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Abstract 

 

Background: 

The COVID-19 pandemic has caused serious health problems and has had major 

economic and social consequences worldwide. Understanding how infectious 

diseases spread can help mitigating the social and economic impact. 

Objective: 

The study focuses to capture the degrees of disproportionality in prevalence rates of 

infectious disease across different regions over time. 

Methods: 

We analyze the numbers of daily COVID-19 confirmed cases in the United States 

collected by Johns Hopkins University over 1100 days since the first reported case 

in January 2020 in order to assess quantitatively the disproportionality of the 

confirmed cases using the Theil index, a measure of imbalance used in economics.  

Results:  

Our results reveal a dynamic pattern of interregional disproportionality in the 

confirmed cases by monitoring variations in regional contributions to the Theil 

index as the pandemic progresses. 

Conclusions: 

The combined monitoring of this indicator and the confirmed cases is crucial for 

understanding regional differences in infectious diseases and for effective planning 

of response and resource allocation. 

Keywords: Infectious disease; COVID-19; Epidemiology; Pandemic; Inequality measure; 

Information theory; Kullback-Leibler divergence 

 

 

Introduction 

The COVID-19 pandemic has caused serious health problems and has had major 

economic and social consequences worldwide. A number of indicators and models 

have been proposed to address the problem, and mechanisms for the spread of the 
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infection and intervention measures to control the pandemic have been studied [1–

7].  

Several studies have investigated regional differences in COVID-19 prevalence [8–

11]. Differences in prevalence rates between regions underscore the importance of 

understanding regional imbalances in pandemic response strategies. Effectively 

addressing these imbalances requires accurate quantification and understanding of 

the regional disproportionalities of daily COVID-19 confirmed cases. 

In the field of economics, various indicators have been developed to measure 

resource and income inequality, including one proposed by Theil incorporating 

information theory [12]. In reference [13], the authors demonstrate the value of 

using inequality indices to monitor changes in geographic inequality, and the Theil 

index was used to track geographic inequality over time in the COVID-19 pandemic, 

providing important insights to inform public health policy. 

The aim of this paper is to quantify the interregional disproportionality in numbers 

of the confirmed cases using the Theil index, which corresponds to the Kullback-

Leibler (KL) divergence in information theory [14]. It is an effective method of 

measuring the degree of disproportionality and objectively assessing the bias in the 

interregional distribution of infected individuals. 

 

Methods 

The Theil index is commonly applied in various fields including economics, 

sociology, and information theory. The index quantifies the relative differences 

between various components of a dataset. In the context of regional analysis of the 

confirmed cases, the Theil index can be employed to evaluate the distribution of 

infected individuals across different regions. In this study, we utilize the Theil index 

to identify regions with disproportionate numbers of the confirmed cases relative to 

their population size by comparing the distribution of the confirmed cases with the 

overall population distribution. 

The discrete form of Theil index is expressed as 

� � ∑ ����
��

��

�
���   

where � is the total number of considering regions and ln is the natural logarithm. 

The ��  which is described as the discrete probability distributions in region � is the 

ratio of daily confirmed cases in a region and it in whole region per a day and, 

similarly, the 	�  is the ratio of the population in a region and it in whole region.  
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The Theil index, which shares the same property as the KL divergence, is a non-

symmetric metric that measures the relative entropy or difference in information 

represented by two distributions. It is sensitive to the interregional distribution of 

the confirmed cases, with its maximum value attained when the confirmed cases are 

concentrated in areas with the smallest population proportion. Consequently, the 

index tends to exhibit higher values when a small number of regions account for a 

large share of the confirmed cases, and conversely, lower values when the 

confirmed cases are more evenly distributed across regions. Notably, it remains 

non-negative and reaches a minimum value of 0 only when the two distributions are 

identical. Therefore, applying the Theil index to the timeline data of the confirmed 

cases, changes in the index over time can be used to quantify the degree of spread of 

infectious diseases and to assess whether a disproportionate concentration of 
infected individuals relative to the population is occurring. 

Results 

We analyze the time trend of daily COVID-19 confirmed cases in the United States 

over 1100 days since the first reported case on January 21, 2020 [15]. Data are 

taken from the COVID-19 data repository at the Center for Systems Science and 

Engineering (CSSE) at Johns Hopkins University [16]. Population data by U.S. state 

were obtained from [17]. Note that population changes due to migration, births, and 
deaths were ignored throughout the analysis. 

Figure 1. Time trends of the Theil index on the left axis and the number of 7-day averages of the confirmed 

cases on the right axis on a logarithmic scale are shown in the red and blue curves, respectively. The horizontal 

axis is the number of days elapsed since January 21, 2020. 

Before showing the results, if we use the confirmed cases as it is, the Theil index will 

fluctuate greatly due to the way the data is aggregated in holidays differs depending 
on regions, so we use the 7-day average instead of raw data. 
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The Fig. 1 is a two-axis graph showing the time trends of the Theil index on the left 

and the number of the confirmed cases on the right, on a logarithmic scale. The 

horizontal axis is the number of days, denoted by t in the text, elapsed since the date 

when the first case was reported in the U.S.. 

It is important to note that increases and decreases in the Theil index simply 

indicate the degree of disproportionality in the confirmed cases and do not 

correspond to increases or decreases in the number of infected individuals. In other 

words, this indicator is effective when monitored in conjunction with actual trends 

in the number of the confirmed cases. 

In Fig. 1, there are eight notable surges of the confirmed cases, occurring at around t 

=80(1st), 180(2nd), 350(3rd), 450(4th), 580(5th), 720(6th), 900(7th), and 

1080(8th) respectively. Before the first peak, the number of the confirmed cases is 

quite low and the Theil index fluctuates unstably. As t increases near the 1st peak, 

the Theil index appears to gradually decrease, reaching a local minimum around t = 

120. This implies that a fairly localized epidemic at the beginning of the COVID-19 

pandemic spreads rather equally throughout the U.S.. For the other peaks in the 

confirmed cases, the similar phenomena can be confirmed, namely the increase of 

the Theil index occurs to some extent before the peak and then the Theil index 

decreases. This can be seen as a precursor to a surge of infected individuals as 

discussed in ref. [5]. 

It is interesting to check some examples. Practically, when the index value is high 

and the number of the confirmed cases is low (t = 60, 550, etc.), it indicates that the 

infection is occurring locally and spreading to various regions. On the other hand, 

when the index is low and the number of the confirmed cases is high (t = 750, etc.), 

it indicates that there is no clear epicenter of infection and that the number of the 

confirmed cases is increasing equally in different regions. 
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Figure 2. Contributions to the Theil index from each region are shown by a heat-map over the time. The positive 

(high concentration of prevalence) and negative (low concentration) contributions to the Theil index 
correspond to the deep red and blue color, respectively.  

The contributions to the Theil index from each region over time are visualized by 

the heat-map as shown in Fig. 2 where regions with a high concentration of the 

confirmed cases relative to the population are colored in red, while blue regions 

indicate lower concentrations. There is a somewhat long interval between the deep 

red patches in some regions such as California, Florida and New York. In other 

words, the periods of intense infection represented by the deep red patches were 

not repeated at short intervals. This phenomenon is of great importance in 

infectious disease responses. Once a major epidemic in an area has subsided, the 

interval between subsequent outbreaks provides an opportunity to rebuild the 

healthcare system and implement preventive measures before the next epidemic 

occurs.  

Based on the observations from Fig. 2, it is apparent that the epicenter of infectious 

diseases, indicated by the red patch, alternates among New York, California, and 

Florida. This insight is crucial for understanding the spread mechanism of future 

infectious diseases. Furthermore, after t = 750, both the red and blue colors fade 

over time, suggesting the absence of a clear epicenter and indicating a widespread 

outbreak of COVID-19. This suggests the ineffectiveness of countermeasures against 

the spread of infectious diseases under these circumstances. 

 

Discussion 

Regional disproportionality is a critical factor influencing strategy formulation in 

the fight against the COVID-19 pandemic. A detailed analysis of infection patterns in 

different regions facilitates the development of more targeted and efficient region-

specific interventions. Furthermore, if the distribution of infectious diseases is 

highly imbalanced, one could consider that there is an opportunity to rearrange the 

allocation of health care resources. 

The combined monitoring of Fig. 1 and 2 allows us to show the epicenter of 

infectious diseases and their concentration at any time. As indicated in the results 

section, it was also found that once an infectious disease concentration decreases, 

there is some interval before the next concentration occurs. Therefore, while 

monitoring, it is necessary to concentrate countermeasures in areas where there is a 

concentration of infections and prepare for the next concentration of infections in 

other areas. 
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(a) (b) 

Figure 3. Contributions to the Theil index from each region at t = 60. The horizontal axis shows the state code 
given in Tab. 1. (a) Contributions to the Theil index from each region. The vertical axis shows the strength of the 

contribution to the Theil index. (b) Comparison of the distribution of the confirmed cases and population. The 
vertical axis shows the ratio of a part to the whole region for populations and for the confirmed cases. 

Table 1. The list of state code used in this paper.  

1: Alabama 2: Alaska 3: Arizona 4: Arkansas 5: California 
6: Colorado 7: Connecticut 8: Delaware 9: Florida 10: Georgia 
11: Hawaii 12: Idaho 13: Illinois 14: Indiana 15: Iowa 
16: Kansas 17: Kentucky 18: Louisiana 19: Maine 20: Maryland 
21: Massachusetts 22: Michigan 23: Minnesota 24: Mississippi 25: Missouri 
26: Montana 27: Nebraska 28: Nevada 29: New 

Hampshire 
30: New Jersey 

31: New Mexico 32: New York 33: North Carolina 34: North Dakota 35: Ohio 
36: Oklahoma 37: Oregon 38: Pennsylvania 39: Rhode Island 40: South Carolina 
41: South Dakota 42: Tennessee 43: Texas 44: Utah 45: Vermont 
46: Virginia 47: Washington 48: West Virginia 49: Wisconsin 50: Wyoming 

 

As it is mentioned in the previous section, enhancement of the Theil index can be 

seen as a precursor of a surge of the confirmed cases. In fact, just before the 1st, 4th, 

6th and 7th surges, concentration of the confirmed cases is occurred in New York, 

and before the 2nd, 5th surges occurred in Florida. 

Fig. 3(a) shows the contributions to the Theil index by region at t = 60. The 

horizontal axis in the figure shows the state code given in Tab. 1. There is a notable 

contribution to the Theil index from New York State which is prominent relative to 

the other regions. We also find that New Jersey and Massachusetts have a relatively 

large positive contribution to the Theil index due to the concentration of the number 

of the confirmed cases relative to the population and are better treated as the same 

group as New York due to their geographic proximity to each other. It can be clearly 

seen in Fig. 3(b) that the confirmed cases are quite localized in these regions. 

There is a relatively large negative contribution to the Theil index from California, 

Florida, and Texas, which are regions of high population ratio. It is interesting to 

note that these are regions where there was little risk of infection at that time, but 
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where the number of infected individuals rapidly increased after the concentration 

of the confirmed cases in New York took place. 

The concentration of infections in New York at t = 60 as shown in Fig. 3(a) and (b) 

cannot be overlooked when considering infection control. The lockdown was 

implemented in New York city at the time when the contribution to the Theil index 

was concentrated in New York state. While it is impossible to assess the impact of 

the lockdown measures on the Theil index alone, the concentration of the confirmed 

cases in New York state suggests that the lockdown was implemented at the 

appropriate time. However, given that the contribution to the Theil index from New 

Jersey and Massachusetts which can be treated as the same group as New York was 

larger in positive values than the other regions, if lockdown measures are an 

appropriate response to contain COVID-19 infection, it may have been necessary to 

implement strong measures in these regions simultaneously to prevent the spread 

of COVID-19 throughout the country. 

  
(a) (b) 

Figure 4. Contributions to the Theil index from each region at a specific date. The vertical axis shows the 

strength of contribution to the Theil index. The horizontal axis shows the state code given in Tab. 1. (a) 
Contributions of the Theil index at t = 550. (b) Contributions of the Theil index at t = 750. 

The Fig. 4 shows the contributions of the Theil index from each region at t = 550 and 

t = 750. At t = 550 shown in Fig. 4(a), the Theil index is a peak and trend of the 

confirmed cases is increasing, suggesting that the new epidemic occurred mainly in 

Florida and Louisiana. However, their contributions are fairly smaller than that from 

New York at t = 60 in Fig. 3. This indicates that the regional imbalance is much less 

than in the early stage of the COVID-19 pandemic. It is also interesting to look at the 

case at t = 750 shown in Fig. 4(b), when the confirmed cases in the US are at their 

maximum. In this figure, although there are several regions with large contributions 

to the Theil index, the epicenter of COVID-19 is no longer clear, meaning that COVID-

19 is evenly distributed across the regions. 

Conclusions 

In conclusion, this study demonstrates the effectiveness of Theil index in quantifying 

regional disproportionalities in the confirmed cases and monitoring their evolution 

over time. By analyzing data of the confirmed cases in the United States, we have 
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clarified patterns of disproportionalities in the confirmed cases, specifying 

epicenters and occurring localized outbreaks. 

Continued monitoring and analysis of regional differences in COVID-19 

transmission remains essential, especially in light of emerging variants and evolving 

public health responses. Our findings highlight the importance of understanding 

regional dynamics of infected individuals for responses of pandemic. Metrics such as 

Theil index provide valuable tools for policymakers and public health officials to 

allocate resources effectively and tailor interventions to specific regional needs. 

Incorporating evidence from this study will enable policymakers to refine strategies 

and address the different needs of different regions, ultimately increasing the 

effectiveness of pandemic response efforts and mitigating the impact of future 

health crises. 

Lastly, the decomposability of the Theil index makes it possible to quantify and 

compare disproportionality in groups with specific characteristics, such as age, 

vaccination coverage, and accessibility of health care, and identifying these 

disproportionalities will provide important insights for future pandemic responses. 
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