of methylated CpG sites. 
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Enrichment analysis of genes methylated in the transcription start sites in COVID-19 

patients indicated an effect on genes involved in inflammatory and immune responses  

To investigate the biological significance of methylated genes in COVID-19 patients, we 

pooled the top 500 hypomethylated and 500 hypermethylated transcription start site 

regions TSS1500 and TSS200 encoding genes and performed an enrichment analysis using 

Metascape database (http://metascape.org) 42. The top enriched ontology terms included 

regulation of cell activation, leukocyte activation, and inflammatory responses (Figure 6A), 

and top biological processes that included multicellular organismal processes, immune 

system process, and response to stimulus (Figure 6B). The large number of unique 

differentially methylated genes in the TSSs between the inclusion and 6-week post timepoint 

(T1 & T2) (Figure 3A, Supplementary Table 2), showed that the initial effects of the viral 

infection and immune responses occurring early during COVID-19 (T1) did not persist at the 

later stage (T2). This finding indicates that some of the CpG methylations in the TSSs induced 

by COVID-19 were short-term. Further enrichment analysis of the unique genes affected at 

T1 was performed, using the top 50 differently methylated CpGs at the TSSs, according to 

adjusted p value, and fold-change. For T1 versus HC the top-level gene ontology biological 

processes were Response to stimulus and Cellular process (adjusted p value), whereas the 

top-level gene ontology biological processes according to fold-change differences were 

responsible for stimulus and growth (Figure 8D).  

 

Enrichment analysis in DisGeNET also highlighted delayed myelination, which is commonly 

caused by viral infections 43. Whilst looking at the enrichment according to fold-changes, we 

found Immune system process and Localization to be the top-level gene ontology biological 

processes, and an enrichment for infective cystitis, which has been reported to occur in 

some COVID-19 patients46. Further enrichment analysis in TRRUST44 indicated the top 

predicted biological processes for T2 versus HCs, as Multicellular organismal process and 

Negative regulation of biological process (adjusted p value), and an enrichment of the 

regulation by the tumor suppressor gene TP53. Of note, there was an enrichment for the 

regulation by IRF-1, highlighting the key role of interferons in COVID-19 47. The two genes of 

interest that were enriched included at T1  IL-17A, a key cytokine involved in inflammation 

and healing 48, and NUP93 at T2, which is associated with antiviral innate immunity 49.  
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RNAse1 and RNAse2 were identified as top regulators, and IL-18 was involved in several 

biological processes in COVID-19 patients   

To identify activated and inhibited canonical pathways, and to identify top regulator 

networks based on all significant hypomethylated and hypermethylated transcription start 

site regions encoding genes, we used Ingenuity Pathway Analysis (IPA) (Figure 7). The 

canonical pathways predicted to be activated included PI3K/AKT Signaling, Antioxidant 

Action of Vitamin C, Th2 Pathway, Natural Killer Cell Signaling, and Neuroinflammation 

Signaling Pathway. The pathways predicted to be inhibited included S100 Family Signaling 

Pathway, Leukocyte Extravasation Signaling, Phospholipases, and ERK/MAPK Signaling 

(Figure 7A). RNAse1 and RNAse2, hydrolytic enzymes catalyzing degradation of RNA, were 

identified as top regulators in the regulator network with the highest consistency score 

(Figure 7B). RNAse1 and RNAse2 regulate factors such as pro-inflammatory and anti-

inflammatory cytokines leading to the homing and chemotaxis of several immune cells and 

cell death. Next, we explored another top regulator network, with four regulators, i.e., DNA 

methyltransferase 3 alpha (DNMT3A), an enzyme important for methylation; Ubiquitin 

specific peptidase (USP22), a ubiquitin-specific processing protease; the enzyme Caspase 4 

(CASP4), autophagy-pyroptosis-related function; and Colony Stimulating Factor 3 (CFS3), 

cytokine controls the production, differentiation, and function of granulocytes. These 

regulators altogether contribute to increased interactions with multiple enzymes, and 

transmembrane proteins, which have an effect on functions relating to degranulation of 

phagocytes and myeloid cells (Figure 7C). A summary of the major biological pathways and 

factors demonstrating the role of IL-18, an important pro-inflammatory Th1 polarizing 

cytokine linked to various processes including chemotaxis and migration of leukocytes, 

including neutrophils, and degranulation (Figure 7D). IL-18 plays a major role in various 

infectious, metabolic, and inflammatory diseases by inducing IFN-γ thereby promoting Th1 

cell activation and enhancing the cytotoxic activity of CD8+ T cells and natural killer (NK) cells 

50. 

 
Enrichment analysis match of genes methylated in the transcription start sites in COVID-19 

patients versus healthy controls compared to other COVID-19 datasets  
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To examine the similarities with other COVID-19 datasets, we performed an enrichment 

analysis match of the top 1000 affected genes, consisting of pooled top 500 hypomethylated 

and 500 hypermethylated transcription start sites regions encoding genes, found in our 

dataset (Figure 8). Several COVID-19 datasets in the CORONASCAPE database 42 were 

predicted to match, and five datasets were selected based on gene overlap and adjusted 

logP values. All datasets were from transcriptomic studies on blood and airway samples from 

SARS-CoV-2 infected patients and in vitro SARS-CoV-2 infected cell line such asprimary 

human airway epithelial and hypotriploid alveolar basal epithelial cells. There was an overlap 

in genes between all datasets and many genes were found in several of the datasets (Figure 

8A). Of note, there were many genes unique to our data set (Figure 8A). Our DNA 

methylation data shared enrichment of six genes, i.e., OAS1, CXCR5, APP, CCL20, CNR2, and 

C3AR1 with the other datasets (Figure 8B), of which several have been defined in previous 

COVID-19 studies 51, 52, 53, 54. The enriched top terms defined by the analysis match included 

regulation of cell activation, leukocyte activation, inflammatory response, regulation of 

immune effector processes, and neutrophil degranulation (Figure 8C). Furthermore, the top-

level biological processes included multicellular organismal processes, immune system 

process, response to stimuli, and regulation of biological processes (Figure 8D). Taken 

together, our findings clearly indicate a multilayered activation of responses by SARS-CoV-2 

infection. 
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Discussion 

Severe infections and conditions will alter the DNA methylation pattern in cells and tissues. 

Here were nasopharyngeal samples from patients hospitalized with COVID-19 used to 

identify SARS-CoV-2-induced epigenetic signatures by profiling the DNA methylation patterns 

at inclusion/hospitalization as well as 6-weeks post-inclusion. We utilized upper respiratory 

airway samples to explore the effect on the airway as there is evidence that epigenetic 

alterations that occur in one location or cell type cannot directly be extrapolated for another 

cell/tissue 55. There was a clear separation in the DNA methylation pattern in the airway 

samples between COVID-19 patients and healthy controls. The high impact exerted by 

COVID-19 on the DNA methylation pattern in the airway, is in line with other studies that 

explored this in blood samples from COVID-19 patients 15, 24, 25, 26, 27, 56. Interestingly, patients 

who had undergone anti-inflammatory treatment such as oral/nasal inhalation 

glucocorticoids for previous/chronic airway manifestations had a different DNA methylation 

pattern and clustered with healthy controls in the PCA. This suggests that the initial 

inflammatory response played a major part of the imprinted DNA methylation pattern in the 

airways and that this did not occur to the same degree among individuals on anti-

inflammatory treatment due to less inflammation in the airway. Another explanation could 

be that the anti-inflammatory drugs alter the DNA methylating effects exerted by SARS-CoV-

2 on the airway and the local infiltration of immune cells. 

We did not see a clear distinction in DNA methylation between COVID-19 patients with 

moderate and severe disease when exploring hierarchical clustering. Separate DNA 

methylation patterns have been demonstrated between mild and severe COVID-19 57, 58.We 

found some evidence reflecting a restoration of the epigenetic profile in the patients, but 

even if certain of the COVID-19-induced hypomethylated and hypermethylated CpGs/genes 

returned to levels found in healthy, there was still major lasting effects on the DNA 

methylation pattern in the COVID-19 patients. One explanation for the changes in the airway 

methylation patterns could be altered cell compositions, such as infiltration of immune cells, 

proliferation of tissue resident cells and damaged epithelia at the initial phases or during 

active infection versus a more healing phase a few weeks after COVID-19 59, 60.  

 

It’s evident that some of the differently methylated genes that were present only at inclusion 

in the airway samples, but not at the 6-week post inclusion time point, such as OAS1 and 
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OAS3 were part of the innate type 1 interferon responses to viruses. These genes have been 

confirmed to be affected in COVID-19 patients and are linked to clinical outcome 10, 25. In 

blood samples, others have shown that some DNA methylation alterations are present one 

year after SARS-CoV-2   infection in hospitalized patients 61. Genome areas with genes and 

CpGs that returned to normal levels were connected to viral responses such as type I IFN 

signaling, whereas areas associated with cell activation, leukocyte activation, lymphocyte 

activation, immune system remained altered over time 61. Our findings are in line with these 

previous findings in blood61 with regards to DNA methylation returning to normal levels in 

genes involved in viral responses such as the OAS1, whereas genes involved in e.g. leukocyte 

activation, and immune system remained altered. 

  

We saw alterations in DNA methylation in all genomic regions in the COVID-19 patients, but 

focused on the deeper analysis of the DNA hypermethylation and hypomethylation patterns 

in the transcription promotor regions as this more easily can be translated to silenced and 

activated genes, respectively 62. Further, a previous study found that differential patterns of 

COVID-19 DNA methylation in blood occurred primarily in the promoter regions of immune-

related genes 27.  

 

The top enriched ontology and biological processes predicted by the pathway analysis in the 

COVID-19 data set included regulation of cell activation, leukocyte activation, inflammatory 

responses, leukocyte migration, immune system process, and response to stimuli, which is in 

accordance with previous COVID-19 studies 25, 63. Signaling pathways predicted to be affected 

included the S100 signaling pathway and PI3K/AKT Signaling. S100 family genes have been 

identified as prognostic markers of severe COVID-19 64 and the PI3K/Akt intracellular 

pathway might be an important signaling pathway in the cytokine storm induced by SARS-

CoV-2 and also in COVID-19 coagulopathies 65. 

 

The endogenous antimicrobial polypeptides RNAse1 and RNAse2 were defined as top 

regulators in the COVID-19 DNA methylation data set. Zechendorf et al reported that 

elevated RNASE1 levels were linked to renal dysfunction among ICU-admitted COVID-19 

cases 66. Others found increased RNAse2 levels in COVID-19 patients with critical disease 67. 

The role(s) RNAses may play in SARS-CoV-2 infection is largely unknown. RNASEs might play a 
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role regulating the innate immune response activated by SARS-CoV2 by recognizing and 

degrading single- and double-stranded RNA molecules and thereby limiting the TLR3 and 

TLR7/8 ligands, i.e., extracellular viral RNA, released by Infected dying cells 68    

 

An analysis of the major biological pathways and factors demonstrated a key role for IL-18, 

an important proinflammatory cytokine induced by IFN-γ and linked to various processes 

including chemotaxis and migration of leukocytes, inflammasome activation, pyroptosis and 

cytotoxic activity of CD8+ T cells and NK cells 69. IL-18 has been shown to play a major role in 

various infectious, metabolic, and inflammatory disorders 50. COVID-19 with elevated levels 

of IL-18 has been associated with increased severity and mortality 70, 71. Furthermore, IL-18 

SNPs/mutations, such as IL18-105G>A, have been shown to be protective against severe 

COVID-19 72.  

 
Whilst exploring some of the other genes affected by COVID-19, we found that the IL-10 

gene was hypomethylated in COVID-19 patients at inclusion/hospitalization, indicating an 

active IL-10 response early on during infection and it has been shown to play a part in 

COVID-19 pathogenesis, both during acute infection and post/long COVID-19  73, 74. Genes 

involved in innate immune responses such as NOD2, KLK7 and genes involved immune 

regulation, such as SEMA4D, INPP5D, TOX, IKZF3, were identified among the differently 

methylated genes with the highest fold change in COVID-19 patients. The epigenetic 

imprinting by the SARS-CoV-2 infection on these genes involved in innate responses and 

immune regulation is important determinates for the disease development  75.    

 

Furthermore, we observed alterations of TSSs for genes involved in protein transcription, 

translation, folding, quality control, post transcriptional modification affected e.g. CANX, 

GPN3, RBM47, METTL21A, and BAG3 and in neurological development/disorders e.g. PARL, 

ADK, TSHZ2, ASAM10, and AATK. Infections and inflammation impact all steps in the 

production, control, and modification of new proteins and SARS-CoV2 has a direct impact on  

protein translation, and protein trafficking 76, and need post translational modifications 77. 

Regarding neurological effects of COVID-19 there are reports that have demonstrated direct 

effects on the nervous system and connection between long COVID-19 78, 79 and exploring 

our data set’s matches with other data sets revealed mutual enrichment of six genes, i.e., 
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OAS1, CXCR5, APP, CCL20, CNR2, and C3AR1 10, 51, 52, 53, 54, 80, 81, 82, 83, 84. The enriched top 

terms defined by the analysis match included regulation of cell activation, leukocyte 

activation, inflammatory response, regulation of immune effector processes, and neutrophil 

degranulation. The genes and the biological processes/responses defined in the enrichment 

analysis are commonly found in numerous COVID-19 studies {Blanco-Melo, 2020 #113{Wilk, 

2020 #117}{Vanderheiden, 2020 #119} and reflect the effects the viral infection and 

subsequent immune response exert on the host. 

 
Severe conditions such as sepsis are connected to changes in DNA methylation patterns in 

white blood cells in areas with genes involved in, e.g., inflammatory pathways, innate and 

adaptive immune response, which are reflected in altered gene expression 85. Subsequently, 

a relevant comparison of our data would be with other severe infectious diseases to 

determine the DNA methylation alteration that is specific for COVID-19.  In addition, a larger 

cohort could also increase the ability to determine with higher precision unique DNA 

methylations and patterns for COVID-19 and it would be of interest to verify some findings 

with functional tests.    

 

In conclusion, we found a clear distinct DNA methylation pattern in the COVID-19 patients 

compared to healthy controls and that most but not all altered methylations lasted for more 

than 6 weeks post inclusion. in the COVID-19 patients compared to controls. There was an 

enrichment of genes with altered methylation at transcription start sites associated with 

Inflammation and immune system in the COVID-19 data set, which might reflect an attempt 

to dampen the inflammation and immune reaction.  
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Figure legends 
Figure 1: Graphical summary of the study and methods. Nasopharyngeal samples were 

collected from 27 COVID-19 patients at the beginning of the study, i.e., inclusion, time point 

1(T1); and followed up 6 weeks later (T2, 6W post inclusion), (N=36). Healthy controls (HC) 

(N=12) were included at inclusion. Genomic DNA (gDNA) was isolated and sent for bisulfite 

treatment and methylation analysis with the Illumina infinium Methylation EPICS 850K. 

Bioinformatics analysis was performed to identify unique CPGs and differentially 

methylation genes, followed by further analysis to assess the biological relevance.  

 

Figure 2: Distinct separation of COVID-19 patients compared to healthy controls. 

Nasopharyngeal samples (N=36) were collected from 27 COVID-19 patients (P) at inclusion 

(T1) N=21 and 6-weeks post-inclusion (T2) N=15, and from healthy controls (N=12) (HC) at 

inclusion of the study. (A) Hierarchical clustering using the Euclidean distance performed on 

the β-value data matrix to visualize global correlation was performed and (B) Principal 

component analysis of normalized β-values of COVID-19 patients and healthy controls.  

 

Figure 3: Distribution of differentially methylated CpGs and genes in COVID-19 patients 

compared to controls. Nasopharyngeal samples (N=36) collected from 27 COVID-19 patients 

at inclusion (T1) N=21 and 6-weeks post-inclusion (T2) N=15, were assessed for differential 

methylation within the different genomic regions: Body, Intergenic regions (IGR), 3’ UTR and 

5’ UTR, 1st Exon, Exon boundaries (ExonBnd), and the transcriptions start sites TSS200 and 

TSS1500, and compared to healthy controls (N=12) (HC). (A) Venn diagram of unique and 

common differently methylated CpGs. (B) Genomic region distribution for Patients at T1 & 

T2 vs HC, Patients at T1 vs HC, and Patients at T2 vs HC. Significant set using the Bonferroni-

Hochberg (BH)-corrected p-value (p-value BH) < 0.05 and log2FC cut-off (log2FC) set at ±0.3. 

(C) Volcano plots analyzing the log2 fold change (log2FC) with a cut-off > 0.3 for 

hypermethylated CpGs and cut-off < 0.3 for hypomethylated CpGs and the use of BH 

corrected p values < 0.05 cut-off for hypermethylated and hypomethylated CpGs. Top 20 

DMGs were annotated using the highest BH corrected p-values highest for hypermethylated 

and hypomethylated CpGs. 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 30, 2024. ; https://doi.org/10.1101/2024.04.29.591494doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.29.591494
http://creativecommons.org/licenses/by-nc-nd/4.0/


30 

 

Figure 4: Clear distinctions in the methylation patterns of COVID-19 patients compared to 

healthy controls. Nasopharyngeal samples (N=36) collected from 27 COVID-19 patients (P) 

at inclusion (1) N=21 and 6-weeks post-inclusion (2) N=15, and healthy controls (N=12) (HC) 

were assessed for differential methylation pattern showing the top 20 000 data points hypo 

and hypermethylated CpGs.  

 

Figure 5: Differentially methylated CpGs between COVID-19 patients and controls in 

transcription start sites TSS200 and TSS1500. Nasopharyngeal samples (N=36) collected 

from 27 COVID-19 patients (P) at inclusion (T1) N=21 and 6-weeks post-inclusion (T2) N=15 

and healthy controls (N=12) (HC) were assessed in the TSS200 and TSS1500 regions for top 

1000 hypo and hypermethylated CpG and 40 differently methylated CPG sites annotated 

randomly. Hierarchical clustering against sample groups was performed. Top annotation 

showed the distribution of Sample Groups, Gender, BMI, Age, CRP, LDH.  

 

Figure 6: Enrichment analysis for COVID-19-specific differentially methylated genes in 

transcription start sites TSS200 and TSS1500. Nasopharyngeal samples (N=36) collected 

from 27 COVID-19 patients (P) at inclusion (1) N=21 and 6-weeks post-inclusion (2) N=15, 

and from healthy controls (N=12) (HC), were processed and evaluated for DNA methylation. 

Analysis was performed with Metascape 42 for (A) enriched terms and (B) biological 

processes for the top 1000 hypo- and hypermethylated genes.  

 

Figure 7: Top canonical pathway and top regulatory networks in hospitalized COVID-19 

patients. DNA methylation analysis was performed on nasopharyngeal samples from 27 

COVID-19 patients (P) at inclusion (1) N=21 and 6-weeks post-inclusion (2) N=15, and from 

healthy controls (N=12) (HC). (A) Canonical pathway analysis was performed with Ingenuity 

Pathway Analysis to identify top activated and inhibited pathways linked to the methylated 

genes located in the transcription start sites 1500 and 200, with a z-score cut-off set to 1. 

Positive z-score indicated in orange, while negative z-scored indicated in blue. Significant TSS 

differentially methylated CpGs with a cut-off of +/- 0.3-fold-change was assessed in Ingenuity 

Pathway Analysis for (B-C) top regulator effect networks, and for (D) graphical summary.  
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Figure 8: Enrichment match analysis for top 1000 differently methylated genes across 

COVID-19-specific studies. DNA methylation analysis was performed on nasopharyngeal 

samples from 27 COVID-19 patients (P) at inclusion (1) N=21 and 6-weeks post-inclusion (2) 

N=15, and from healthy controls (N=12) (HC). Analysis match was performed against the top 

5 selected datasets based on logP values and overlapping genes from COVID-19 studies to 

assess similarities between enrichment of genes. (A) Circos plot for overlapping gene lists 

and shared term level, where blue curves link genes belonging to the same enriched 

ontology term. The inner circle represents gene lists, where hits are arranged along the arc. 

Genes that hit multiple lists are colored in dark orange, and genes unique to a list are shown 

in light orange. (B) Network nodes identifying neighborhoods where proteins are densely 

connected. Heatmap of (C) enriched terms and (D) top-level gene ontology biological 

processes across input gene lists. Each data set has been numbered and color-coded: 1, 

RNA_Blanco-Melo_Lung_Down; 2, RNA_Sun_Calu-3_0h_Up; 3, RNA Vanderheiden-

pHAE_48h_Up; 4, RNA_Lieberman_Nasopharynx_High_vs_Low_Down; 5, gene list from the 

present study; and 6, RNA_Wilk_B-cells_patient-C6_Up. Enrichment analysis was performed 

with Metascape and Coronascape 42.  
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Table 1. Clinical and-demographical characteristics of hospitalized COVID-19 patients. 

 

 
  

Variable Clinical data Reference 
range 

Number of COVID-19 patients 27  

Age, median (range) 56 (26–91)  

Body mass index, median (range) 28.7 

(19.4–41.5) 

 

Biological sex, % (N) 44.4 F/55.6 M (12F/15M)  

Days in hospital, median (range) 6 (2-22)  

ICU/pandemic Ward %, (N) 7.4/92.6 (2/25)  

Days with symptoms before inclusion, 

median (range) 

9 (2-20)  

Spike IgG antibody positive at inclusion, % (N) 63 (17)  

Nucleocapsid IgG antibody positive at 

inclusion, % (N) 

77.8 (21)  

Viral load at inclusion (copies/ml), median 

(range) 

8721.43 (1071.43-3.4x10
7
)  

Antiviral treatment, % (N) 22.2 (6)  

Corticosteroid treatment, % (N) 59.3 (16)  

No/oxygen/HFNOT:CPAP
1
/mechanical 

ventilation, % (N) 

7.4/44.4/48.1/3.7 (2/12/13/1)  

Cardiovascular disease, % (N) 63 (17)  

Pulmonary disease, % (N) 33.3 (9)  

Diabetes mellitus, % (N) 25.9 (7)  

Two of the underlying conditions, % (N) 25.9 (7)  

Disease score: moderate/severe, % (N) 92.6 (25)/7.4 (2)  

Ongoing smoking/snus, % (N) 0  

Previous history of smoking/snus, % (N) 51.9 (14)  

Leukocytes (x 10
9

/L), median (range) 6.7 (2.8-21.2) 3.5-8.8 

Thrombocytes (x 10
9

/L), median (range) 239 (134–458) 150–400 

Lymphocytes (x 10
9

/L), median (range) 1.1 (0.4–2.1) 1.1–4.8 

Monocytes (x 10
9

/L), median (range) 0.4 (0.1-2.24) 0.1–1 

Lactate dehydrogenase (µKat/L), median 

(range) 

5.3 (2.5–16) >70 years <3.5,      

<70 years < 4.3 

C-reactive protein (mg/L), median (range) 40 (0–318) 0–10 
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Table 2: Top hyper- and hypomethylated genes with unique differentially methylated CpGs 
in COVID-19 patients compared to controls. 
 
Comparison Significantly* Hypermethylated 

genes 
Significantly* Hypomethylated genes 

COVID-19 patients 

at inclusion (T1) 

and 6-week post 

inclusion (T2) vs HC 

SGIP1, RAD54L2, SH3GL3, 

TMEM63C, PACRG, RUNX1T1, 

CTNNA2, PRLR, 

LOC101929153, SPOCK3,  

CORIN, HPS5, MAP7, 

LINC0147, TMEM212, 

SHANK2, MOBP, PADI4, WT1, 

LOC285780 

TMEM2, MECOM, XBP1, DLX5, GPR77, 

DLX5, DLX5, SLC39A10, PDS5A, XBP1, 

DLX5, VIM, DLX5, COL4A1, INTS9, 

PLEKHM3, PPP1CA, FILIP1 

Patients T1 vs HC RAD54L2, SPOCK3, SMC6, 

SHANK2, RUNX1T1, MALSU1, 

SAR1B, GMDS, HPS5, SPATA6L, 

CTNNA2, TMEM212, LOC285780, 

TIPARP, LOC339862, PRLR, 

TMEM63C, RASGRP4, NEK7, 

TSPAN5 

DLX5, ZNF664-FAM101A, LPIN1, TMEM2, 

PLEKHM3, STAT5B, YY1, WHSC1L1, EXT1, 

DLX5, LOC101928650, SGK1, COL4A1, 

LIMS1, MECOM, DENND5A, ZNF622, 

C8orf75, ZFAND3, PINX1 

Patients T2 vs HC FBN1, TSHZ2, GNA13, CRYL1, 

EEPD1, CRYL1, SPIDR, MCL1, 

RPS6KA2, NSUN6, BAG3, TK2, 

LOC101927630, TC39C, FAM3B, 

IKZF3, MAP3K13, RHOU, FYN, 

PPM1H 

TNFAIP8, PARL, NISCH, INPP5D, NOD2, 

PMP22, EML4, FILIP1L, LOC100506844, 

GIT2, SIK3, VPS33A, AATK, SORL1, CANX, 

DGKG, TNIK, SNTN1, LOC400867 

log2FC cut-off was set to ±0.3. Significant set as Bonferroni-Hochberg corrected p value <0.05.  
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