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Abstract: This paper simulates a hypothetical pan-coronavirus vaccine that confers 

immediate sterilizing immunity against all SARS-CoV-2 variants. Simulations used a 

SEIIS spreadsheet model that ran two parallel subpopulations: one that accepted 

vaccination, and another that refused it. The two subpopulations could transmit 

infections to one another. Using data from the United States (US), the simulated 

vaccine was tested against limiting factors such as vaccine hesitancy, slow vaccination 

distribution, and the development of high-transmission variants. The vaccine was 

often successful at reducing cases, but high-transmission variants and discontinuation 

of non-pharaceutical interventsions (NPIs) such as masking greatly elevated cases. A 

puzzling outcome was that if NPIs are discontinued and high-transmission variants 

become common, the model predicted consistently higher rates of disease than are 

actually observed in the US in 2024. However, if cumulative exposure to virus 

antigens increases the duration of immunity or decreases the infectivity of the virus, 

the model predictions were brought back into a more realistic range. The major 

finding was that even when a COVID vaccine always produces sterilizing immunity 

against every SARS-CoV-2 variant, its ability to control the epidemic can be 

compromised by multiple common conditions. 
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1. Introduction 

The production of vaccines against the SARS-CoV-2 virus was a 

landmark in a pandemic that has caused over 6.9 million hospitalizations and 

1.18 million deaths in the US as of 13 March 2024 [1]. Early in the pandemic, 

vaccines were a powerful public health tool against COVID-19. Moutinho [2] 

described how the town of Serrana, Brazil vaccinated 27,000 of the 45,000 

residents with CoronaVac, and achieved an 80% drop in symptomatic 

COVID cases. Balicer and Ohana [3] reported that Israel achieved a 100-fold 

drop in new cases by an energetic campaign that vaccinated 2.5% of the 

population on some days.  

The vaccination effort in the US has been extensive. As of 11 May 2023, 

69.5% of the population had received the primary series of the vaccine 

(although 94.4% of those over 65), and at least one bivalent booster dose had 

been given to 17% of the population [4]. By the third quarter of 2022, 96.4% of 

Americans over the age of 16 had antibodies to SARS-CoV-2, and 73.8% had 

vaccine-induced antibodies [5]. The number of completed vaccinations/day 

peaked at about 4.6 million on 1 April 2021 (about 1.4% of the whole US 
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population on that one day). However, by 3 May 2023, vaccinations had fallen 

to 50,000 vaccinations/day [4], about 1% of the peak vaccination rate.  

Although the quick development of high-efficacy vaccines was a 

scientific triumph [6], producing the vaccine is only part of the public health 

battle. Aschwanden [7] summarized reasons why herd immunity would be 

difficult to achieve through vaccination: Vaccines might still allow disease 

transmission, vaccine rollouts in different countries have been slow and 

uneven, there was (at the time) still no vaccine for children, pockets of vaccine 

hesitancy would serve as reservoirs of disease, new variants will develop, 

vaccine-induced immunity will expire, and the arrival of vaccines might cause 

the public to discontinue non-pharmaceutical interventions (NPIs) such as 

masking.  

 

Previous COVID Vaccination Simulation Studies 

Several studies from the period before the completion of the first COVID 

vaccine used simulations to anticipate the effect the new vaccine would have 

on the pandemic. Saad-Roy et al. [8] investigated some of the same questions 

considered by this study. Using a model that allowed reinfection after 

immunity had expired, they simulated the five-year course of COVID in a 

northern, temperate location such as New York, with seasonal peaks in the 

fall, partial suppression of spread by non-pharmaceutical interventions 

(NPIs), and the inception of vaccination 1.5 years after the beginning of the 

epidemic. They found that high vaccine efficacy, fast rates of vaccine 

administration, and long durations of vaccinal immunity had the greatest 

chance of ending the epidemic. They found that vaccine “refusers” could 

reduce overall immunity and allow outbreaks despite vaccination. 

Patel et al. [9] described an agent-based model of a vaccination campaign 

in North Carolina, including different races and ethnicities, and simulated 

75% vaccine coverage of the population in six months. They found that high 

vaccine coverage with a low-efficacy vaccine was better than low coverage 

with a high-efficacy vaccine, and that abandoning NPIs while the vaccines are 

distributed “may result in substantial increases in infections, hospitalizations, 

and deaths.”  

Moghadas et al. [10] described an agent-based model of the US that 

predicted a vaccine with a maximum 70% coverage in any age group 

(delivered at about 2% of the population per week) could substantially reduce 

hospitalizations and death, even if the vaccine had only limited ability to 

prevent infection. They cautioned that maintenance of NPIs would be 

necessary to achieve these effects.  

Gozzi et al. [11] simulated different vaccination strategies in six diverse 

countries ranging from Egypt to Canada. Vaccinal immunity did not expire 

during the length of their simulations. Their focus was on the role of NPIs as 

vaccinations were rolled out. They concluded that the “great effort” of 

vaccination would be wasted if NPIs were abandoned too soon. As a matter 

of fact, a slow vaccination speed could have the paradoxical effect of 

increasing deaths because it was ineffectual in conferring immunity, but still 

caused the public to abandon NPIs.  
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A long-running simulation effort of a different kind was described by 

Howerton et al. [12]. The US COVID-19 Scenario Modeling Hub made detailed 

but short-term predictions of outbreaks. The authors concluded that well-

calibrated models could make accurate projections for periods shorter than 22 

weeks, but after that the unanticipated arrival of new variants degraded 

accuracy.   

 

 This Report 

Altmann and Boyton [13] discussed strategy options against COVID-19, 

and one option would be to focus on the development of a “pan-coronavirus” 

vaccine that would be effective against all variants. This proposal suggests the 

subject of this paper: If such a vaccine existed, what is the best COVID control 

that could be expected from it? The answer depends on at least six variables 

beyond the efficacy of the vaccine: the degree of vaccine hesitancy, the speed 

of vaccine uptake by the population, the persistence of desire to get boosters, 

the duration of vaccine-induced immunity, the persistence of NPIs such as 

masking, and the evolution of high-transmission variants. Although the 

hypothetical vaccine itself may be instantly effective against all variants, it is 

possible that ancillary factors like rapid waning of vaccinal immunity might 

compromise the vaccine’s success against the pandemic. 

In this paper’s simulation scenario, a COVID-19 epidemic starts when an 

infected individual enters a population at 0 years, and the epidemic proceeds 

with control only by NPIs for a year. At that point, a “universal” COVID 

vaccine is developed and distributed. This vaccine: 

a) produces immediate, sterilizing immunity against all SARS-CoV-2 

variants;  

b) induces vaccinal immunity that lasts for a defined period. During 

this time, no vaccinated individual can be reinfected. However, the 

immunity wanes exponentially with time. 

The long-term success of the vaccine is judged by the “post-vaccine case 

rate,” or the number of COVID cases per thousand per year over the period 

from one year to five years after the introduction of the vaccine (the timespan 

covered by the red rectangle in Fig. 1). The more the case rate was reduced 

over these four post-vaccine years, the more effective the vaccination regime 

was judged to be. In rough terms, the model simulates the US experience of 

2020 (initial outbreak controlled by NPIs only), introduction of the vaccine and 

the initial vaccination campaign (2021), and then the four-year “post-vaccine 

era” of 2022-2025. It draws its conclusions from case rates in the “2022-2025” 

time period.   

At the height of the COVID pandemic, Dr. Anthony Fauci suggested in 

popular-press interviews that the US should aspire to fewer than 10,000 

infections/day [14]. This equates to approximately 10 cases per thousand per 

year in the US, giving an average individual a 1% chance of contracting 

COVID-19 each year. Therefore, an average post-vaccine case rate of 10 

cases/thousand/year or lower will be regarded as a success.  

The variables tested for their effect on the post-vaccine case rate were: 

a) the percent of the population willing to accept vaccination (25% to 

100%); 
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b) the speed of vaccine distribution, measured by the percent of 

susceptibles vaccinated per day (0% to 2.5%); 

c) maintenance or cessation of NPIs such as masking;  

d) a weakening of interest in getting booster vaccinations; 

e) the duration of vaccine-induced immunity (50-750 days); 

f) the development of a new variant with a higher R0 (changing from a 

“2020” base value of 2.87 to “2021-2024” values of 3.5, 5.0, or 10.0). 

g) a decrease in the ability of the virus to start an infection due to long-

term exposure to viral antigens; 

h) a lengthening of the duration of immunity due to long-term 

exposure to viral antigens. 

2. Materials and Methods 

The simulations used an SEIIS compartmental model using difference 

equations on a Microsoft Excel spreadsheet. The following paragraphs 

describe the model without vaccination or NPIs first, then the model’s 

simulation of NPIs, and finally the simulation of vaccination. 

The SEIIS model contained four different groups of individuals in a 

model population of one million: susceptible, exposed (infected but not yet 

infective), infective, and immunes. Because the model did not include 

mortality and because a patient who has recovered from COVID can contract 

it again after its period of immunity is over, the final “S” is a return to the 

susceptible compartment. The overall model structure was a cycling of 

individuals between susceptibles and immunes. The durations of these stages 

were as follows: 

 

Susceptible → Exposed (5 days) → Infective (5 days) → Immune 

(variable time) → Susceptible 

  

The duration of immunity was the same for both disease-induced 

immunes and vaccination-induced immunes. The duration of immunity 

mainly determined how fast the individuals cycled between the 

compartments above. 

Each exposed, infective, and immune individual moved one day at a 

time through its compartment. For example, an exposed individual was 

moved from day one of exposure to day two, then to day three, etc. Although 

“Exposed” and “Infective” groups were handled separately in the 

calculations, they were sometimes lumped into one group called “Infected” 

in the graphs that follow. 

If we consider only one population and ignore corrections for use of 

NPIs (Eqs. 9 and 10), the number of new cases per day was given by 

 

    new cases/day = (R0/5)*inf*[sus/(sus + exp + inf + imm)]  (1) 

 

where inf = the number of infectives, exp is the number of individuals who 

are exposed to the disease but not yet infective, sus = the number of 

susceptibles, and imm = immunes. The “5” refers to the five-day infective 

period. R0 is the basic reproduction number, the number of cases each case 

can start during its infective period in a population consisting completely of 
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susceptibles. R0 represents the maximum transmissibility of the disease. The 

initial R0 was assumed to be 2.87 early in the epidemic [15] and throughout 

the first set of simulations. In the second set of simulations that dealt with 

high-transmission variants, R0 from 600 days or later in the simulation could 

take values of 3.5, 5.0, or 10.0 [15-17].  

Let the proportion of susceptibles in a population (the quantity in 

brackets in Eq. 1) be psus. If we consider only one population and ignore 

corrections for use of NPIs (Eqs. 9 and 10), the number of new cases per 

infective during the infective period was given by 

 

    new cases per infective over infective period = R0*psus  (2) 

 

Therefore, when the fraction of susceptibles in a population is less than 1/R0, 

the new cases per infective are less than 1.0 during the whole infective period, 

and each infective will not replace itself during its five-day lifespan. 

Consequently, new cases per infective must decline. Getting R0*psus below 

1.0 is the basis of herd immunity. 

The model had the capability of running two populations on two 

different sheets. Population 1 accepted vaccination and Population 2 refused 

it. These two populations mixed randomly with one another. These 

populations were then combined on a third sheet. This allowed simulation of 

two populations that had different characteristics, but which interacted with 

each other by “sharing” infective and susceptible individuals. 

Let the total number of individuals in Populations 1 and 2 be pop1 and 

pop2. Where the number of infectives in Population 1 in an iteration is inf1 

and the number of infectives in Population 2 is inf2, then the total number of 

infectives “seen” by Populations 1 and 2 is the same: 

       inftot = inf1 + inf2    (3) 

 

The importance of the proportion of susceptibles (psus) in a population 

was seen in Eq. 2. The proportion of susceptibles in Population 1 and 

Population 2 will be  

 

       psus1 = sus1/pop1   (4) 

       psus2 = sus2/pop2   (5) 

 

Two other variables, not to be confused with psus1 and psus2, are 

susfrac1 and susfrac2. Susfrac1 is the fraction of all the susceptibles (in both 

populations) that are in Population 1. Susfrac2 is the corresponding fraction 

for Population 2. For example, say that at the beginning of the simulation, 

both Population 1 and Population 2 are all susceptibles, but ¾ of all the 

individuals are in Population 1. Then both psus1 = psus2 = 1.0, but susfrac1 = 

0.75 and susfrac2 = 0.25. That is, 

 

       susfrac1 = sus1/(sus1 + sus2)  (6) 

       susfrac2 = sus2/(sus1 + sus2)  (7) 

  

The susfrac variables are used to allocate the new cases to Population 1 

and Population 2. The number of new infections in a day in Populations 1 

and 2 will be 
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      newinf1 = (R0/5)*inftot*psus1*susfrac1  (8) 

      newinf2 = (R0/5)*inftot*psus2*susfrac2  (9) 

 

where the “5” refers to the five-day infective period. The “psus” factor 

reduces the number of new cases as the proportion of susceptibles in 

populations 1 and 2 falls, and will eventually reach zero if there are no 

susceptibles left in a population. But early in the epidemic, psus1 and psus2 

will be close to 1.0, and every infective in populations 1 and 2 will produce 

R0/5 new cases per day. The susfrac variable allocates the new infections to 

Population 1 and Population 2. If a population has no susceptibles left, no 

new infections would be allocated to it. For example, if Eq. 3 determines that 

on a certain day there are 100 new cases of disease and Population 1 has 10% 

of all the susceptibles, Population 1 will get 10 new cases and Population 2 

will get 90 new cases. 

New infections delete members from the susceptible compartment and 

add them to day 1 of the exposed compartment. They then proceed through 

the exposed, infective, and immune compartments, day by day, until they 

return to the susceptibles after their period of immunity has expired. 

Vaccination takes a fraction of the susceptibles each day, removes them from 

the susceptible compartment and adds them directly into the immune 

compartment. The duration of immunity is explained in more detail below. 

There were no deaths, births, or demographic groups in the model (aside 

from Population 1 and Population 2). There was no seasonal change in 

infectivity. There was also only one variant, but in some simulations, the R0 

was changed to simulate the arrival of a new, more contagious variant. 

A single-population simulation started when one individual at the 

beginning of its five-day infective career entered the population of 999,999 

susceptible individuals. If two interacting populations were being used, each 

population got one infective on the first day. The sizes of Populations 1 and 

2 were adjusted so their sum was 1,000,000 (e.g., if Population 1 was 750,000, 

Population 2 was 250,000).  

 

Non-pharmaceutical Interventions 

In the first year of each simulation, there was no vaccination, and all 

control of the epidemic relied on strategies like social distancing, masking, 

and hand-washing (non-pharmaceutical interventions, or NPIs). NPIs were 

simulated by multiplying R0 by (1 - lkd). Lkd was a “lockdown” parameter 

that reached a maximum of 0.5, meaning social interaction and disease 

transmission was reduced by 50%. R0 was nearly undiminished when the 

infected percent of the population was low and reached 0.5*R0 when the 

infection rate was high. Lkd followed Michaelis-Menten kinetics (Eqs. 10 and 

11). For population 1,  

 

     infected%1 = 100*(exposed1 + inf1)/pop1   (10) 

     lkd1 = 0.5*infected%1/(infected%1 + 0.01)   (11) 

 

There were similar equations for population 2. Populations 1 and 2 had the 

same lockdown equations and the same maximum lockdown parameter of 

0.5. Eq. 11 allowed the disease to spread rapidly at first. However, once the 
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infected percent of the population increased beyond 0.01%, lkd1 and lkd2 

rapidly rose to 0.5. 

 

Waning of Immunity 

Kosinski [18] used a similar model to investigate the effect of the 

duration of immunity on a COVID epidemic. The results were that short 

durations of immunity produced repeated peaks and increased the average 

number of cases per person. That paper used what might be called an “age-

structured” model of immunity. If the duration of immunity is assumed to be 

one year, then every individual that enters immunity on a certain day exits 

from immunity exactly one year later. This tends to produce repeated 

fluctuations in the prevalence of disease as immunity in the population 

expires at the same time. 

The more traditional SEIIS compartmental model (used here) treats all 

the immune individuals (no matter when they became immune) as one pool 

from which a certain fraction (∂) leaves each iteration to re-join the 

susceptibles. If there were no new inputs into the immune compartment, this 

means that the immune population would experience an exponential decline, 

and that the average duration of immunity would be 1/∂. For example, for an 

average duration of immunity of one year, 1/365 of the immunes would leave 

the immune compartment each day. Therefore, 1/365 = ∂, and the average 

duration of immunity would be 1/∂ = 365 days. The key to estimating the 

average duration of immunity in this model is to determine the fraction of 

immunity that is lost per day (∂). As will be seen, the average duration of 

immunity has a strong impact on the ability of the vaccine to control the 

disease. 

The mean duration of COVID immunity conferred by COVID vaccines 

seems to be much shorter than a year. Link-Gelles et al. [19] determined that 

effectiveness against hospitalization of the bivalent mRNA vaccine in adults 

declines from 62% at a mean of 33 days to 24% at a mean of 150 days (117 

days later). Assuming exponential decline, a decline from 62% effective to 

24% effective is a decline to 38.7% of the initial effectiveness value (24/62 = 

0.387). Ln(0.387) = -0.949, and because the decline period was 117 days, the ln 

of the persistence/day = -0.949/117 = -0.00811. This implies that the immune 

persistence/day = e-0.00811 = 0.9919 and therefore the loss/day is 1 – 0.9919 = 

0.0081. The reciprocal of 0.0081/day is approximately 124 days = 1/∂ = the 

mean duration of effectiveness. Therefore, the exponential model using these 

data predicts that immunity against hospitalization is losing about 1/124 of 

its effectiveness/day. 

For comparison, Menegale et al. [20] did an extensive literature review 

and reported in their Fig. 1 that immune effectiveness against symptomatic 

disease for a first vaccination against the omicron variant falls from about 

55% at one month post-vaccination to 18% at six months (a period of 150 

days). In other words, it has lost 67% of its initial effectiveness in 150 days, 

and its mean duration of effectiveness (1/∂) is 135 days. The same figure 

shows that immunity against symptomatic omicron disease conferred by a 

booster vaccination declined from 45% to 23% effective in 150 days, a loss of 

49% of its initial effectiveness, corresponding to a mean duration of booster 

effectiveness of 224 days.  
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DeCuir et al. [21] examined duration of immunity induced by the 

monovalent XBB.1.5 vaccine against emergency department and urgent care 

visits. Their data allows computation of a mean duration of immunity of 291 

days for adults 18-64 years of age, and of 146 days for adults over 65. 

This paper will use 135 days as the default average duration of immunity 

induced by both disease and vaccination. This duration will be a constant in 

most simulations.  

 

Vaccination 

Population 2 was never vaccinated. In Population 1, a percentage 

(ranging from 0%-2.5% per day) of the susceptibles were moved into the 

immune population every day. Vaccination rates used in most simulations 

were 0%, 0.25%, 0.5%, 0.74%, and 1.0%/day. 2.5%/day was used in a few cases. 

Vaccination produced an exponential decline in the number of individuals in 

the susceptible compartment. The simulated vaccine always created same-

day, sterilizing immunity against all variants.  

 

Maintenance of NPIs 

Because the advent of the vaccine could reduce the willingness of the 

population to maintain NPI use, at 500 days since the start of the simulation 

(about “15 May” of “2021”), the “lockdown” parameter either remained at 

0.5, was reduced to 0.25, or was reduced to zero (complete cessation of NPIs). 

This was meant to simulate the CDC announcement on 13 May 2021 that 

vaccinated individuals no longer needed to wear masks indoors or social-

distance from others, which might have encouraged the unvaccinated to do 

likewise. 

 

High-Transmission Variants 

All of the simulations above were done first with a pathogen with a 

constant R0 of 2.87 [15] because inclusion of more transmissible variants so 

elevated case rates that it tended to hide every other effect. After the “2.87” 

simulations (Tables 1-5), a reduced set of simulations (Tables 6-12) was done 

with pathogens that started with an R0 of 2.87, but then increased their R0 to 

3.5, 5.0, or 10.0 between 500 to 600 days (“15 May” to “23 August” of the year 

the vaccine was introduced). The R0 then stayed at this new value for the rest 

of the simulation. 

 

Case Rates 

The main response variable was the number of COVID cases per 

thousand individuals per year (starting one year after vaccination began). 

The highest one-day case rate ever seen in the US epidemic so far occurred at 

the peak of the Omicron surge on 11 January 2022, when more than 1.3 

million new cases were reported [1]. If this daily rate of new cases continued 

for a year, it would be 1,438 cases/thousand/year. However, by late April of 

2023, the average reported US case rate had fallen to 119,000 cases per week 

(only 19 cases/thousand/year) [1].  

The CDC stopped reporting case rates in May of 2023. However, the 

CDC Web site is still reporting hospital admissions as of April, 2024. Using 

screen captures of the CDC Data Tracker site [1] taken during the period from 

30 April 2022 to 30 April 2023 (the most recent year in which both case rates 
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and hospital admissions were presented), it was possible to estimate that 

during that 2022-2023 period, approximately one case in 14.46 resulted in a 

hospital admission. This ratio allowed a rough estimate of case rates from the 

hospital admission data up to the end of March, 2024.  

 

Reduction of Infections Due to Exposure to Virus Antigens 

The Results will disclose that the SEIIS model as described above 

predicts 2024 case rates that are much higher than those probably being 

experienced in the US. In order to explain the discrepancy, this paper will 

hypothesize that long-term exposure to virus antigens either strengthens the 

human immune response to reduce the chance of infection or increases the 

duration of immunity. 

For reduction of the chance of infection, the model recorded the 

cumulative number of infections and vaccinations and multiplied R0 by a 

factor that declined as the cumulative exposure to virus antigens increased 

(Eq. 12). The exposure to virus antigens was recorded as the percent of the 

population that had been either infected or vaccinated since the beginning of 

the simulation. Multiple infections or vaccinations could cause this 

percentage to go over 100%. The effect of this percentage was translated into 

a fraction using a parameter called Exposure50: 

  

            R0 Reduction = Exposure50/(Exposure50 + % Exposure)                 (12) 

 

Note that if % Exposure is zero, R0 Reduction = 1, and infection is 

undiminished. If % Exposure = Exposure50, R0 Reduction = 0.5. If % Exposure 

is much greater than Exposure50, R0 Reduction approaches zero, meaning that 

ability of the virus to infect is reduced. The smaller Exposure50 is, the more 

previous exposure reduces the ability of the virus to infect. 

When immune duration was increased by exposure to virus antigens, 

for every percent of either Population 1 or Population 2 that contracted a case 

or was vaccinated, either 0.01 or 0.05 days was added to the mean duration 

of immunity for that population. This caused immunity to wane more and 

more slowly as the simulation went on. 

Neither R0 reduction nor lengthening of immune duration were used in 

Tables 1-7.  

3. Results 

3.1. Sizes of Population 1 and Population 2 and the Speed of Vaccination in the US 

 The CDC cumulative data on fully vaccinated individuals [4] 

allows a retrospective estimate of the true sizes of Population 1, Population 

2, and the vaccination rate during the US pandemic. First, by August of 2022, 

the cumulative number of completed vaccinations was nearly static at 223 

million in a population of 330 million. Assuming that only Population 2 

remains unvaccinated at this point, this estimates Population 1 as 68% of the 

US total, and Population 2 as 32%. During the period of rapid vaccination 

from 1 January to 30 June 2021 (181 days), the rate of decline in unvaccinated 

people was consistent with a constant vaccination rate of 0.74% of Population 

1 per day (about 0.5% of the whole population per day). Vaccination rates in 

the rest of the article will always be presented in terms of Population 1 
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because only Population 1 was vaccinated. The values above (Population 1 = 

68%, Population 2 = 32%, vaccination rate = 0.74%/day) were used as default 

values, but a range of vaccination rates and Population 1 sizes were used in 

the simulations.  

 

    3.2. Review of the Simulation Scenario 

Recall that this paper’s scenario is that a COVID-19 epidemic starts at 

year zero in Figure 1, and during the first year it is mitigated only by NPIs 

such as masking and social distancing. Then, at the one-year anniversary of 

the start of the epidemic, a vaccine is introduced and distributed for the 

remainder of the simulation. In some simulations, the interest in getting 

vaccinated was allowed to decline over time. The main responding variable 

will be the number of new infections per thousand per year in years 2, 3, 4, 

and 5, indicated by the red rectangle on Figure 1.  

 

    3.3 General Simulation Outcomes 

Fig. 1 contrasts the typical course of an unmitigated epidemic, the effect 

of NPIs on this outcome, and then the additional effect of vaccination. The 

purpose of this figure is to show the general form of model predictions, not 

to try to fit data from the US epidemic. 

 

Figure 1. The course of the epidemic for R0 = 2.87 and a constant average 

duration of immunity of 135 days. The curves show an unmitigated 

epidemic (green), an epidemic controlled only by NPIs such as masking 

(orange), and an epidemic controlled by NPIs and by vaccination that starts 

at one year (blue). In this vaccination simulation, all members of the 

population were willing to accept the vaccine. The red rectangle indicates 

the “post-vaccine era” for which case rates were computed. 
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In the completely unmitigated epidemic (green curve), infection rose to 

maximum of 40% of the population at the first peak, but any points above 

15% are not shown in Fig. 1 in order to avoid compressing the “NPI Only” 

and “Vac + NPIs” curves. The blue curve and the orange curve employed 

NPIs that could produce a 50% reduction in R0. These NPIs were active from 

the beginning of the simulation. In addition to the NPIs, the blue curve also 

used vaccination (delivered at 0.74% of the susceptible population per day) 

starting one year after the first case. For Fig. 1 only, all members of the 

population accepted the vaccine (there was no vaccine-refusing Population 

2).  

If there were no changes to parameters during a simulation, the curve 

showing percent infection underwent an initial oscillation caused by a 

disease outbreak and building immunity, but then settled down to a constant 

rate of new cases that was in equilibrium with the rate of expiration of 

immunity. More contagious disease or faster expiration of immunity led to a 

higher equilibrium rate of infection in the right portion of the curves. The 

equilibrium percentages of infection were approximately 5.2% of the 

population for the unmitigated epidemic, 2.1% for the NPIs-only scenario, 

and 0.015% for the NPIs plus vaccination scenario. 

 

3.4 Vaccination Speed and Percent of Vaccine-Compliant Individuals 

 Given that efficacy of the simulated vaccine is always 100%, the 

most important vaccination variables are the speed of vaccination (percent of 

Population 1 susceptibles vaccinated per day), and the percent of Population 

1 (the population that accepts vaccination).  

 

Table 1. The effect of vaccination speed and percentages of individuals 

willing to accept the vaccine on case rates. Variable shown is 

cases/thousand/year in years 2-5 in the combined population (1 + 2). R0 = 2.87, 

average duration of immunity = a constant 135 days, lockdown parameter 0.5 

for Populations 1 and 2. 

Vac/Day Percent of Population 1 (Vaccine-Compliant) 

100% 75% 68% 50% 25% 

0% 773.6 

0.10% 540.0 602.1 619.0 661.6 718.7 

0.25% 209.5 369.0 411.5 515.6 649.6 

0.50% 17.2 89.0 145.9 326.5 562.1 

0.74% 5.6 24.3 42.5 198.1 501.2 

1.00% 2.1 11.5 19.0 110.2 452.2 

 

3.5 Average Duration of Immunity 

 For any vaccination rate, the success of the vaccine was markedly 

enhanced by a long duration of immunity: 
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Table 2. Post-vaccine case rates for immunity with constant average 

durations from 50-1000 days. The population is 68% Population 1 (vaccine-

compliant) and 32% Population 2. R0 = 2.87, lockdown parameter = 0.5. 

Vac/Day Average Duration of Immunity (Days) 

50 135 250 500 1000 

0% 1851.1 773.6 424.4 236.0 111.6 

0.10% 1709.7 619.0 281.4 88.5 16.0 

0.25% 1504.1 411.5 111.8 16.2 3.2 

0.50% 1179.9 146.0 20.6 4.4 0.5 

0.74% 893.0 42.5 9.2 2.0 < 0.1 

1.00% 611.8 19.0 5.2 1.0 < 0.1 

 

3.6 Abandoning NPIs 

Recall that in all simulations above, the vaccines were combined with 

NPIs that produced a maximum lockdown parameter of 0.5 in both 

Population 1 and Population 2. This reduced R0 by a factor of 0.5 and resulted 

in much lower rates of infection when the R0 was 2.87, as in all simulations so 

far. However, as vaccination becomes more common and rates of disease 

drop, there might be a tendency for the public to stop masking and social-

distancing because they think that vaccination has replaced NPIs. In Table 3, 

Populations 1 and 2 keep their maximum lockdown parameter at 0.5 until 

day 500, and then either leave the parameter at 0.5 or change it to either 0.25 

or 0.0. Because vaccine-seeking Population 1 is more likely to maintain NPIs 

than Population 2, Population 2 is sometimes given a lower lockdown 

parameter. Vaccination continues in Population 1 after day 500. NPIs were 

surprisingly important in determining long-term rates of disease. 

 

Table 3. The effect of reducing NPIs starting on day 501 on vaccine-era case 

rates. Average duration of immunity is 135 days, and R0 = 2.87. The 

population consisted of 68% Population 1 (seeks vaccination) and 32% 

Population 2 (refuses vaccination). Each column heading shows the 

lockdown parameter for Population 1 first and Population 2 second. 

Vac/Day Lockdown after 500 Days 

0.5/0.5 0.5/0.25 0.25/0.25 0.25/0.0 0.0/0.0 

0% 773.6 991.4 1353.4 1444.1 1625.9 

0.25% 411.5 688.1 1105.6 1225.8 1436.9 

0.50% 145.9 462.5 875.4 1029.5 1272.0 

0.74% 42.5 312.8 684.2 863.7 1126.3 

1.00% 19.0 198.0 518.8 714.2 978.6 

 

3.7 Percent of Population Accepting Vaccination and Weakening of NPIs 

Table 4 shows that abandoning or weakening NPIs causes a surge in 

rates of disease regardless of whether Population 1 is high or low. 
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Table 4. The interaction between abandoning NPIs and the percent of the 

population that seeks vaccination. Results are shown for the combination of 

Populations 1 and 2. R0 = 2.87, vaccination rate of Population 1 is 0.74%/day; 

average duration of immunity is 135 days. At 501 days into the simulation, 

both Population 1 and 2 either leave their lockdown parameter at 0.5, reduce 

it to 0.25, or reduce it to 0.0. 

Pop. 1/2 Lockdown after 500 Days 

0.5 0.25 0.0 

100%/0% 5.6 195.6 760.9 

68%/32% 42.5 684.2 1126.3 

50%/50% 198.1 898.5 1277.9 

25%/75% 501.2 1148.9 1458.0 

0%/100% 773.6 1353.4 1625.9 

 

3.8 Weakening of Interest in Getting Booster Vaccinations 

Just as usage of NPIs may weaken over time, desire to get booster 

vaccinations may also fade. Table 5 simulates a Population 1 that maintained 

a high vaccination rate for the first year after vaccine introduction, but then 

experienced an exponential decline of vaccination rates after that. 

 

Table 5. Effect of loss of interest in booster vaccinations. R0 = 2.87, 

Population 1 68%, initial vaccination rate of Population 1 is 0.74%/day; 

average duration of immunity is 135 days, lockdown parameter maintained 

at 0.5. After the first year of vaccinations, the vaccination rate of Population 

1 declines by 0%, 0.1%, 0.25%, 0.5%, or 1.0% per day for the rest of the 

simulation. The last four rates of decline will reduce vaccinations by half in 

693, 277, 138, and 69 days, respectively. The table cells show 

cases/thousand/year in years 2 through 5. 

 Vaccination Decline/Day 

0.0% 0.1% 0.25% 0.5% 1.0% 

Case Rate 42.5 256.4 483.8 608.6 673.9 

 

3.9 Evolution of a More Transmissible Variant 

Tables 1-5 assumed that the pathogen retained its “2020” R0 of 2.87. 

However, later dominant variants have been more transmissible. R0 for the 

delta variant has been estimated at 5.08 [16], and the omicron variant’s R0 has 

been estimated at 9.5 [17]. More transmissible variants were simulated by 

increasing R0 from its original value of 2.87 to a higher target R0 between 500 

and 600 days into the simulation, and then keeping R0 at this higher level for 

the rest of the simulation. Even small increases in R0 had a pronounced effect 

on the post-vaccine case rates (Table 6), and a vaccination rate of 2.5% of the 

susceptibles per day had to be added as well. 
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Table 6. Ability of several vaccination rates (percent of Population 1 

susceptibles vaccinated/day) to control case rates as the base R0 of 2.87 was 

increased to various final R0s between days 500 and 600 of the simulation. 

Average duration of immunity 135 days, 68% Population 1 and 32% 

Population 2, lockdown parameter maintained at 0.5 after 500 days. 

Vac/Day R0 after 600 Days 

2.87 3.5 5.0 10.0 

0% 773.6 1081.5 1520.7 2016.7 

0.25% 411.5 770.8 1302.9 1902.0 

0.74% 42.5 334.1 922.2 1689.7 

1.00% 19.0 175.0 762.8 1590.3 

2.50% 3.2 11.6 77.3 1155.4 

 

3.10 Changes in the Average Duration of Immunity 

All previous tables used average durations of immunity that were 

constant at 135 days. Although increasing the pathogen R0 usually caused a 

drastic increase in case rates, longer durations of immunity reduced the 

damage done by more transmissible variants: 

 

Table 7. Effects of different average durations of immunity (days) on case 

rates in a population consisting of 68% Population 1 and 32% Population 2, 

with a daily vaccination rate of 0.74% of the susceptibles/day. Lockdown 

parameter was maintained at 0.5 after 500 days. 

Immunity 

Duration 

(Days) 

R0 after 600 Days 

2.87 3.50 5.00 10.00 

50 893.0 1802.9 3068.5 4566.2 

135 42.5 334.1 922.2 1689.7 

250 9.2 45.6 332.8 832.3 

500 2.0 7.0 81.2 302.8 

750 0.5 2.6 27.5 154.8 

 

3.11 Disease Exposure Reduces the Infectivity of the Virus 

The Discussion will point out that the unmodified SEIIS model predicts 

far higher case rates than appear to be observed in the US in early 2024. One 

hypothesis to resolve this discrepancy is that repeated infections somehow 

alter the immune system to make infections more difficult. The infection 

experiences of Population 1 and Population 2 (with and without vaccination) 

were different and greatly affected by the R0 of the pathogen: 
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Table 8. Percent of population experiencing cases or vaccination when there is 

no effect of cases or vaccinations on R0. Pop. 1 = 68%, Pop. 2 = 32%, vaccination 

rate = 0.74% of Pop. 1 susceptibles/day, NPIs of 0.5 maintained. Column 

headings show the R0 reached by 600 days into the simulation. 

Population R0 = 2.87 R0 = 3.5 R0 = 5.0 R0 = 10.0 

Pop. 1 776.3% 825.0% 946.0% 1124.4% 

Pop. 2 118.6% 298.8% 652.9% 1014.3% 

 

High-R0 infections produce a greater exposure to virus antigens. This 

explains the results of Table 9. Recall that “Exposure50” is the number of 

cases or vaccinations that reduces the R0 by 50%, so a lower value of 

Exposure50 is, the more rapidly cases and vaccinations reduce the ability of 

the virus to infect the population. 

 

Table 9. Final case rates when R0 is reduced by the percent of population 

experiencing cases or vaccination. Exposure50 = percent exposure of the 

population that produces a 50% reduction in R0. Pop. 1 = 68%, Pop. 2 = 32%, 

vaccination rate = 0.74% of Pop. 1 susceptibles/day, NPIs of 0.5 maintained, 

duration of immunity 135 days. Column headings show the R0 reached by 

600 days into the simulation. 

Exposure50 R0 = 2.87 R0 = 3.5 R0 = 5.0 R0 = 10.0 

No Effect 42.5 334.1 922.2 1689.7 

1000% 7.3 36.0 333.4 1196.8 

500% 3.0 10.9 131.3 845.3 

250% 0.8 3.2 44.2 400.9 

100% < 0.1 0.3 4.5 58.0 

50% < 0.1 < 0.1 1.0 19.4 

 

3.12 Disease Exposure Increases the Average Duration of Immunity 

Table 7 varied the duration of immunity, but kept it constant within 

each simulation.   Table 10 began all simulations with a mean duration of 

immunity of 135 days, but then allowed the duration of immunity to be 

increased by repeated exposure to virus antigens by both cases and 

vaccinations. Every 1% of the population that either contracted disease or 

was vaccinated increased the mean duration of immunity by 0, 0.01, or 0.05 

days. These calculations were separate for Population 1 and Population 2, so 

generally Population 1 ended with a longer mean duration of immunity 

because only Population 1 received vaccination. The rationale for this series 

of simulations will be explained in the Discussion. 
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Table 10. Effect on case rates in years 2, 3, 4, and 5 of larger R0 values and an 

increasing average duration of immunity. Population consisted of 68% 

Population 1 and 32% Population 2, with a vaccination rate of 0.74%/day. 

Lockdown parameter was maintained at 0.5 after 500 days. Immune 

duration started at 135 days. Increases in immune duration were 0, 0.01 or 

0.05 days per cumulative percent of the population that had experienced 

cases or vaccination. 

Effect of Cases or 

Vaccination on 

Immune Duration 

R0 after 600 Days 

2.87 3.50 5.00 10.00 

No Effect 42.5 334.1 922.2 1689.7 

+0.01 days per % 2.7 9.6 99.4 299.1 

+0.05 days per % 0.1 1.3 14.0 63.7 

 

Table 11 presents the total number of cases and vaccinations from the R0 = 

10.00 column of Table 10. 

 

Table 11. Cumulative cases and vaccinations (over the entire 5 years of the 

simulation) from the “R0 = 10.00” column of Table 10, plus the average 

percentage of the population (both Population 1 and Population 2) that is 

made up by those with disease-induced immunity (Diim) and vaccine-

induced immunity (Viim). 

Effect of Cases Cases Vacs Av. Diim % Av. Viim % 

No Effect 8.77 x 106 2.07 x 106 50.2% 12.0% 

+0.01 days 

per % 

2.41 x 106 1.61 x 106 40.3% 39.5% 

+0.05 days 

per % 

1.15 x 106 1.03 x 106 35.7% 33.1% 

 

3.13  R0 Reduction or Increasing Duration of Immunity Can Counter Negative 

Developments 

A final way to illustrate the powerful effect of R0 reduction or increasing 

duration of immunity is to start with a base set of parameters describing a 

relatively controllable epidemic, progressively add negative developments 

such as dropping of NPIs, and estimate how well R0 reduction and increasing 

duration of immunity could counter them. The base situation was that R0 

remains at 2.87, lockdown parameter remains at 0.5, vaccination rate of 

Population 1 remains at 0.74% of the susceptibles/day, and duration of 

immunity is constant at 135 days.  

 

In Table 12, the following alterations to this base condition are simulated: 

A. R0 rises from 2.87 to 10.0 between 500 and 600 days. 

B. All NPIs are abandoned after 500 days. 

C. The vaccination rate of Population 1 declines at 1%/day starting one 

year after vaccination begins. The vaccination rate half-life is 69 days, 

and decay of interest continues to the end of the simulation. 
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D. R0 is reduced by infection with an Exposure50 of 50%. 

E. Immune duration increases by 0.05 days per percent of the population 

experiencing cases or vaccination. 

 

Table 12. Effect of developments A-E on case rates/thousand/year in years 2, 

3, 4, and 5. 

Condition Case Rate 

Base 42.5 

Base + A 1689.7 

Base + A + B 2098.7 

Base + A + B + C 2252.5 

Base + A + B + C + D 496.4 

Base + A + B + C + E 221.7 

The reduction in case rates in the last two lines shows the effect of allowing 

previous infections and vaccinations to reduce R0 and to increase the duration 

of immunity. 

4. Discussion 

These simulations disclosed that even if a vaccine produces immediate 

sterilizing immunity against all COVID variants, many common situations 

can impair its effectiveness. Success was measured by COVID case rates in 

the period from 1 to 5 years following vaccine introduction. Independent 

variables considered were the percentage of the population that accepts the 

vaccine, the speed of vaccine distribution, maintenance of NPIs such as 

masking even after vaccines are in use, declining interest in getting booster 

vaccines, the development of more transmissible variants, and the duration 

of immunity.  

Case rates are expressed in terms of COVID cases/thousand/year in the 

period from 1-5 years after the introduction of the vaccine (the red box in Fig. 

1). These case rates include the whole population (vaccine-accepting 

Population 1 + vaccine-refusing Population 2). A case rate of 9.2 (for example) 

indicates that the average person in this combined population has a 0.92% 

chance of a COVID infection every year; a 2,252 case rate means the average 

individual will suffer from 2.3 COVID infections/year. 

Many simulations predicted very high case rates, but these high rates 

were never due to a failure of the hypothetical vaccine itself nor evasion of 

the immune response by a new variant. The simulated vaccine always 

induced sterilizing immunity against every variant. The problems lay in 

factors like the speed of vaccine distribution, the discontinuation of NPIs, the 

speed of spread of the disease in unvaccinated individuals, etc. 

Many of the simulation results were expected, but there were also 

surprises. This Discussion will focus on the unexpected outcomes. 

The speed of vaccine distribution is used many times in this report. As 

stated in the Methods, US CDC data on cumulative full vaccination [4] 

implies that during the US vaccination drive in the first half of 2021, 

Population 1 in the US was 68% of the total, and Population 2 was 32%. Also, 

there appeared to be a vaccination completion rate of 0.74%/day of the 

Population 1 susceptibles (which would be about 0.5%/day of the 

susceptibles in the whole population). 
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Table 1 shows that if the whole population (100% column) can be 

vaccinated at 0.74% of the susceptibles per day or faster, an epidemic with an 

R0 of 2.87 and vaccine-induced immunity of 135 days or longer can be 

essentially ended. The same is true if 75% of the population accepts 

vaccination, but then the vaccination speed must be 1.0% per day or greater. 

Greater unvaccinated portions of the population preclude ending the 

epidemic. It is noteworthy that with 68% of the population accepting 

vaccination and a vaccination rate of 0.74%/day (the default conditions), the 

case rate will still exceed the “Fauci limit” of 10 cases/thousand/year, even 

with a low R0 of 2.87.  

Table 1 shows the results for the combination of Population 1 (accepts 

the vaccine) and Population 2 (refuses the vaccine). It might be supposed that 

at least Population 1 should be a well-protected minority. It could be, but only 

if it can escape exposure to Population 2. For the table cell at the lower right, 

with Population 1 25% and a vaccination rate of 1% per day, the case rate 

(cases/thousand/year) for Population 1 is 252.1 and for Population 2 is 518.9. 

Population 1, despite its vaccinations, is inundated by infection coming from 

the larger Population 2. The first column shows that if there was no 

Population 2, Population 1’s case rate with a 1% vaccination rate would be 

only 2.1 cases/thousand/year. These patterns are all expected, but the extent 

to which Population 1 is contaminated by cases from Population 2 on the 

right side of the Table 1 might be a surprise. For a 0.74%/day vaccination rate, 

if Population 1 declines from 75% to 25% of the population, the overall case 

rate increases by a factor of 21 due to cases coming from Population 2. 

Vaccine hesitancy is a problem for the whole population, not just for the 

vaccine refusers. 

While mixing randomly with Population 2 hurts Population 1, the 

mixing benefits Population 2. Table 1 shows that with no vaccination at all 

(first line of the table), both Population 1 and Population 2 have a high case 

rate of 773.6 cases/thousand/year. However, if the vaccination rate is 0.0074% 

of Population 1 susceptibles/day, Population 1’s final case rate is 33.1 and 

Population 2’s is 62.6 cases/thousand/year. In other words, Population 2, 

without ever getting vaccinated itself, has cut its case rate by a factor of 12.4 

by being associated with a population that is being vaccinated and therefore 

has a much lower case rate. The intelligent vaccine-refuser can be right to 

hope that everyone else gets the vaccine. 

Table 2 shows the synergistic effects of the vaccination rate and the 

duration of immunity. If immunity lasts only a short time, there won’t be 

enough time to vaccinate a large portion of the population before the 

immunity begins to expire. The right side of Table 2 shows that immunity 

with an average duration of 500-1000 days can nearly end the epidemic even 

if the vaccination rate is moderate. Unfortunately, vaccinal immunity appears 

to have such a short duration [20] that even high vaccination rates still allow 

a substantial case rate (left side of Table 2). The duration of immunity is a 

vital consideration, and will be revisited when Tables 7, 10, 11 and 12 are 

discussed. 

NPIs like masking and social distancing, far from being replaced by 

vaccination, are essential to allow vaccination to have its best effects. Table 3 

assumes that Populations 1 and 2 maintain a lockdown parameter of 0.5 until 

day 500, about 4.5 months after the vaccine is introduced. Then they may 
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reduce their adherence to NPIs. For a vaccination rate of 0.74%/day (for 

Population 1), if both Populations 1 and 2 maintain a lockdown parameter of 

0.5 after day 500, the case rate is a low 42.5 cases/thousand/year. If Population 

2 drops its lockdown parameter to 0.25, the case rate multiplies by more than 

seven times. If Population 1 also drops to 0.25, the case rate multiplies by 16 

times over the 0.5/0.5 rate. If both populations drop the lockdown parameter 

to zero, the case rate is 26.5 times the 0.5/0.5 value, even if vaccination 

continues. This is a striking result. Even with a low R0 of 2.87 and rapid 

vaccination with an excellent vaccine, a partial dropping of NPIs results in a 

surge of cases. 

It might be supposed that a high vaccination rate could shield the 

population from the dropping of NPIs because vaccination could replace 

NPIs. The simulation results do not support this prediction. Table 3 shows 

that vaccination plus NPIs produces much lower case rates than NPIs alone 

or vaccination alone can produce. In Table 3’s upper left hand corner, NPIs 

without the vaccine produce a case rate of 773.6; in the lower right hand 

corner, a rapid vaccination rate without NPIs produces a rate of 978.6; with 

both vaccine and NPIs working together (lower left of Table 3), the case rate 

can be as low as 19.0 cases/thousand/year.  

The reason for the importance of NPIs is straightforward. In the SEIIS 

model, the number of new cases per iteration is proportional to the number 

of susceptibles (Eq. 1). If a population has a lockdown parameter of 0.5, it is 

protecting half of its susceptibles from infection. If it drops its lockdown 

parameter to zero, it doubles the number of susceptibles the virus can infect, 

which will quickly double the number of new infections. These results recall 

the conclusion of several simulation papers in the Introduction that 

emphasized the importance of NPIs to the success of the vaccine.  

However, Table 3 used a low R0 of 2.87, so the R0 could almost be 

brought below 1.0 by a lockdown parameter of 0.5. If Table 3 was given an R0 

of 5.0, the zone of relative success at the lower left of Table 3 disappears and 

all the case rates become higher. With an R0 of 5.0, the equivalent case rate for 

1% vaccination and a lockdown parameter of 0.5/0.5 is 762.8 

cases/thousand/year; the case rate for no vaccination and no NPIs is 2016.1 

cases/thousand/year. A higher R0 reduces the effect of both NPIs and 

vaccination. 

Table 4 also shows the powerful effect of abandoning NPIs. Where 

Population 2 is zero (first row), cessation of NPIs causes case rates to multiply 

by more than 100 times. This happened because Population 1 was benefitting 

from both vaccination and NPIs, and its case rate was extremely low, 

allowing a big increase when NPIs are dropped. However, where Population 

1 is 50% or lower, cases that Population 1 caught from Population 2 raise case 

rates in the lower part of the table. In the last row of the table, dropping NPIs 

only increases cases by a factor of 2.1. This is not good news. It occurs not 

because the “0.0” column had low case rates, but because the “0.5” column 

had high case rates. When case rates are already high, they cannot increase 

by a big multiple. 

As of May 10, 2023, 81.4% of the US population had received one vaccine 

dose, 69.5% had received two doses, and only 17% had received at least one 

booster dose of the bivalent vaccine [4]. Table 5 explores the consequences of 

this fading interest in keeping vaccinations up to date. When Population 1 
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keeps getting vaccinated, its case rate is 33.1 cases/thousand/year, and 

Population 2’s rate is 62.6. When Population 1 undergoes a 1% decline per 

day in its vaccination rate (vaccination half-life of 69 days), the final case rates 

for Populations 1 and 2 are 666.0 and 690.7 cases/thousand/year, both high 

and almost equal. Population 2‘s case rate has gone up by a factor of 11 due 

to the vaccine negligence of Population 1, not any change in Population 2’s 

behavior. This provides another example of the linkage between Populations 

1 and 2. 

Table 6 shows the effect of variants with increased R0 values on case 

rates. Even an increase of R0 from 2.87 to 3.5 increases the post-vaccine case 

rate by a factor of almost 8 with a fast vaccination rate of 0.74%/day. If the 

increase is from an R0 of 2.87 to 5.0, the case rate goes up by 21.7 times for the 

0.74%/day vaccination rate. Also, the effectiveness of increasing the rate of 

vaccination declines as R0 rises. A very high vaccination rate of 2.5% of the 

susceptibles/day can drop the case rate by 90% (over the 1% vaccination rate) 

when the R0 = 5.0, but when the R0 reaches 10, even this extreme vaccination 

rate only drops the case rate by 27% below the level produced by a 1% 

vaccination rate, and only 43% below a zero vaccination rate. High R0s 

multiply case rates, and realistic vaccination rates (even with the simulated 

universal coronavirus vaccine) cannot keep up.  

Another startling conclusion from Table 6 is that once R0 reaches a level 

between 5.0 and 10.0, it seems that vaccination has only a weak effect on case 

rates. When R0 = 2.87, a vaccination rate of 0.74%/day lowers the case rate by 

95% as compared with the case with no vaccination. Where R0 = 5.0, 

vaccination at the same rate only produces a reduction of 40%. When R0 = 

10.0, a 0.74%/day vaccination rate only lowers the case rate by about 17% over 

the case with no vaccination at all. To cut the R0 = 10.0 case rate in half would 

require an impossible sustained vaccination rate of 3.3% of Population 1 

susceptibles per day. A realistic range of R0s almost neutralizes the ability of 

even the hypothetical pan-coronavirus vaccine to reduce cases. 

Why can variants with high R0s escape control by the vaccine? The 

escape does not occur because high-R0 variants evade the immune response; 

the simulated vaccine remains 100% effective against all variants. The higher 

case rates result from the fact that the disease spreads faster than vaccinations 

can be given. In a Population 1 simulation with R0 = 2.87 and a vaccination 

rate of 0.74%/day, at the end of year 5, Population 1 had experienced 0.69 x 

106 cases and 4.6 x 106 vaccinations. That is, with a 2.87 R0, the number of 

vaccinations dwarfs the number of new cases. On the other hand, when R0 

was 10, those two cumulative numbers for Population 1 were 5.6 x 106 cases 

and 2.1 x 106 vaccinations. A higher R0 has drastically increased the number 

of new cases, which now exceed the number of vaccinations. In an 

environment with high-transmission variants, one might imagine that the 

disease and the vaccine are in a race to convert susceptibles to either new 

cases (by contracting the disease) or to vaccine-induced immunes. The 

relative advantage of the vaccine in this race falls in Table 6 as the R0 

increases. 

Table 7 shows the importance of the duration of immunity when high 

R0 values are present. Longer durations of immunity are always helpful 

because they give even moderate rates of vaccination the chance to cover 

more of the population before vaccinal immunity expires. An immune 
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duration of 135 days allows a variant with an R0 of 10 to give the average 

member of the population 1.7 COVID cases per year (case rate of 1689.7 

cases/thousand/year). With an immune duration of 750 days, the same high-

transmission variant can only give the average member of the population a 

15% chance of one COVID case per year (case rate of 154.8 

cases/thousand/year). 

A major paradox of the results in Tables 1-7 is that they predict a much 

worse COVID epidemic than actually exists in 2023-2024. In the US in early 

2024, rates of compliance with NPIs and booster vaccinations were extremely 

low, and new variants such as JN-1 were present. The JN-1 variant first 

appeared in the CDC “Nowcast” report on October 28, 2023, and by February 

24, 2024 had accounted for 96.4% of specimens sequenced [22]. The 2024 

COVID environment in the US certainly seems to be active and dynamic.  

However, while US COVID hospitalizations rose and then fell in early 

2024, the data do not resemble anything like the omicron surge of early 2022. 

In that surge, there was a peak of 150,000 hospitalizations/week in January 

2022. In contrast, there were only 15,141 hospitalizations/week by 2 March 

2024 [23]. Using the ratio of 14.46 cases/hospitalization mentioned in the 

Methods, the estimate of the case rate on 2 March 2024 is 218,939 cases/week 

= 34.5 cases/thousand/year for the US population of 330,000,000. This 

moderate case rate seems more in line with present American experience than 

predicted rates of over 1000 cases/thousand/year that are common in Tables 

3-7. So why are COVID case rates relatively low in the US, despite cessation 

of NPIs, low vaccination rates, and fast-spreading new variants? While a 

definitive answer is unclear, there are some possibilities. 

One explanation for moderate case rates is that the R0s of the new 

variants are lower. This would produce lower rates of infection, but it is 

difficult to explain how viral evolution would favor a change to a lower R0.  

On the other hand, perhaps strengthening host secondary immunity has 

made viral R0s lower, perhaps by lowering the probability that an encounter 

with the virus will cause an infection. This hypothesis was explored in Tables 

8 and 9. 

A third explanation in the US popular press is that COVID symptoms 

have become significantly milder [24], and so even though the rate of new 

cases may be high, most cases are unreported or ignored. This hypothesis is 

not supported by the data on US hospital admissions. In the 20 weeks from 

14 May 2022 through 24 September 2022, in the aftermath of the omicron 

surge in January 2022, the average new US hospital admissions due to 

COVID averaged 33,970/week. In the 20 weeks from 30 September 2023 

through February 10, 2024, the average was 22,317 admissions/week [22]. 

This rate of admissions is lower than in 2022, but the disease in the US in late 

2023 and early 2024 was still severe enough to cause tens of thousands of 

Americans to visit an emergency room each week. Also, the average number 

of deaths/week from COVID-19 in January and February 2024 was 1791.9. 

This is about 70% of the US weekly death toll in the second half of 2022. The 

2024 death rate is lower, but still almost 2,000 deaths per week. 

Tables 8 and 9 explore the possibility that high rates of past disease have 

strengthened the immune systems of potential patients so that the virus 

cannot infect them as readily. In practical terms, the R0 of the virus has been 

reduced. For example, for a variant with an R0 of 10, the simulated case rates 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 19, 2024. ; https://doi.org/10.1101/2024.04.16.24305929doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.16.24305929
http://creativecommons.org/licenses/by-nd/4.0/


in years 2-5 fell from 1689.7 cases/thousand/year with no R0 reduction to 

fewer than 100 cases/thousand/year with strong reduction. As simulated, this 

hypothesis does not include any shortening of the average immune duration 

of 135 days. 

Another possibility, which would be possible to demonstrate 

experimentally, is that infections and vaccinations have left R0 unaltered, but 

have lengthened the average duration of COVID immunity. Recall that the 

data of Menegale et al. [20] implied that the average duration of immunity 

from the first COVID vaccine dose was less than 135 days, but the average 

duration from the second dose was less than 223 days, significantly longer. 

This suggests that the duration of vaccinal immunity might be increasing, 

perhaps due to exposure to viral antigens. 

Table 10 explores the consequences of an increasing immune duration. 

Using model results on the number of infections and vaccinations 

experienced by Population 1 and Population 2, the model increases the 

duration of immunity as these numbers build. In the “R0 = 10.00” column  of 

Table 8, the final duration of immunity for the “+0.01” line had risen from 135 

days to 708 days for Population 1 and to 610 days for Population 2. These 

lengthened periods of immunity drastically reduced the case rates for the 

combined (1+2) population from 1689.7 cases per thousand/year (without 

lengthening) to 299.1 (with lengthening), even for a variant with an R0 of 10. 

For a lengthening of 0.05 days per percent, an R0 of 10 only produced a rate 

of 63.7 cases/thousand/year. Case rates for lower R0s sometimes even met the 

“Fauci standard” of being less than 10 cases/thousand/year.  

In order to determine why these sharp case reductions occurred, Table 

11 examines some details of the R0 = 10 column of Table 10. First, as duration 

of immunity increases, cases decrease sharply, and immunity shifts from 

dominance by disease-induced immunity to a greater role for vaccine-

induced immunity. In other words, increasing duration of immunity 

promotes immunity without disease. 

Table 12 explores the hypothesis of lengthening duration of immunity 

in another way. It simulates a relatively controllable “base” epidemic and 

then progressively adds more and more negative developments such as 

arrival of high-transmission variants, dropping of NPIs, and a Population 1 

that loses interest in getting vaccine boosters. Either R0 reduction or immune 

duration enhancement was able to cut cases sharply, and increase in immune 

duration reduced cases to about 10% of the rate they had had before the 

enhancement was added. 

While the simulations show that R0 reduction or immune duration 

enhancement could reduce case rates, determining whether one or both of 

these theories are correct would require more direct evidence of disease 

effects on R0 and immune duration.  

To conclude, this study verified many unsurprising results (e.g., faster 

vaccination rates and less vaccine hesitancy can reduce long-term case rates). 

However, some findings were surprising.  

First, the success of even a universal coronavirus vaccine that confers 

immediate sterilizing immunity can be limited by many common conditions. 

Just to take two examples, Table 1 shows that a decrease of Population 1 from 

68% to 50% (with a 0.74%/day vaccination rate) can increase the long-term 
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case rate by almost five times. If the vaccination rate also drops from 

0.74%/day to 0.5%/day, the increase will be almost eight times.  

Another striking example is the effect of the reduction of NPIs in Table 

3. It was remarkable that even if vaccination continues at 0.74%/day, 

decreasing the lockdown parameter (in both Population 1 and 2) from 0.5 to 

0.25 results in a 16-fold increase in case rates, and abandoning NPIs entirely 

increases case rates by 26.5 times. The R0 in both Tables 1 and 3 was a constant 

2.87. While this example was not in the tables, if we combine a dropping of 

NPIs to zero with an increase of R0 from 2.87 to 5.00 after day 500, the long-

term case rate multiplies by almost 40 times. 

The second major finding was the paradox that despite the end of NPIs, 

declining interest in getting booster vaccinations, and the presence of new, 

fast-spreading variants, COVID case rates are relatively low in the US in early 

2024. A common theory quoted in the American popular press is that 

immunity to COVID is high because large numbers of Americans had been 

vaccinated or had had the disease [24]. However, Tables 6 and 7 show that 

high-R0 variants could not be constrained by an immunity with an average 

duration of only 135 days. If we assume the exponential model of immune 

waning and a mean duration of vaccinal immunity of 135 days, the majority 

of the US population that got vaccinated for the last time in early 2022 is now 

5.4 average immunity durations past their last vaccination (about 7.8 half-

lives). Less than 1% of their vaccinal immunity should be left. 

To answer the question of why COVID case rates are so low in the US 

in early 2024, this paper hypothesizes that past exposure to the virus is either 

making it more difficult for the virus to infect or increasing the duration of 

immunity (Tables 9 and 10). Of course, as already observed, verifying that 

this is true would demand direct observation on resistance to infection and 

changes in the duration of immunity, and elucidation of the mechanisms by 

which these effects occur.  

There are reasons to accept these results with caution. First, the SEIIS 

model used here is a simple compartmental model. It did not simulate the 

age or health structure of the US population, and it had no mortality. There 

was no seasonal increase in infections. It assumed that every organism in the 

susceptible compartment reacts the same way, and the same is true for every 

organism in the immune compartment. These are important simplifications. 

One can imagine that susceptibles that had been infected by the virus before 

might react differently to a new contact with the virus than susceptibles that 

had never been infected. An organism entering immunity for the first time 

might be in a different compartment (and have a different immune waning 

rate) from an immune organism that has had multiple past infections.  

Also, we must consider another general weakness of simulations. 

Assuming that they include the proper relationships and parameters, 

simulations estimate what would happen if a set of conditions is continued 

for the length of the simulation. If real-world case rates were escalating 

drastically, the parameters of a real system would tend to react and change--

NPIs would hastily be restored, vaccination speeds would go up, and some 

Population 2 individuals would shift to Population 1. The proposed 

increasing duration of immunity is an example of a change that would 

moderate results. 
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The model also implicitly assumed that the members of the whole 

population were interacting randomly with one another. The complex 

history of COVID-19 in the US has many examples where cases would flare 

up in a region, but then decrease without spreading nationwide. For example, 

at the height of the pandemic, the US popular press mentioned a “two-month 

COVID cycle,” in which cases tend to increase for two months and then 

recede, for unknown reasons [25].  

The SEIIS model used here is simple, but even a simple model can lead 

to insights. If the data do not match the model, we know we have to look for 

other explanations than the ones the model supplies. 

5. Conclusions 

The first major conclusion of the paper is that many factors aside from 

vaccine efficacy can affect the success of a COVID vaccination campaign. 

Despite the fact that the simulated vaccine always had 100% efficacy against 

infection, it frequently allowed high rates of disease, particularly when non-

pharmaceutical interventions such as masking were dropped, high-

transmission variants were present, and vaccine hesitancy was moderate or 

severe. The second major conclusion was that the basic model could not 

explain the seemingly low rates of disease in the US in 2023-2024. The paper 

hypothesized that some factor (probably connected with long-term 

enhancement of the immune system due to contact with viral antigens) is 

reducing the COVID-19 case rates. 
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