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Abstract:  Statistical laws arise in many complex systems and can be explored to gain insights into their 21 
structure and behavior.  Here, we investigate the dynamics of cells infected with severe acute respiratory 22 
syndrome virus 2 (SARS-CoV-2) at the system and individual gene levels; and demonstrate that the statistical 23 
frameworks used here are robust in spite of the technical noise associated with single-cell RNA sequencing 24 
(scRNA-seq) data.  A biphasic fit to Taylor’s power law was observed, and it is likely associated with the larger 25 
sampling noise inherent to the measure of less expressed genes.  The type of the distribution of the system, as 26 
assessed by Taylor’s parameters, varies along the course of infection in a cell type-dependent manner, but also 27 
sampling noise had a significant influence on Taylor’s parameters.  At the individual gene level, we found that 28 
genes that displayed signals of punctual rank stability and/or long-range dependence behavior, as measured by 29 
Hurst exponents, were associated with translation, cellular respiration, apoptosis, protein-folding, virus 30 
processes, and immune response. 31 
 32 
Author summary:  Viruses replicate within susceptible cells by exploiting the cellular machinery.  33 
Consequently, cells initiate defenses against the virus and signal other cells, notably immune cells.  This 34 
ongoing battle prompts significant alterations in the cells’ gene expression patterns throughout the infection 35 
process.  In this study, we apply statistical principles from complex systems theory to analyze gene expression 36 
data from individual cells infected with SARS-CoV-2.  Our research aims to elucidate how viral infection 37 
impacts cells at both systemic and individual gene levels.  Our primary findings are twofold: (i) the virus 38 
influences the distribution of gene transcripts over the course of infection, varying depending on cell type.  (ii) 39 
As the infection progresses, numerous genes associated with critical cellular functions and immunity exhibit 40 
signs of punctual instability and/or autocorrelation, indicating their response to viral infection at various stages 41 
of the process. 42 
 43 
Keywords: complex systems; host-virus interaction; rank stability; single-cell genomics; systems biology; 44 
Taylor’s law; transcriptomics 45 
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Introduction 47 
Transcriptomics analyses commonly rely on linear models to test whether the mean expression of any set of 48 
genes is altered in response to a treatment or condition, which are usually treated as factors in the model.  49 
Although changes in gene expression level are of the utmost importance in Biology, aspects about the whole 50 
system behavior are not captured by these models.  Another limitation of linear models is that by treating 51 
conditions as factors might lead to the loss of important information about the time course variation of 52 
transcripts.  For instance, in single-cell RNA-sequencing (scRNA-seq) data, cells from the same cell type can 53 
be at distinct differentiation stages during sample preparation.  Thus, the inference of a continuous pseudotime 54 
trajectory of the transition from one cell type/stage to another, where each cell is assigned a value based on its 55 
relative position along it, can provide a continuous covariate for statistical models with higher sensitivity than 56 
factors to identify differentially expressed genes [1,2].  Accordingly, it has been recently shown that along the 57 
progression of cellular infection, the response to severe acute respiratory syndrome virus 2 (SARS-CoV-2) is 58 
triphasic, and that treating infected cells as one factor in an infected vs. uninfected linear model will lead to 59 
biases in identifying differentially expressed genes [3]. 60 

Several statistical models and frameworks have been applied to transcriptomics data to model its structure 61 
and disentangle useful biological information from sampling noise and/or intrinsic stochastic biological 62 
variation.  A recent study identified various emerging statistical laws from complex compartment systems on 63 
scRNA-seq data [4].  While the negative binomial distribution is often used to model both scRNA-seq and 64 
bulk RNA-seq count data, scRNA-seq data present some unique characteristics.  The low capture rate of 65 
transcripts in scRNA-seq experiments makes that only about 10 - 20% of the transcripts from each cell are 66 
sequenced [5,6].  Due to this phenomenon, known as dropout, where a gene is expressed in a cell but its 67 
transcripts are not captured, gene count matrices from this type of experiments are sparse.  Protocols for the 68 
preparation of scRNA-seq data also often rely on unique molecular identifier (UMI) tags that are added to the 69 
transcripts during RT-PCR to drastically reduce amplification bias [5,7-9]. 70 

The dynamics of various cellular processes can be explored with statistical models from complex systems.  71 
For instance, power law relationships arise naturally in many complex systems, including in scRNA-seq data 72 
[4].  In particular, an empirical law known as Taylor’s law states that there is a power relationship between the 73 

mean of an element x and its standard deviation in the form of 𝜎 = 𝑉⟨𝑥⟩! [10].  If β = 0.5, then the system 74 

dynamics follows a Poisson distribution, and if β = 1, then the system fits to an exponential distribution, 75 
meaning that its elements are aggregated [10-12].  In the special case of time series data, Taylor’s parameter V 76 
has been used as a proxy of system stability through time for data from the human microbiome [12].  In log-77 
log scale, V is the intercept term.  Whenever V is large, the standard deviation of each element in the system 78 
will also be large, a fact that is associated with system instability. 79 

The long-range dependence of a time series is a feature that has been thoroughly studied with the so-80 
called Hurst’s rescaled range analysis [13-15].  Records in time are associated to an index H, known as Hurst 81 
exponent, that runs between zero and one and, importantly, has an interesting interpretation.  Values of H > 0.5 82 
convey that the temporal sequence presents persistence.  This is a kind of bias which means that the future 83 
variations tend to be similar to the past ones in the sequence.  Antipersistence (H < 0.5) is defined the other 84 
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way around.  Hurst found empirically that a large number of natural processes studied with the rescaled range 85 
yield H values close to 0.7, which is termed Hurst phenomenon in the literature.  This analysis has been applied 86 
to temporal transcriptomic data from Escherichia coli and Saccharomyces cerevisiae, where it was shown that 87 
most genes exhibited H > 0.5 values, which are indicative of persistent long-range dependence [16].  Also, in 88 
a recent study, the rescaled range analysis shows the persistent character of the distribution of mutations along 89 
human chromosomes [17]. 90 

Here, we aim to gain insights into the structure and system behavior of cells infected with SARS-CoV-2 91 
along the course of infection.  We first hypothesize that the rank dynamics of transcripts and system behavior 92 
of scRNA-seq data from infected cells can be explored by fitting gene abundances to Taylor’s law.  We find 93 
that, in all cases, fluctuations grow with mean value on a biphasic Taylor’s law, consisting in a Poisson and an 94 
exponential laws separated by a breaking point.  Both, progression of infection and sampling noise have a 95 
significant impact on the estimation of Taylor’s parameters.  The rank dynamics of a gene gives us information 96 
about its relative importance in the system.  For each gene, we investigate whether its rank is stable and 97 
calculate their associated Hurst exponent along the course of infection.  The robustness of these methods was 98 
further assessed by the use of control datasets.  Overall, we found evidence of several genes exhibiting punctual 99 
rank stability and/or persistent behavior that are related to viral processes or immune responses that could serve 100 
as potential pharmaceutical targets for the treatment of COVID-19. 101 
 102 
 103 
Results 104 
Detection of SARS-CoV-2 genome and identification of infected cells 105 
The presence of viral RNA was investigated in four datasets from human bronchial epithelial cells (hBECs) 106 
[18] and six human intestinal epithelial cells (hIECs) [19], divided in three datasets from colon and three from 107 
ileum organoids.  Viral RNA was detected in all datasets, although the detection of SARS-CoV-2 RNA in 28 108 
mock-infected hBECs, 11 colon cells and 4 ileum cells are likely due to misalignments.  To differentiate 109 
between infected cells supporting viral activity from droplets that contained viral RNA from attached viral 110 
particles or ambient viral particles or RNA, we sought to estimate the mean SARS-CoV-2 UMI count from 111 
empty droplets to set a threshold for calling infected cells.  However, no viral RNA was detected in the empty 112 
droplets, and thus, a threshold of 10 viral UMIs was set.  With this strategy, 1%, 8.5% and 11.5% of hBECs 113 
were infected at 1, 2 and 3 dpi, respectively; 11.5% and 96.3% colon cells were infected at 12 and 24 hpi, 114 
respectively; and 23.9% and 95% ileum cells were infected at 12 and 24 hpi, respectively.  A high proportion 115 
of infected cells was observed, in particular for hIECs.  This is in contrast with the number of infected cells in 116 
these datasets reported in [19], where the infection rate was estimated to be lower than 10%.  Despite this, we 117 
decided to follow with our strategy due to the following two reasons.  First, in the original work with the hIECs 118 
datasets, the proportion of infected cells was estimated based on immunofluorescence staining of dsRNA and 119 
SARS-CoV-2 N protein [19].  It is likely that, at the beginning of infection, viral replication is low.  Therefore, 120 
dsRNA might not be readily detected and N protein translation might also be low or even not yet synthesized.  121 
This means that many infected cells at the beginning of infection might be missed by immunofluorescence 122 
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staining.  Second, keeping uninfected cells in our analyses should not compromise our results.  Instead, it 123 
would just make that the infection trajectory starts with uninfected cells, irrelevant for the application itself of 124 
statistical laws from complex systems to pseudotemporal scRNA-seq data. 125 
 126 
Transcript abundances fit a biphasic Taylor’s law 127 
Gene abundances data of SARS-CoV-2-infected cells are represented in the Taylor plot of Fig 1.  The 128 
distribution of points suggests a fit to a biphasic, or segmented, linear regression whose outcomes are in Table 129 
1.  The data from all three cell types fit better to the biphasic model than to an unsegmented model with no 130 
breakpoint (F-tests in Table 1).  In the biphasic model, two V and two β parameters are estimated, where V1 131 
and β1 are the ones estimated for the data points below the breakpoint and V2 and β2 the ones estimated for the 132 
data points above the breakpoint.  For larger abundances, we find a slope b » 1, characteristic of the exponential 133 

distribution.  For smaller abundances, we find a slope b » 0.5, characteristic of the Poisson distribution.  This 134 
biphasic behavior in the Taylor plot is most likely related to sampling noise for the low capture rate of 135 
transcripts in scRNA-seq protocols [20].  Additionally, the rank stability index (RSI; see Methods) was 136 
calculated for each gene.  Higher rank stability seems to be associated to high expressed genes that follow an 137 
exponential distribution (Fig 1). 138 
 139 

 
Fig 1.  Taylor’s law plots. 
For illustrative purposes, solid lines correspond to the exponential distribution (β = 1 and log(V) = 0), and 

dashed lines to the Poisson distribution (β = 0.5 and log(V) = –1.7), where log(V) was chosen to be –1.7 for 

better visualization.  The RSI of each gene is shown. 

 140 

Table 1.  Parameters of the segmented fit to Taylor’s law for infected cells.  Matrix sparsity (proportion of 

zeros), number of genes and number of cells are also shown. 

 hBECs colon ileum 

Matrix properties sparsity 0.77 0.76 0.72 
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Number of genes 7978 7567 8333 

Number of cells 3207 4703 4433 

F-test1 F 0.82 0.53 0.76 

P < 0.0001 < 0.0001 < 0.0001 

Segmented fit V1 0.02 0.03 0.04 

β1 0.48 0.53 0.57 

V2 0.25 1.47 1.28 

β2 0.9 1.12 1.07 

breakpoint (log(mean)) -3.16 -2.99 -3.07 

1One-tailed F-tests of the residuals of the segmented vs. unsegmented fits 

 141 
The simulated control datasets mimic the increase in sampling noise seen in infected cells 142 
In order to conduct a more thorough analysis of the progression of infection, infected cells were divided into 143 
bins with cells showing a similar viral load.  We found that 30 bins were a good compromise between number 144 
of bins and number of cells in each bin.  As infection progresses and cells accumulate more viral RNA, the 145 
sampling of cellular transcripts become compromised and a higher incidence of zeros in the matrix due to 146 
dropout is seen.  Therefore, to better understand the effect of dropout in the identification of temporal signal 147 
embedded in scRNA-seq data, we simulated the expected increase in sampling noise as infection progresses 148 
by down-sampling UMIs from uninfected cells.  The proportion of zeros per gene per bin of the simulated 149 
control datasets follows the same trend as true infected cells (S1A Fig).  To investigate whether the simulated 150 
dataset retains the same transcriptional profile from the uninfected cells, we performed standard clustering 151 
analysis with cells from the simulated dataset and their “matching” uninfected cell.  Cells from the simulated 152 
datasets clustered together with uninfected cells confirming that they still retain the same transcriptional profile 153 
(S1B Fig). 154 
 155 
Analysis of infection progression reveals signals of varying system dynamics 156 
To further investigate system stability throughout infection, Taylor’s parameters were estimated for each bin 157 
(see section above) in the three cell types.  An increase-decrease-increase pattern in both V and β was observed 158 
in hIECs (Fig 2A).  In these cells, V and β increase with sampling noise for the simulated dataset, in contrast 159 
to the pattern seen in infected cells (Fig 2A).  On the contrary, a similar pattern between the infected and 160 
simulated datasets was seen for hBECs, with an initial oscillation and a sharp increase of parameters V and β 161 
at the end of the infection. 162 

Mitochondrial expressed genes show an exponential distribution, even for lower abundances (Fig 2B; 163 
bins 27 and 28 for colon and ileum cells, respectively).  This suggests that they are not responding to infection, 164 
but rather their rank is shifting due to differences in the expression of other genes.  Detailed inspection of the 165 
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plots shows that, for hBECs, some nuclear genes, most notably LCN2, S100A2, S100A9, SCGB1A1, SCGB3A1, 166 
SERPINB3, SLPI, and WFDC2, generally follow an exponential distribution regardless of their rank, 167 
suggesting that, like mitochondrial genes, they are aggregating in most bins and may not be responding to 168 
infection.  We can observe how the thickness in the distribution of points in the Taylor’s plot changes with the 169 
infection process (Fig 2B).  This effect is due to the sparsity of the gene counts, which grows with infection 170 
(S1A Fig).  If the gene counts matrix contains an even number of zero and nonzero counts, a bell shape 171 
distribution of bins is observed (beginning of infection).  Otherwise, if the gene counts matrix contains a 172 
dominant number of zero counts, the shape distribution of bins is much thinner. 173 
 174 
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Fig 2.  Evolution of Taylor’s parameters along the infection. 
(a) Taylor’s parameters estimated from each bin for infected cells and the simulated datasets.  Dots represent 

selected bins which fits to Taylor’s law are shown in (b), where mitochondrial genes are shown in green; 

and for hBECs, selected nuclear genes that generally followed an exponential distribution regardless of rank 

are shown in orange.  Red lines correspond to the exponential distribution (β = 1 and log(V) = 0), and blue 

lines to the Poisson distribution (β = 0.5 and log(V) = –1.7), where log(V) was chosen to be –1.7 for better 

visualization. 
 175 

Next, we performed a segmented fit to Taylor’s law for each bin to estimate Taylor’s parameters in the 176 
biphasic regime.  Biphasic Taylor’s parameters V1 and β1, that fit to gene abundances with a Poisson behavior, 177 
exhibited a similar pattern to the unsegmented fit parameters V and β (S2 Fig).  Notably, β1 was lower than β 178 
at the beginning of infection, although V1 and β1 exhibited the same increase-decrease-increase behavior of V 179 
and β for hIECs.  As infection progresses, the breakpoint increases for all three cell types (S2 Fig). 180 

To further ascertain that the observed changes in Taylor’s parameters are not due to technical noise, we 181 
performed ANCOVA tests for the effect of infection progression (herein pseudotime; where each bin 182 
corresponds to a different point throughout the infection), cell type and their interaction on each Taylor 183 
parameter, while also adding the number of genes and matrix sparsity as covariates to control for increasing 184 
sampling noise in the system.  The rationale of adding these covariates is that as less cellular transcripts are 185 
captured due to increasing viral RNA accumulation a higher proportion of zeros will be observed and less 186 
genes will have their transcripts captured.  All explanatory variables, with the exception of sparsity for β, had 187 
a significant effect on parameters V and β.  The largest effect sizes (partial η2) were estimated for cell type and 188 
the interaction between pseudotime and cell type for parameter V and cell type, number of genes and the 189 
interaction between pseudotime and cell type for β (Table 2).  Additionally, we performed these analyses on 190 
the simulated control datasets.  Whereas sampling noise had a significant effect on Taylor’s parameters for the 191 
simulated datasets, its interaction with cell type was not significant for V and, although significant for 192 
parameter β, its effect size was lower than that of the infected dataset (Table 2).  From these analyses we 193 
conclude that noise induced by dropout has a uniform effect on Taylor’s parameter V and a cell type-dependent 194 
effect on parameter β, and that infection with SARS-CoV-2 induces changes in the distribution properties of 195 
the system that is also dependent on cell type. 196 

 197 

Table 2.  P-values from ANCOVA analysis of Taylor’s parameters for cells infected with SARS-CoV-2 and 

the simulated dataset.  Partial η2 values are shown in parenthesis (partial η2 ³ 0.15 are conventionally taken 

as large effects). 

 V β 

Effect infected simulated infected simulated 

Pseudotime < 0.0001 (0.33) < 0.0001 (0.44) 0.0096 (0.08) < 0.0001 (0.19) 
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Cell 0.0003 (0.18) < 0.0001 (0.85) < 0.0001 (0.46) < 0.0001 (0.94) 

Sparsity 0.0006 (0.13) 0.0187 (0.07) 0.87962 (2.81×10-4) < 0.0001 (0.46) 

Number of genes 0.0016 (0.11) 0.8539 (4.16×10-4) < 0.0001 (0.52) 0.0319 (0.05) 

Pseudotime-by-cell 0.0002 (0.19) 0.1033 (0.05) < 0.0001 (0.45) 0.0014 (0.15) 

 198 
Genes that display punctual rank stability are, most notably, related to translation, protein folding, and 199 
apoptosis 200 
Genes exhibiting punctual rank stability were found by evaluating whether its RSI value (calculated from its 201 
mean expression at each bin; see Methods) is higher than expected by chance, irrespective of whether its RSI 202 
was high or low.  The RSI and punctual stability index (PSI; see Methods) of each gene is shown in Fig 3A.  In 203 
total, 380, 2840 and 4230 genes were found to exhibit punctual rank stability in hBECs, colon and ileum cells, 204 
respectively (S1 File).  To ascertain that these results are robust, we also applied this approach to the simulated 205 
control datasets and uninfected cells, where four, eight and six false-positives were detected in hBECs, colon 206 
and ileum cells simulated datasets, respectively; and 15, 10 and 11 false-positives were detected in uninfected 207 
hBECs, colon and ileum cells, respectively (S1 File).  The low false-positive rate of this analysis indicates our 208 
results are robust, and that the higher number of genes displaying punctual stability in hIECs might be related 209 
to intrinsic differences in the response to viral infection between hBECs and hIECs. 210 

Punctual rank stability in all three cell types was found for 172 genes.  GO terms enrichment analysis of 211 
these genes revealed an enrichment in those related to cytoplasmic translation (GO:0002181), regulation of 212 
apoptotic signaling pathway (GO:2001233), regulation of endoplasmic reticulum unfolded protein response 213 
(GO:1900101), and a few terms related to innate immunity such as response to lipopolysaccharide 214 
(GO:0032496), among others (Fig 3B; S1 File).  Those genes that showed signal of punctual rank stability in 215 
all three cell types were generally stable, as shown by their median RSI (Fig 3B; S1 File).  Among these, genes 216 
associated with translational processes and gene expression, such as translational elongation (GO:0006414), 217 
ribosome assembly (GO:0042255),  maturation of SSU-rRNA (GO:0030490) and ncRNA processing 218 
(GO:0034470) were the most stable; and those associated with protein-DNA complex subunit organization 219 
(GO:0071824), detoxification (GO:0098754), epithelial cell apoptotic process (GO:1904019) and processes 220 
associated with immune response, such as response to lipopolysaccharide (GO:0032496), response to molecule 221 
of bacterial origin (GO:0002237) and myeloid leukocyte migration (GO:0097529) were the least stable (Fig 222 
3B; S1 File). 223 
 224 
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Fig 3.  Gene rank stability dynamics. 
(a) Comparison of RSI with PSI of all genes for hBECs, colon and ileum cells.  Each point represents one 

gene.  Genes with significant punctual stability (FDR < 0.05) are shown in red.  (b) Top 50 enriched GO 
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terms, ranked by P-value, for genes that displayed signal of punctual rank stability in all three cell types.  

The median RSI of the genes in each GO term is shown for each cell type. 

 225 

Several genes related to translation, cellular respiration, and viral processes, show evidence of persistent rank 226 
behavior 227 
Next, we examined the presence of persistent behavior of gene rank along the course of infection, which 228 
indicates whether a gene has a tendency to maintain its rank once it changes.  The robustness of the estimation 229 
of H from rank data was assessed by performing the analyses on a set of control datasets that included the 230 
simulated data, random matrices, uninfected cells, and shuffled infected cells that are not ordered according to 231 
viral RNA accumulation.  The Hurst exponents calculated from these control datasets seemed to follow a 232 
normal distribution with a mean close to ~0.5 which is expected for data with no temporal correlation, with 233 
the exception of the simulated ileum dataset that showed a small deviation towards higher H values (Fig 4A).  234 
Infected cells ordered according to viral RNA accumulation displayed a broad distribution of H values whose 235 
mean were nonetheless visibly higher than those from the control datasets (Fig 4A).  By analyzing H values 236 
inside the Taylor’s law plot for each dataset of infected cells, we found that low expressed genes tended to 237 
exhibit slightly higher H exponents, most noticeably for ileum cells (Fig 4B).  Given that gene rank was 238 
randomized in the case of ties, and that low expressed genes will be tied when their expression is zero, the 239 
higher H values of these low expressed genes is most likely artificially inflated. 240 
 241 
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Fig 4.  Estimation of H exponents from rank data. 
(a) Kernel density estimation of H exponents estimated from gene rank data from infected cells and control 

datasets for hBECs, colon and ileum cells.  (b) Taylor’s law plots showing the H value of each gene for each 

cell type.  Solid lines correspond to the exponential distribution (β = 1 and log(V) = 0), and dashed lines to 

the Poisson distribution (β = 0.5 and log(V) = –1.7, chosen for better visualization). 

 242 
Based on the observations above, genes exhibiting strong persistent rank behavior were determined by 243 

comparing its H exponent from infected cells vs. the one calculated from the simulated dataset.  Overall, the 244 
H exponents from infected cells tended to present higher values than their corresponding exponents from the 245 
simulated dataset (Fig 5A).  We observed that 610, 657 and 1569 genes, out of 9910, 7582 and 8333, showed 246 
evidence of strong persistent rank behavior (H ≥ 0.7 in infected cells and, concomitantly, H < 0.7 in simulated 247 
dataset) in hBECs, colon and ileum cells, respectively.  As discussed above, a higher false-positive rate in 248 
ileum cells is expected given that low expressed genes showed slightly higher H values. 249 

In total, 297 genes displayed evidence of strong persistent rank behavior concomitantly in all three cell 250 
types.  Amongst those, we found an enrichment of genes related to cytoplasmic translation (GO:0002181), 251 
cellular respiration (GO:0045333) and processes related to viral infection, such as internal ribosome entry site 252 
(IRES)-dependent viral translational initiation (GO:0075522), viral process (GO:0016032), viral translation 253 
(GO:0019081), and viral life cycle (GO:0019058), among others (Fig 5B; S2 File).  An enrichment of genes 254 
related to IRES-dependent viral translation is unexpected since SARS-CoV-2 is not known to contain an IRES 255 
[21].  The median H of the genes in these GO categories varied little between 0.7 and ~0.8, and were overall 256 
higher in ileum cells and lower in colon cells (Fig 5B; S2 File).  In general, processes related to cellular 257 
respiration, such as mitochondrial electron transport, cytochrome c to oxygen (GO:0006123), mitochondrial 258 
electron transport, ubiquinol to cytochrome c (GO:0006122) and aerobic electron transport chain 259 
(GO:0019646) exhibited higher median H values, together with other processes such as mRNA stabilization 260 
(GO:0048255), regulation of substrate adhesion-dependent cell spreading (GO:1900024) and negative 261 
regulation of oxidative stress-induced intrinsic apoptotic signaling pathway (GO:1902176). 262 
 263 
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Fig 5.  Functional analysis of genes exhibiting strong persistent behavior. 
(a) Comparison of the H exponents from infected and simulated data for hBECs, colon and ileum cells.  

Each point represents one gene.  Dashed red lines show the H = 0.7 (Hurst phenomenon) threshold for 

evidence of strong persistent behavior, and the solid red lines are bisecting lines.  Blue lines represent kernel 
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density of the data.  (b) Top 100 enriched GO terms, ranked by P-value, for genes exhibiting evidence of 

persistent rank behavior in all three cell types. The median H of the genes in each GO term is shown for 

each cell type. 

 264 

 265 
Discussion 266 
The underlying characteristics and dynamics of complex systems can be captured by several simple statistical 267 
laws.  Here, we focus on a dynamical complex system of cells infected with SARS-CoV-2 to uncover how the 268 
system behaves as a function of infection progression.  First, we fitted transcript abundance data to Taylor’s 269 
law to study system-level dynamics as previously done with data from the human gut microbiome [12].  A 270 
biphasic fit to Taylor’s law was observed, where the most expressed genes followed an exponential distribution, 271 
and the remaining genes followed a Poisson distribution.  A biphasic behavior in scRNA-seq has been 272 
previously identified and were mainly attributed to the sampling process.  For instance, shallow sequencing 273 
can mask the evidence of overdispersion which results in low expressing genes fitting to a Poisson distribution 274 
[20].  Interestingly, Lazzardi et al. found a triphasic Zipf’s law behavior in scRNA-seq data [4]. 275 

Overall, the infection course evolution of Taylor’s parameters between infected cells and the control 276 
simulated dataset was similar for hBECs, although infected hIECs present a distinct increase-decrease-increase 277 
behavior in comparison to the simulated datasets.  This suggests that the progression of infection had a 278 
significant impact on the system dynamics of hIECs cells, whereas for hBECs, Taylor’s parameters were 279 
mostly influenced by sampling noise.  Taylor’s parameter V has been used as a proxy to system stability in 280 
data from the human gut microbiota [12].  If β is constant across different samples, then changes in V 281 
correspond to variations to the standard deviation of all elements of the systems equally.  If all elements display 282 
large standard deviation, we can assume that their rank is unstable.  Here, however, both parameters V and β 283 
varied simultaneously along the course of infection, which might compromise the relationship between V and 284 
system stability.  Nevertheless, our results show that infection with SARS-CoV-2 has a systemic effect on the 285 
properties of the distribution of transcripts at the cell level. 286 

Whether there is a direct or indirect relationship between infection progression and Taylor’s parameters 287 
is inconclusive.  One possibility is that in the absence of dropout (i.e., all transcripts in a cell is sequenced), 288 
the whole system will better fit to an exponential distribution.  In this case, it is likely that the observed change 289 
in the breakpoint as infection progresses is due to increase in noise in the system (here, not technical/sampling 290 
noise), meaning that the relationship is indirect.  Another possibility is that the Poisson to exponential transition 291 
dynamics might arise from the interplay between RNA transcription bursts and RNA degradation, or as 292 
previously suggested, a suppression in the export of newly transcribed RNA out of the nucleus that will be 293 
latter degraded [3], which is affected by viral infection.  The RSI of most genes was low, which is consistent 294 
with constant rank hopping along the course of infection due to transcriptional bursts and high rates of RNA 295 
degradation.  The most expressed genes, however, displayed high RSI values, suggesting higher stability and 296 
lower RNA degradation rates.  These genes followed the exponential distribution, which can be interpreted as 297 
aggregation behavior (Fig 1).  Nevertheless, our results suggest that, at least for hIECs cells, the switch from 298 
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a Poisson to exponential distribution and Taylor’s parameters are not only influenced by sampling noise but 299 
also by the progression of the disease, revealing that the whole system dynamics of transcripts at the cellular 300 
level is affected, directly or indirectly, by viral infection. 301 

Several ribosomal proteins and some genes related to cellular respiration, protein folding, apoptosis and 302 
immune response showed signatures of punctual rank stability and/or persistent behavior.  Mitochondria-303 
encoded genes are likely not responding to infection given that, along the progression of infection, they always 304 
followed an exponential distribution even when their expression decreased (Fig 2B).  However, some nuclear 305 
genes related to cellular respiration indeed showed signals of punctual stability and/or persistent behavior in 306 
all cell types.  The protein product of ORF9b of both SARS-CoV-1 and -2 localizes to the mitochondria and 307 
interacts with the translocase of outer membrane (TOM) protein 70 (TOM70), a receptor involved in 308 
mitochondrial antiviral signaling and apoptosis [22], to suppress the cellular immune defense [23].  In line 309 
with this, the chaperone HSP90AA1, that interacts with TOM70 to induce apoptosis [23], showed signature of 310 
punctual stability in all cell types; while its paralog, HSP90AB1, showed signature of persistent rank behavior.  311 
Additionally, other proteins that are part of the TOM complex in the mitochondria, such as TOM5, TOM6, 312 
TOM7 and TOM20 displayed evidence of persistent rank behavior in all cell types. 313 

Focusing on some genes that are known to be associated with COVID-19, we found that the C-X-C motif 314 
ligand chemokine genes CXCL1 and CXCL3; the interferon stimulated gene IFIT2; the transcription factor 315 
IRF1; the AP-1 transcription factor proteins JUN and JUND; and the NF-κB inhibitor genes NFKBIA, NFKBIZ 316 
and TNFAIP3, showed evidence of punctual rank stability.  Both CXCL1 and CXCL3 were found to be 317 
upregulated in response to SARS-CoV-2 infection [24].  IFIT2 showed a bimodal expression pattern in immune 318 
cell types from patients with severe COVID-19 [25].  Interestingly, the bimodal expression of IFIT2 should 319 
resemble aggregation behavior in these datasets.  IRF1 regulates the expression of MHC class I, and was shown 320 
to be downregulated by SARS-CoV-2 ORF6-encoded protein [26].  JUN was found to be a hub in the SARS-321 
CoV-2-host interactome [27], and both JUN and JUND showed signal of abnormal behavior in the same 322 
datasets used in the present study [3].  Lastly, the NF-κB signaling pathway is activated upon infection with 323 
SARS-CoV-2 and triggers inflammation and the production of cytokines [28,29].  Higher expression levels of 324 
NFKBIA and TNFAIP3 in basal, ciliated and T cells were associated with the severity of COVID-19 [25]; and 325 
an insertion homozygosis of the NFKBIZ gene is associated with higher mortality by COVID-19 [30].  It is 326 
important to note, however, that in the datasets used in our study, it is likely that some infected cells were 327 
already responding to interferon and other immune signaling proteins from other previously infected cells.  328 
Thus, the punctual stability of some genes related to immune response may not be due to the cellular infection 329 
itself, but rather due to response to other infected cells.  Additionally, given the higher-than-expected number 330 
of infected cells detected here, it is likely that some uninfected bystander cells are present at the beginning of 331 
the infection, meaning that the infection progression analyzed here starts at a point prior to infection. 332 

Abnormal dynamics of ribosomal proteins and a few genes related to immune response in SARS-CoV-2-333 
infected cells was previously detected in the same datasets used in this study [3].  Recently, an inverse 334 
relationship between inflammation and ribosome level was found, and furthermore, an increase in 335 
inflammation and decrease in ribosome level was associated with the severity of COVID-19 symptoms [31].  336 
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However, it remains unclear whether the ribosome content-inflammation interplay along the course of cellular 337 
infection bears any relevance to the dysregulated immune response associated with COVID-19 severity.  338 
Nevertheless, ribosomal proteins are tantalizing therapeutic targets due to their importance to viral translation 339 
as it has been recently shown that two ribosome inactivating proteins can inhibit SARS-CoV-2 replication in 340 
human lung epithelial cells (A549) [32].  In addition to ribosomal proteins, some translation initiation factors 341 
also showed evidence of punctual stability and/or persistent behavior.  EIF3A and EIF3F, which are involved 342 
in the IRES-dependent translation of hepatitis C virus [33,34], showed, respectively, signature of persistent 343 
rank behavior and evidence of punctual stability and strong persistent rank and expression behavior; EIF3E 344 
showed evidence of punctual stability and persistent rank behavior; and several other translation initiation 345 
factors, namely EIF1, EIF2AK2, EIF3K, EIF4G2, and EIF5, showed evidence of persistent rank behavior.  346 
The RNA-binding activity of several components of EIF3 is inhibited by SARS-CoV-2, which is in agreement 347 
with the role of SARS-CoV-2 NSP1 in inhibiting the recruitment of 40S to cellular mRNAs [35]. 348 
 349 
 350 
Conclusion 351 
Here, we successfully applied statistical frameworks from complex systems to scRNA-seq data to investigate 352 
the dynamics of cells infected with SARS-CoV-2 at the system and individual gene levels.  Our results suggest 353 
a cell type-dependent systemic instability in response to SARS-CoV-2 infection.  In hIECs, SARS-CoV-2 354 
infection led to an increase, decrease and final increase in system stability (Fig 2A).  In contrast, for hBECs, 355 
infection and sampling noise seemingly had the same effect on systemic instability (Fig 2A).  Despite this 356 
systemic cell type-dependent response, several genes involved in translation, cellular respiration, apoptosis, 357 
protein-folding, and immune response showed evidence of deterministic behavior in all three cell types along 358 
the course of infection in the form of punctual rank stability or persistent rank behavior. 359 
 360 
 361 
Methods 362 
 363 
Data collection 364 
Processed scRNA-seq data of human bronchial epithelial cells (hBECs) [18] and human intestinal epithelial 365 
cells (hIECs) from colon and ileum intestinal organoids [19] were obtained from [3].  The obtained processed 366 
gene frequencies matrices were previously generated by transforming UMI counts to transcript abundances.  367 
Briefly, UMI counts were modeled under a Poisson distribution, where transcript abundances were represented 368 
as the weighted average of transcript frequencies based on a normalized likelihood function [3].  Cells with at 369 
least 10 uncorrected viral UMIs were considered to be infected, and cells from mock data were considered to 370 
be uninfected.  Infected cells were ordered based on their percentage of viral RNA, which is used here as a 371 
proxy of infection time and thus provide a measure of pseudotime of infection progression.  Viral RNA counts 372 
were removed from the count matrices before downstream analyses, meaning that gene abundances were 373 
calculated using only cellular transcripts. 374 
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 375 
Fit to Taylor’s law 376 
To analyze the progression of infection through infection, cells were first ordered based on the accumulation 377 
of viral RNA then separated in 30 bins containing a similar number of cells (~105, ~147 and ~124 cells for 378 
hBECs, colon and ileum cells, respectively) with a similar viral load.  Genes exhibiting more than 95% of 379 
zeros were filtered out.  The mean expression and standard deviation of each gene were calculated over the 380 
30-bins based on their abundances in each cell.  Then, Taylor’s parameters were estimated by fitting the log of 381 
means and standard deviations to a linear regression.  The segmented R package v1.6-4 [36] was used to fit 382 
the log-transformed data to a segmented linear regression with one breakpoint.  When fitting binned data to a 383 
segmented regression, mitochondrial genes and some selected nuclear genes were removed given that they 384 
always fit to an exponential distribution regardless of their mean expression, and therefore, they are likely not 385 
responding to infection and could influence the estimation of the parameters at some specific bins.  Additionally, 386 
for binned data only, genes with more than 70% of zeros were filtered out when fitting the data to a biphasic 387 
model with one breakpoint.  A simple schematic of the structure of the data used to estimate Taylor’s parameters 388 
is shown in S3A Fig, and S3B Fig shows a representation of the binned data used to investigate the progression 389 
of Taylor’s parameters along the course of infection. 390 
 391 
Simulation of increasing technical noise in uninfected cells 392 
A down-sampled dataset was created for each cell type to simulate the expected increase in cellular transcript 393 
dropout due to viral RNA accumulation.  To create a simulated cell, the transcriptional profile of an uninfected 394 
cell was used to randomly sample n transcripts, where n corresponds to the total number of cellular UMIs from 395 
an infected cell, and the probability of sampling a transcript from a given gene is its abundance in the uninfected 396 
cell.  Sampling transcripts based on the gene abundances of an uninfected cell and the number of cellular UMIs 397 
from an infected one will create a simulated cell that will inherit the transcriptional profile of the uninfected 398 
cell and the sampling noise of the infected cell.  Simulated cells are ordered based on the viral RNA 399 
accumulation of the infected cells that were used to simulate their sampling noise, and for each cell type, there 400 
are as much simulated cells as there are infected cells.  The Seurat package v4.3.0 [37] was used for 401 
downstream analyses of simulated and uninfected cells.  Counts were log-normalized, and a standard clustering 402 
analysis was performed, where the top ten principal components (PCs) were used for clustering and uniform 403 
manifold approximation and projection (UMAP) dimensional reduction.  When dividing the simulated data 404 
into 30 bins, genes with more than 95% of zeros were filtered out before fits to Taylor’s law.  For this simulated 405 
data, the progression through pseudotime should reflect increase in sampling noise. 406 
 407 
Gene rank stability 408 
The rank stability index (RSI) of one gene is defined from its rank, determined from abundances matrices of 409 
cells ordered according to their viral load.  Due to the high prevalence of zeros due to dropout, ties were 410 
resolved by randomization to avoid overestimation of stability of the less expressed genes.  The RSI of each 411 
gene was computed based on its observed rank hops, D, (i.e., the sum of the absolute number of rank 412 
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differences between ordered adjacent cells) divided by the number of total possible rank hops as 𝑅𝑆𝐼 =413 

*1 − "
($%&)((%&)

-
)
, where N is the number of genes (rows), t is the number of cells (columns), and the power 414 

index is arbitrarily chosen to increase the resolution of stable elements [12].  S3C Fig shows a representation 415 
of a matrix containing the rank of each gene that was used to calculate their associated RSI. 416 
 417 
Estimation of punctual rank stability 418 
To investigate signals of punctual rank stability, RSI values were calculated from the mean gene abundance at 419 
each bin instead of individual cells.  Only genes that were expressed in at least one cell in every bin were 420 
further analyzed.  Genes that displayed punctual stability, i.e., that presented higher stability at some point 421 
along the infection, were determined based on a resampling strategy with 1000 replicates.  In addition, for each 422 
replicate, an RSI was calculated from a matrix where the order of the bins was shuffled, with the exception of 423 
the first and last ones.  The probability of finding an RSI value at least as high as the observed RSI of a given 424 
gene was calculated by applying a survival function (1 – empirical cumulative distribution function) estimated 425 
from the RSI values calculated from shuffling.  Genes with RSI values with a false discovery rate (FDR) < 0.05 426 
were considered to have undergone through a change in their rank stability at some point throughout the course 427 
of infection.  A punctual stability index (PSI) was calculated by dividing the gene RSI by the mean RSI of the 428 
replicates, where PSI > 1 is indicative of punctual stability.  A schematic representation of the data 429 
transformation that was employed to estimate the punctual rank stability of each gene is shown in S3D Fig. 430 
 431 
Persistent behavior of gene rank 432 
Long-range dependence and persistent behavior along the course of infection was investigated by estimating 433 
the Hurst exponent H for each gene separately for each cell type.  A detailed explanation of the rescaled range 434 
analysis is available in S1 Appendix.  Here, gene rank (see Gene rank stability; S3C Fig) was used to estimate 435 
H with the R package pracma v2.4.2 [38].  The robustness of this analysis was assessed by also estimating H 436 
for a set of control datasets that included the simulated datasets, uninfected cells, infected cells where cells 437 
were shuffled (and thus not ordered according to viral RNA accumulation) and a random matrix with the same 438 
number of rows (genes) and columns (cells) as the infected matrix where each value was drawn from a uniform 439 
distribution within the range [–1, 1].  A minimum window size of 50 was used when estimating H using the 440 
gene rank data.  Genes with persistent behavior that simultaneously showed an H ≥ 0.7 in the infected dataset 441 
and H < 0.7 in its respective simulated dataset were further investigated. 442 
 443 
Gene ontology (GO) analyses 444 
All gene set enrichment analyses were performed with the R packages clusterProfiler v4.8.2 [39] and 445 
org.Hs.eg.db v3.17.0 [40]. 446 
 447 
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Supporting information captions 572 

 573 

S1 Fig.  Characteristics of simulated datasets.   574 
(a) For each cell type, boxplots of the proportion of zeros of each gene for each bin for the infected and 575 
simulated dataset.  (b) UMAP projections of the infected and simulated datasets. Each point represents a cell. 576 
 577 
S2 Fig.  Taylor's parameters of the biphasic fit for binned data per cell. 578 
 579 
S3 Fig.  Schematic representation of the data structure used in each analysis. 580 
(a) Representation of a gene abundance matrix (left) that was log-transformed and fitted to a linear regression 581 
(right) to estimate Taylor’s parameters.  (b) Pseudotime binned data (left).  Infected cells were sorted into bins 582 
so that the viral load of any cell in bin i is lower than the viral load of any cell in bin i + 1.  Taylor’s parameters 583 
were estimated for each bin (right).  (c) Representation of a gene rank matrix used for the calculation of RSI 584 
shown in Fig 1 and for the estimation of the Hurst exponent of each gene.  (d) Mean gene abundances of each 585 
bin (left) were used to generate a rank matrix (right) from which punctual rank stability analyses were 586 
conducted. 587 
 588 
S1 File.  Results of the rank stability dynamics analyses. 589 
The RSI, mean RSI of a 1000 replicates, P-value and adjusted P-value (FDR) and PSI of each gene for each 590 
dataset is shown in separate sheets.  The last sheet corresponds to the GO enrichment analysis of the genes that 591 
exhibited signal of punctual rank stability concomitantly in all three cell types. 592 
 593 
S2 File.  Results of the R/S analyses. 594 
The empirical H exponent of each gene for each dataset is shown in separate sheets for each cell type.  The 595 
last sheet corresponds to the GO enrichment analysis of the genes that exhibited signal of strong persistent 596 
behavior concomitantly in all three cell types. 597 
 598 
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S1 Appendix.  Detailed explanation of R/S analysis. 599 
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