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ABSTRACT 

This paper deals with the mathematical modeling and numerical simulations related to the 

coronavirus dynamics. A description is developed based on the framework of susceptible-exposed-

infectious-removed model. Removed population is split into recovered and death populations 

allowing a better comprehension of real situations. Besides, total population is reduced based on the 

number of deaths. Hospital infrastructure is also included into the mathematical description allowing 

the consideration of collapse scenarios. Initially, a model verification is carried out calibrating system 

parameters with data from China outbreak that is considered a benchmark due the availability of data 

for the entire cycle. Afterward, numerical simulations are performed to analyze COVID-19 dynamics 

in Brazil. Results show several scenarios showing the importance of social isolation. System 

dynamics has a strong sensitivity to transmission rate showing the importance of numerical 

simulations to guide public health decision strategies.  

 

Keywords: COVID-19, coronavirus, nCoV, nonlinear dynamics, mathematical model, population 

dynamics. 

 

1. INTRODUCTION 

 

Coronavirus disease 2019 (COVID-19) was discovered in 2019, becoming a pandemic that is 

promoting a dramatic reaction all over the world. Several uncertainties are associated with all the 

aspects of this disease including clinical evolution and contamination processes. Mathematical 

modeling is an interesting approach that can allow the evaluation of different scenarios, furnishing 

information for a proper support for health system decisions. Nonlinear dynamics of biological and 
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biomedical systems is the objective of several researches that can be based on mathematical modeling 

or time series analysis (Savi, 2005). In particular, coronavirus spread can be described by a 

mathematical model that allows the nonlinear dynamics analysis, representing different populations 

related to the phenomenon. 

Different kinds of models can be employed for the COVID-19 dynamics. Rihan et al. (2018) 

described the dynamics of coronavirus infection in human, establishing interaction among human 

cells and the virus. Chen et al. (2020) developed a mathematical model for calculating the 

transmissibility of the virus considering a simplified version of the bats-hosts-reservoir-people 

transmission model, defined as a reservoir-people model. Li et al. (2020b) estimated characteristics 

of the epidemiologic time distribution, exploiting some pattern trends of transmission propagation. 

Riou & Althaus (2020) exploited the pattern of human-to-human transmission of novel coronavirus 

in Wuhan, China. Two key parameters are considered: basic reproduction number that defines the 

infectious propagation; and the individual variation in the number of secondary cases. Uncertainty 

quantification tools were employed to define the transmission patterns. 

Susceptible-exposed-infectious-removed (SEIR) models are an interesting approach to deal 

with the mathematical modeling of coronavirus transmission. Wu et al. (2020) investigated Wuhan – 

China case, evaluating domestic and international spread outbreak. Lin et al. (2020) proposed a model 

considering individual reaction, governmental action and emigration. The model is based on the 

original work of He et al. (2013) that proposed a model to describe the 1918 influenza.  

COVID-19 scenarios all over the world are becoming dramatic due to the absence of effective 

drugs and/or vaccines. Since it is possible that this general scenario is persisting for an unknown 

period of time, it is required that governments need to implement alternative strategies, known as 

non-pharmaceutical interventions (NPIs), to contain the spread of coronavirus infection in the 

population. These strategies include government interventions related to the close of education 

system, induce social isolation and voluntary quarantine. This suggests the inclusion of other 

variables on the mathematical modeling in order to have better adjustments with real data and to 

furnish useful information for decision making.  

In this regard, hospital infrastructure and the number of deaths seem to be essential points to be 

included on mathematical modeling. The literature presents some research efforts related to the 

dynamics of COVID-19 pandemic progress considering different scenarios of the NPIs for reducing 

transmission of the virus, as well the hospital infrastructure necessary to take care of the infectious 

population (Canabarro et al., 2020; Ferguson et al., 2020; Lin et al., 2020; López & Rodó, 2020; 

Prem et al., 2020; Weissman et al., 2020). 

This contribution proposes a mathematical model to describe the general propagation of the 

novel coronavirus. The idea is to use the SEIR framework including different novel aspects: removed 

population is represented by two populations - recovered and deaths; description of hospital 
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infrastructure; and total population varies according to the number of deaths. Initially, a model 

verification is carried out considering infected population evolution of China, considered as a 

benchmark case due the availability of data for the entire cycle. COVID-19 dynamics is then 

investigated establishing different scenarios based on Brazilian data. 

 

2. MATHEMATICAL MODEL 

 

A frame-by-frame description of the COVID-19 dynamics can be represented by a set of 

differential equations of the form 𝑥̇ = 𝑓(𝑥), 𝑥 ∈ ℜ𝑛, where 𝑥 ∈ ℜ𝑛 represents a set of state variables 

that describe the phenomenon. The description of COVID-19 dynamics defines its propagation 

considering different kinds of populations. An interesting alternative for this aim is the susceptible-

exposed-infectious-removed (SEIR) framework model. The populations are defined considering that 

S is the susceptible population, E is the exposed population, I is the infectious population, and two 

removed populations: recovered, RD, and death, RD, populations. Under this assumption, the total 

population is 𝑁 = 𝑆 + 𝐸 + 𝐼 + 𝑅𝐶 + 𝑅𝐷. Besides, the total population contains two classes: D is a 

public perception of risk regarding severe cases and deaths; and C represents the number of reported 

and non-reported cases. Another important observation is that population is reduced due to deaths, 

and therefore, 𝑁 is reduced based on the increase of death population, 𝑅𝐷, with a rate , 𝑅̇𝐷. 

Based on that, it is possible to write the following governing equations, 

𝑆̇ = −𝛽
𝑆𝐼

𝑁
 (1) 

𝐸̇ = 𝛽
𝑆𝐼

𝑁
− 𝜎𝐸 (2) 

𝐼̇ = 𝜎𝐸 − (𝛾𝐶 + 𝛾𝐷)(𝐼 − 𝐼
𝐻)− 𝛾𝐷

𝐻 𝐼𝐻 (3) 

𝑅̇𝐶 = 𝛾𝐶(𝐼 − 𝐼
𝐻) (4) 

𝑅̇𝐷 = 𝛾𝐷(𝐼 − 𝐼
𝐻) + 𝛾𝐷

𝐻  𝐼𝐻 (5) 

𝐷̇ = 𝑑(𝛾𝐶 + 𝛾𝐷)𝐼 − 𝜆𝐷 (6) 

𝐶̇ = 𝜎𝐸 (7) 

𝑁̇ = −𝑅̇𝐷 (8) 

 

It should be pointed out that the model considers the effect of available hospital care for the 

infectious population. Therefore, it is defined a subpopulation of the infectious, 𝐼𝐻, which represents 

the part of the infectious that needs hospital assistance but does not have access due to the lack of 

infrastructure. This is represented by function < > in order to represent the number of unavailable 

hospital assistance for the infectious population,  
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𝐼𝐻 = 〈𝜌𝐼 − 𝑁𝐻〉 = {
𝜌𝐼 − 𝑁𝐻 , if   𝜌𝐼 > 𝑁𝐻

0,      if 𝜌𝐼 ≤ 𝑁𝐻

 (9) 

 

where 𝜌 is the percentage of the population inside the group that needs hospital assistance and NH 

represents the number of available hospital infrastructure described with the aid of a step function as 

follows, and showed in Figure 1. 

 

𝑁̂𝐻 = 𝑁𝐻
(𝑖)𝐻(𝑡 − 𝑇𝐻

(𝑖)) =

{
 
 

 
 𝑁𝐻

(1),   if 𝑡 ≤ 𝑇𝐻
(1)

𝑁𝐻
(2),   if 𝑇𝐻

(1) < 𝑡 ≤ 𝑇𝐻
(2)

𝑁𝐻
(3),   if 𝑇𝐻

(2) < 𝑡 ≤ 𝑇𝐻
(3)

⋮

 (10) 

 

 

Figure 1: Step function employed to consider parameter variations through time. 

 

The function 𝛽 = 𝛽(𝑡) represents the transmission rate that considers governmental action, 

represented by (1 − 𝛼); and the individual action, represented by the function 𝛿. Therefore, the 

transmission rate is modeled as follows, 

𝛽 = 𝛽(𝑡) = 𝛽̂0 (1 − 𝛼̂)𝛿 (11) 

 

where 𝛽̂0 = 𝛽0
(𝑖)
𝐻 (𝑡 − 𝑇𝛽0

(𝑖)
) represents the nominal transmission rate and 𝐻 (𝑡 − 𝑇𝛽0

(𝑖)
) is a step 

function similar to the one previously defined. Using the same strategy, it is defined the governmental 

action as follows:  

𝛼̂ =  𝛼𝑖  𝐻(𝑡 − 𝑇𝐺𝑜𝑣
(𝑖)
) (12) 

 

where different steps are considered defined by time instants 𝑇𝐺𝑜𝑣
(𝑖)

.  
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In addition, individual action is represented by  

𝛿 = (1 −
𝐷

𝑁
)
𝜅

 (13) 

 

which the intensity of responses is defined by parameter 𝜅. It should be pointed out that the different 

values of transmission rate are closely related to the social isolation. All these parameters need to be 

adjusted for each place, being essential for the COVID-19 description. 

The following parameters are considered on the governing equations: 𝜎 is the mean latent 

period; 𝑑 is the proportion of severe cases; 𝜆 is the mean duration of public reaction. Three parameters 

are adopted in order to describe the removed populations: 𝛾𝐶  is associated with the recovered 

population; 𝛾𝐷  is related to the death population; and 𝛾𝐷
𝐻 is related to the death population inside the 

group that needs hospital assistance, but due to system collapse, does not receive this assistance. The 

definition of the fatality rate is based on the relation between cumulative total deaths, 𝐶𝐷, and the 

total cases, 𝐶𝐼. Therefore, it is possible to use the following expression, considering a similar ratio 

between the associated rates for the removed population: 

 

𝐶𝐷
𝐶𝐼
=

𝛾𝐷
𝛾𝐷 + 𝛾𝐶

   →    𝛾𝐷 = (
𝐶𝐷/𝐶𝐼

1 − 𝐶𝐷/𝐶𝐼
) 𝛾𝐶  (14) 

 

The recovered parameter, 𝛾𝐶 , is defined based on the period necessary for the immune system. 

The death parameter, 𝛾𝐷 , is defined from the expression presented in Eq. (14). The hospital parameter,  

𝛾𝐷
𝐻 is defined from the relation of the part of the infected that needs hospital assistance.  

 In general, the parameter definitions depend on several issues, being a difficult task. In this 

regard, it should be pointed out that real data has spatial aspects that are not treated by this set of 

governing equations. Hence, this analysis is a kind of average behavior that needs a proper adjustment 

to match real data. The use of step functions to define some parameters allows a proper representation 

of different scenarios, including the transmission rate and hospital infrastructure. It is also important 

to observe that some researches concluded that undocumented novel coronavirus infections are 

critical for understanding the overall prevalence and pandemic potential of this disease. Li et al. 

(2020a) evaluated Wuhan situation and estimated that 86% of all infections were undocumented and 

that the transmission rate per person of undocumented infections was 55% of documented infections. 

This aspect makes the description even more complex. Table 1 presents parameters employed for all 

simulations. Other parameters are adjusted depending on the case.  
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Table 1: Model parameters for the simulations. 

Parameter Description Value 

𝛾𝐷  Death rate  
𝛾𝐷 = (

𝐶𝐷/𝐶𝐼
1 − 𝑅𝐷/𝐶

)𝛾𝐶  

𝛾𝐷
𝐻 Hospital assistance rate 0.5  

𝜌 Percentage of the population inside the group that 

needs hospital assistance 

0.15 (15%) 

d Perception of risk regarding severe cases and 

deaths 

0.2 

𝜆−1 Mean duration of public reaction 11.2 days 

𝜅 Transmission rate modification parameter 

associated with individual actions 

1117.3 

 

 

 Numerical simulations are performed considering the fourth-order Runge-Kutta method. A 

convergence analysis is developed for the presented cases. The next sections treat the COVID-19 

dynamics considering two different objectives. Initially, the next section performed a model 

verification using information from the process experienced by China. Afterward, the subsequent 

section evaluates different scenarios for the Brazilian case, using the parameters adjusted for the 

verification cases.   

 

 

3. MODEL VERIFICATION 

 

A model verification is carried out using information available on Worldometer (2020). It 

should be pointed out again that the analysis is based on average populations, assumed to have spatial 

homogeneous distribution. China data is considered as the benchmark case due to the large amount 

of information since it is the first case in the world and can be used to gather important information 

to support the predictions for other countries. This analysis is employed to calibrate the model 

parameters, evaluating its correspondence with real data. Table 2 presents additional parameters 

employed for the simulations. They are based on the information of the Lin et al. (2020) that, in turn, 

is based on other references as He et al. (2010) and Breto et al. (2009). Furthermore, an average value 

of the fatality rate  
𝐶𝐷

𝐶𝐼
= 0.02 is observed from China actual data. It is important to highlight that this 

value is calculated with the available data and the existence of unreported cases can substantially 

change this number. For more details, see other citations referenced therein.  
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Table 2: Model parameters for China. 

Parameter Description Value 

𝛽0 Nominal transmission rate 0.514 

𝜎−1 Mean latent period 3 days 

𝛾𝐶
−1 Mean recovered period 5 days 

𝛾𝐷  Death rate 4.08210-3 

𝛼𝑖 Transmission rate modification parameter associated with 

governmental actions 

[0, 0.4239, 0.8478] 

𝑇𝐺𝑜𝑣
(𝑖)

 Transmission rate modification parameter associated with 

governmental actions 

[0, 13, 20] days 

 

 

Parameters presented in Tables 1 and 2 are employed for simulations with a population of N = 

1.43 billion and an initial state with 554 infected persons (𝐼0 = 554), relative to January 22, 2020. In 

addition, susceptible population initial condition is assumed to be 𝑆0 = 0.9𝑁. Another information 

needed for the model is the number exposed persons for each infected person. It is assumed that each 

infected person has the potential to expose 20 persons, 𝐸0 = 20𝐼0. 

Hospital infrastructure is considered to be without any restriction, which means that all the 

population that needs assistance is assisted and therefore, population 𝐼𝐻 = 0 for all time during the 

whole simulation. Figure 2a presents infected and cumulative deaths populations showing a good 

agreement between simulation and real data obtained from Worldometer (2020). Figure 2b presents 

the evolution of other variables of the model. Note that, due to chronological issues, the whole cycle 

is observed on Chinese data. Based on that, it is possible to say that the model is capable to describe 

the whole cycle of COVID-19 dynamics. 
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Figure 2: Model verification based on China actual data: (a) comparison between numerical results 

and data for infected and cumulative death population through time and (b) other model variables 

evolution. 

 

 

4. BRAZILIAN SCENARIOS 

 

This section has the objective to investigate different scenarios related to COVID-19 

dynamics in Brazil. All simulations consider a population of N = 209.3 million and an initial state 

with 1 infected (𝐼0 = 1) and 250 exposed persons (E0 = 250), relative to February 25, 2020. Parameters 

listed in Tables 1 and Table 3 are employed in all the simulations (Lyra et al., 2020; Ferguson et al., 

2020). An average value of fatality rate 
𝐶𝐷

𝐶𝐼
= 0.05 is observed for Brazil actual data. Values adopted 

for 𝛼𝑖 consider three moments associated with governmental action (0, 15 and 45 days), representing 

the effect of two waves that occurred from the moment of the first infected person was identified and 

the present moment when the paper is being written. In the first wave, which occurred after 15 days, 

some regions of the country implemented actions of social isolation, such as closing the 

schools/universities and adopting remote work. One month after, there was a relaxation of the social 

isolation, which has been maintained until May, 2020. 

Figure 3a presents the infected population and cumulative deaths evolution obtained from 

numerical simulations and real data obtained from Worldometer (2020), showing that the same trend 

of the other cases is followed, being enough to have a general scenario. Figure 3b presents the 

evolution of other variables of the model. It should be highlighted that Brazilian outbreak is in the 

beginning, with information that is not enough for a better calibration.  
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Table 3: Model parameters for Brazil. 

Parameter Description Value 

𝛽0 Nominal transmission rate 1.020 

𝜎−1 Mean latent period 5.2 days 

𝛾𝐶
−1 Mean recovered period 2.9 days 

𝛾𝐷  Death rate 1.81510-2 

𝛼𝑖 Transmission rate modification parameter associated to 

governmental actions 

[0, 0.40, 0.30] 

𝑇𝐺𝑜𝑣
(𝑖)

 Transmission rate modification parameter associated to 

governmental actions 

[0, 15, 45] days 
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Figure 3: Model verification based on Brazil actual data: (a) comparison between numerical results 

and data for infected and cumulative death population through time and (b) other model variables 

evolution.  

  

Different scenarios are now investigated considering a period of time until the end of 2020. 

Brazilian governmental action has the characteristic to be without a central coordination that makes 

the social isolation a polemic point, different from the great majority of the world. Based on that 

characteristic, it is important to present simulations showing distinct scenarios. Figure 4 presents 

different scenarios defined by the transmission rate changes, represented by governmental actions 

associated with different values of the parameter 𝛼,  showing the evolution of all populations involved 

on COVID-19 dynamics. It is assumed an unlimited hospital infrastructure, which means that all the 

population that needs assistance is assisted. Calibrated values are maintained for the period of the 

first 90 days, defined from the available data for the present moment when the paper is being written. 
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From this point forward, the future is predicted considering different values of 𝛼, which characterizes 

distinct scenarios. The following parameter values are adopted: 0.00, 0.30, 0.40, 0.50, 0.60, 0.70, 

0.80, and 0.90. These scenarios represent different conditions associated with fixed government 

actions adopted at the end of the first 90 days that are maintained until the end of the year. It should 

be noticed that the curves have dramatic different values and therefore, the number of infected and 

deaths presents huge differences. There is a huge reduction of both numbers with the increase of 

social isolation. In addition, there is an important qualitative change related to the infectious 

population. The social isolation produces an infectious dynamics with a peak followed by a decrease 

to small numbers, called peak-vanish case, as showed in Figure 4b for 𝛼 between 0.60-0.90. On the 

other hand, the lack of social isolation produces a curve with a plateau characteristic observed in 

Figure 4b for 𝛼 between 0.00-0.50, which means that the critical period is spread over the time.  

 Figure 5 presents detailed views of the dynamics of populations of current infected and 

cumulative deaths highlighting some characteristic behaviors. Once again, it is evident that the 

number of involved populations is dramatically different for each kind of governmental action. The 

difference of the two possible behaviors, characterized by the peak-vanish and plateau behaviors for 

the current infected populations, is also observed. 
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Figure 4: Population dynamics considering different governmental actions expressed by the social 

isolation: (a) current exposed, (b) current infected, (c) cumulative recovered, (d) cumulative deaths, 

(e) public perception risk and (f) reported and nom-reported cases. Hospital infrastructure without 

any restriction 
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Figure 5: Population evolutions considering different transmission rates, altered by governmental 

actions: (a) 𝛼 = 0.00, (b) 𝛼 = 0.30, (c) 𝛼 = 0.40, (d) 𝛼 = 0.60, (e) 𝛼 = 0.70, (f) 𝛼 = 0.90.      

 

 Based on these scenarios, it should be pointed out that different governmental actions related 

to social isolation effect, result in dramatically different numbers of infected and cumulative deaths. 

Table 5 summarizes the results showing that a worst scenario of 846,833 deaths is in huge contrast 

with the best scenario of 43,331 deaths. This comparison clearly indicates that a more appropriate 

approach can result in a huge number of preserved lives. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 5, 2020. ; https://doi.org/10.1101/2020.06.03.20121608doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.03.20121608
http://creativecommons.org/licenses/by-nc-nd/4.0/


 13 

Table 4: Infected and cumulative deaths predicted considering different government actions. 

Hospital infrastructure without any restriction. 

Government action 

after 90 days 

(𝛼) 

Peak  

(days) 

Current 

Infected Max. 

Value 

(pop.) 

Cumulative 

Deaths on  

Dec 31, 2020 

(pop.) 

0.00 112 313,367 846,833 

0.30 114 156,440 531,503 

0.40 107 114,576 399,440 

0.50 94 97,358 250,498 

0.60 92 94,473 110,509 

0.70 91 93,435 61,918 

0.80 91 93,896 49,260 

0.90 91 92,561 43,331 

 

One of the most relevant point related to COVID-19 evolution is the hospital infrastructure. 

Based on that, different scenarios are now of concern estimating distinct hospital infrastructure levels. 

The constraints are difficult to be quantified since it is not only the number of hospital beds available, 

but medical staff, drug availability and medical equipment are also necessary to define the hospital 

infrastructure number. The absence of this infrastructure increases the number of deaths since the 

population that needs assistance does not receive it. The specific infrastructure for this population is 

represented in the model by the total number of available Intensive Care Units (ICUs), designed by 

NH. Data accessed from the Brazilian Ministry of Health (2020a, 2020b) shows that Brazil has close 

to 40,000 ICUs. Nevertheless, only 13,939 are eligible for the treatment of patients with COVID-19. 

Numerical simulations are carried out considering this value of NH.  It is important to highlight that 

there is a non-homogeneous geographic distribution in Brazil, with ratio of 9 and 21 ICUs beds per 

100,000 inhabitants in the north and southeast regions of the country, respectively (Castro et al., 

2020). In addition, some hospitals suffer with a lack of health professionals to assist patients with 

COVID-19. This condition can make the lack of ICUs even more critical. 

Figure 6 presents the evolution of all populations involved on COVID-19 dynamics considering 

different scenarios defined for the distinct governmental actions treated on the previous simulations. 

Figure 7 shows the evolution of the population that needs hospital assistance and does not receive it. 

In general, it is noticeable the same qualitative behavior observed for the populations in the previous 

simulations for all cases, but two important points should be observed: the size of the populations is 

totally different, which means that the infected populations and deaths are completed different; the 
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other important point to be observed is related to the hospital infrastructure. Note that there is a 

dramatic difference in terms of necessary hospital infrastructure, either for the number of hospital 

space or the spread over the time. The decrease of the social isolation is associated with the increase 

of the infected and death populations. In addition, infectious population presents an important plateau 

behavior that is related to an increase of deaths. Once again, it can be observed that different 

governmental actions result in dramatically different numbers of infected and cumulative deaths.  
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Figure 6: Population dynamics considering different governmental actions expressed by the social 

isolation: (a) current exposed, (b) current infected, (c) cumulative recovered, (d) cumulative deaths, 

(e) public perception risk and (f) reported and non-reported cases.  
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Figure 7: Population dynamics considering different governmental actions expressed by the social 

isolation. Infectious that needs hospital assistance but does not have access due to the lack of 

infrastructure.  

 

Figure 8 highlights some characteristic behaviors of the dynamics. The left panel shows the 

populations of current infected and cumulative deaths, whereas the right panel shows the population 

that needs hospital assistance and does not receive it. As for the previous cases, the number of 

involved populations is dramatically different for each kind of governmental action, and two possible 

behaviors, characterized by the peak-vanish and plateau behaviors for the current infected 

populations, is also observed.  

 Table 5 summarizes the results showing a worst scenario of 2.5 million deaths (close to 1.2% 

of the Brazilian population) and a best scenario of 43,331 deaths, an even more dramatic difference 

when the hospital infrastructure is incorporated into the analysis. Results show that the limitations of 

the hospital infrastructure cause more than 30,000 infected individuals inside the group that needs 

hospital assistance may be left without access, a condition associated with a high fatality rate. 
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Figure 8: Population evolutions considering different transmission rates, altered by governmental 

actions: (a) 𝛼 = 0.00, (b) 𝛼 = 0.40, (c) 𝛼 = 0.60, (d) 𝛼 = 0.90.      
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 Table 5: Infected and cumulative deaths predicted considering different government actions. 

Government 

Intervention after 

90 days 

(𝛼) 

Current 

Infected - Peak  

(days) 

Current Infected 

- Max. Value 

(pop.) 

Cumulative 

Deaths on  

Dec 31, 2020 

(pop.) 

𝑰𝑯 - Lack of 

Hospital 

Assistance 

(pop.) 

0.00 112 294,996 2,498,629 30,310 

0.30 113 150,090 1,003,322 8,575 

0.40 106 112,670 440,749 2,962 

0.50 94 97,210 252,369 643 

0.60 92 94,452 110,715 229 

0.70 91 93,432 61,948 76 

0.80 91 92,896 49,260 0 

0.90 91 92,561 43,331 0 

 

 Figure 9 shows a comparison between numerical results considering two situations relative to 

the specific hospital infrastructure required to deal with the COVID-19. The first set of results 

(Unlimited Hosp. Infrastructure) considers an ideal condition where there is no restriction of the 

hospital infrastructure to assist part of the infectious that needs hospital assistance, whereas the 

second one (Limited Hosp. Infrastructure) considers situations where restrictions are defined by the 

total number of available Intensive Care Units (ICUs).  Numerical results confirm that the absence of 

this infrastructure largely increases the number of deaths since the population that needs assistance 

does not receive it. This increase the deaths from 846,833 to 2,498,629 (for 𝛼 = 0.00 after 90 days) 

is an emblematic situation associated with an increase of more than 200%. 
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Figure 9: Influence of the hospital infrastructure limitations on the population dynamics considering 

different governmental actions expressed by the social isolation: (a) current infected, (b) cumulative 

deaths. 
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 Several possibilities for the social isolation have been discussed worldwide. One promising 

scenario involves the combination of triggering hardening/softening actions (Fergurson et al., 2020). 

Therefore, different scenarios are now evaluated considering several implementation approaches for 

governmental actions. Table 6 presents cases where the previous adopted values of 𝛼 for the 

interventions prior to 90 days are maintained and future actions are implemented considering a 

combination of hardening/softening governmental actions. Results from the previous analysis show 

that a minimum value of 𝛼 = 0.70 must be adopted at 𝑇𝐺𝑜𝑣
(3)

 = 90 days to maintain the number of 

deaths bellow 100,000. Therefore, this minimum value is adopted for the analysis. 

 

Table 6: Different scenarios considering several implementation approaches of governmental 

actions. Interventions prior to 90 days preserved. 

 𝜶𝒊 

𝑻𝑮𝒐𝒗
(𝒊)
  

 CASE  
0 15 45 90 120 150 180 210 240 270 300 

1 0.00 0.40 0.30 0.70 0.50 0.70 0.50 0.70 0.50 0.70 0.50 

2 0.00 0.40 0.30 0.70 0.70 0.50 0.50 0.70 0.70 0.50 0.50 

3 0.00 0.40 0.30 0.80 0.30 0.80 0.30 0.80 0.30 0.80 0.30 

4 0.00 0.40 0.30 0.80 0.40 0.80 0.40 0.80 0.40 0.80 0.40 

5 0.00 0.40 0.30 0.80 0.50 0.80 0.50 0.80 0.50 0.80 0.50 

6 0.00 0.40 0.30 0.80 0.70 0.60 0.50 0.40 0.30 0.30 0.30 

 

 Figure 10 shows the population evolutions considering Cases 1-6. Cases 1-5 are associated 

with cyclic governmental actions. These actions result in multiple subsequent infection waves. Case 

6 represents a condition where a governmental hardening action is implemented after 90 days, 

followed by a progressive softening action. For this situation, the increase of the infectious population 

during a second wave, together with the limitations of the available hospital infrastructure, result in 

more than 8,000 infected individuals within the group who needs hospital assistance. This contribute 

for a larger number of deaths that could be avoided. These scenarios show that social isolation 

combined with proper hospital infrastructure can drastically reduce the number of deaths. 
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Figure 10: Population dynamics considering different governmental actions expressed by the social 

isolation: (a) current infected, (b) cumulative deaths. 

 

 

 Figure 11 highlights some characteristic behaviors of the population dynamics of the current 

infected and cumulative deaths for some cases associated with cyclic governmental actions, whereas 

Figure 12 presents results for a governmental hardening action followed by a progressive softening 

action. The left panel shows the populations of the current infected and cumulative deaths, whereas 

the right panel shows the population that needs hospital assistance and does not receive it. Results 

show multi peak behavior followed by vanish or plateau behaviors for the current infected 

populations. 

 Table 7 summarizes these results, showing a worst scenario of 340,934 deaths and a best 

scenario of 58,831 deaths, indicating that a reduction of the number of deaths is possible with a proper 

isolation strategy controlled by governmental action.  
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Figure 11: Population evolutions considering different transmission rates, altered by cyclic 

governmental actions: (a) Case 1, (b) Case 2, (c) Case 3, and (e) Case 5. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 5, 2020. ; https://doi.org/10.1101/2020.06.03.20121608doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.03.20121608
http://creativecommons.org/licenses/by-nc-nd/4.0/


 21 

 

 

0 40 80 120 160 200 240 280 320

0.00

53.00k

106.00k

159.00k

212.00k

265.00k

318.00k

 

 

Model

 Current Infected

 Cumulative Deaths

P
o

p
u

la
ti
o
n

Time (days)

0 40 80 120 160 200 240 280 320

0.00

1.40k

2.80k

4.20k

5.60k

7.00k

8.40k

 

 

I H

Time (days)
 

 

Figure 12: Population evolutions considering different transmission rates, altered by a governmental 

hardening action followed by a progressive softening action: Case 6.  Interventions prior to 90 days 

preserved.    

 

 

 

Table 7: Infected and cumulative deaths predicted considering different government actions 

associated to cyclic actions and hardening action followed by a progressive softening action. 

Government 

Intervention after 

90 days 

(𝛼) 

Current 

Infected - Peak  

(days) 

Current Infected - 

Max. Value 

(pop.) 

Cumulative 

Deaths on  

Dec 31, 2020 

(pop.) 

𝑰𝑯 - Lack of 

Hospital 

Assistance 

(pop.) 

Case 1 91 93,432 94,520 76  

Case 2 91 93,432 84,111 76 

Case 3 91 92,896 111,845 0 

Case 4 91 92,896 74,448 0 

Case 5 91 92,896 58,831 0 

Case 6 91 / 286(*) 92,896 / 147,700(*) 340,934 8,216 

   (*) second wave peak 

 

 As a highly contagious disease, COVID-19 requires the implementation of governmental 

actions in the very begging. Previous analysis has shown the difficulties to control or reduce the 

number of infectious and deaths if nothing is done at early stages. With the objective to analyze the 

importance of the implementation of a rapid response, three approaches involving early government 

actions are considered: Constant; Progressive; and Cyclic. In the first one, a constant governmental 

action is adopted from the beginning of the intervention; the second considers a progressive reduction 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 5, 2020. ; https://doi.org/10.1101/2020.06.03.20121608doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.03.20121608
http://creativecommons.org/licenses/by-nc-nd/4.0/


 22 

of the governmental action until a value of 0.50 is reached; the third one considers a cyclic variation 

between two levels of governmental action with a period of two months. For all the cases, the 

governmental action begins in the 15th day. Table 8 presents the cases description and Table 9 

summarizes results for the three approaches. Due to the early actions taken, none of the 9 cases 

presented a condition of lack of hospital infrastructure for the part of the infectious population 

requiring specific assistance. Figure 13 presents the evolution of the current infected (left panel) and 

the cumulative deaths (right panel). 

 

 

Table 8: Different scenarios considering different early governmental actions approaches: constant, 

progressive and cyclic.  

  𝜶𝒊 

A
p

p
ro

a
ch

 

 𝑻𝑮𝒐𝒗
(𝒊)
  

 𝜶𝟐 
0 15 45 90 120 150 180 210 240 270 300 

C
o
n
st

an
t 0.70 0.00 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 

0.80 0.00 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 

0.90 0.00 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 

P
ro

g
re

ss
iv

e 0.70 0.00 0.70 0.60 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 

0.80 0.00 0.80 0.70 0.60 0.50 0.50 0.50 0.50 0.50 0.50 0.50 

0.90 0.00 0.90 0.80 0.70 0.60 0.50 0.50 0.50 0.50 0.50 0.50 

C
y
cl

ic
 0.70 0.00 0.70 0.70 0.50 0.50 0.70 0.70 0.50 0.50 0.70 0.70 

0.80 0.00 0.80 0.80 0.50 0.50 0.80 0.80 0.50 0.50 0.80 0.80 

0.90 0.00 0.90 0.90 0.50 0.50 0.90 0.90 0.50 0.50 0.90 0.90 
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Table 9: Infected and cumulative deaths predicted considering different early governmental actions 

approaches: Constant, Progressive and Cyclic. 

A
p

p
ro

a
ch

 Government 

Intervention  

(𝛼) 

Current Infected - 

Peak  

(days) 

Current Infected - 

Max. Value 

(pop.) 

Cumulative Deaths on  

Dec 31, 2020 

(pop.) 

C
o
n
st

an
t 0.70 18 636 469 

0.80 17 614 259 

0.90 17 602 191 

P
ro

g
re

ss
iv

e 

0.70 18 /311(*) 635 / 51,386(*) 51,386 

0.80 17 / 311(*) 614 / 11,969(*) 11,969 

0.90 17 602  196 

C
y
cl

ic
 0.70 18 636 1,188 

0.80 17 614 277 

0.90 17 602 191 

(*) no peak – value in the 311 day 
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Figure 13: Evolution of the infected and cumulative deaths populations considering different early 

governmental actions approaches implemented at the beginning of the pandemic in Brazil: (a) 

Constant, (b) Progressive and (c) Cyclic.  Early government intervention (prior to 90 days).    

 

 

 These results show that, in comparison with previous cases, the use of early governmental 

actions causes a smaller population of infectious, for which the cumulative deaths can be below 200. 

There is also no shortage of hospital infrastructure for the part of the infectious population requiring 

assistance. Overall, the Constant approach presents the best results associated with a smaller number 

of cumulative deaths at the end of the period, but with the cost of maintain a severe level of social 
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isolation during a long period of time. The use of an initial 𝛼 value of 0.90 results in a similar behavior 

for the three approaches, with a number of cumulative deaths lower than 200. For initial values of 𝛼 

of 0.70 and 0.80, the Progressive approach reveals the effect of a second wave (as in Case 6 of the 

previous analysis), resulting in a large number of deaths. A similar behavior is observed considering 

the Cyclic approach for 𝛼 = 0.70, where many deaths are observed due to a second and a third 

infectious waves. However, for 𝛼 = 0.80 the cyclic approach furnishes lower values of cumulative 

deaths, similar to the constant approach. Therefore, it can be an interesting alternative to replace the 

constant approach with the advantage of imposing a less severe governmental action and, therefore, 

a condition of less severe social isolation over the whole period. 

 It is important to highlight that, due to the strong sensitivity of the system nonlinear dynamics, 

small changes in conditions or control parameters can greatly affect the evolution of populations. 

Therefore, success in controlling the pandemic and reducing deaths depends on the adoption of 

approaches and mechanisms that allow monitoring the evolution of populations together with the 

rapid implementation of control procedures in the form of efficient government actions. 

 

 

5. CONCLUSIONS 

 

A mathematical model based on the susceptible-exposed-infectious-recovered framework is 

employed to describe the COVID-19 evolution. The proposed model considers removed populations 

composed by recovered and deaths populations. In addition, a population that needs hospital 

assistance is incorporated allowing the analysis of the lack of hospital infrastructure. A benchmark 

case is treated considering available data from China. Afterward, Brazilian case is analyzed. Initially, 

a verification case is performed with available data showing the capability of the model to describe 

real data. Afterward, different scenarios are of concern investigating governmental actions and 

hospital infrastructure, evaluating their evolution until the end of 2020. Numerical simulations clearly 

show that social isolation, guided by governmental and individual actions, are essential to reduce the 

infected populations and the total period of the crisis. Results based on actual data show that the 

number of deaths can vary from 40 thousand to 2.5 million depending on the social isolation level 

and the hospital infrastructure. In addition, early governmental actions are essential to ensure smaller 

population infectious and the absence of shortage of hospital infrastructure for the part of the 

infectious population requiring assistance, for which numerical simulations indicate a total number 

of deaths below 200. Therefore, simulations present differences from 200 to 2.5 million deaths, 

showing that a central coordination is essential to save a huge number of lives. Different qualitative 

behaviors can be expected depending on social isolation levels. On one hand, it is possible to observe 

a peak-vanish infectious curve representing a rapid dramatic crisis. On the other hand, COVID-19 
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dynamics can present a plateau behavior, spreading the crisis for a long period of time, being even 

more dramatic in terms of the number of deaths. Although the mathematical model can be improved 

in order to include more phenomenological information that can increase its capability to describe 

different scenarios, it should be pointed out that numerical simulations seem to be coherent with 

available data, being an important tool that can be useful for public health planning. 

 

6. ACKNOWLEDGEMENTS 

 

The authors would like to acknowledge the support of the Brazilian Research Agencies CNPq, 

CAPES and FAPERJ.  

 

7. REFERENCES 

 

• Brazilian Ministry of Health (2020a), “CNESNet – Cadastro Nacional de Estabelecimentos de 

Saúde”. Available from: http://cnes2.datasus.gov.br/Mod_Ind_Tipo_Leito.asp?VEstado=00. 

Accessed May 20, 2020. 

• Brazilian Ministry of Health (2020b), “DATASUS – CNES - Recursos Físicos”. Available from: 

http://tabnet.datasus.gov.br/cgi/deftohtm.exe?cnes/cnv/leiutibr.def. Accessed May 20, 2020. 

• Breto C, He D, Ionides EL & King AA (2009), “Time series analysis via mechanistic models”, 

The Annals of Applied Statistics, v.3, n. 1, pp.319–348, doi:10.1214/08-AOAS201. 

• Canabarro A, Tenório E, Martins R, Martins L, Brito S & Chaves R (2020), “Data-Driven Study 

of the COVID-19 Pandemic via Age-Structured Modelling and Prediction of the Health System 

Failure in Brazil amid Diverse Intervention Strategies”, medRxiv (preprint - April 15, 2020), doi: 

10.1101/2020.04.03.20052498. 

• Castro MC, de Carvalho LR, Chin T, Kahn R, Franca GVA, Macario EM & de Oliveira WK 

(2020), “Demand for hospitalization services for COVID-19 patients in Brazil”, medRxiv (preprint 

– April 1, 2020), doi: 10.1101/2020.03.30.20047662. 

• Chen T-M, Rui J, Wang W-P, Zhao Z-Y, Cui J-A & Yin L (2020), “A mathematical model for 

simulating the phase-based transmissibility of a novel coronavirus”, Infectious Diseases of 

Poverty, v.9, n.24, doi: 10.1186/s40249-020-00640-3. 

• Ferguson NM, Laydon D, Nedjati-GilaniG et al. (2020), “Impact of non-pharmaceutical 

interventions (NPIs) to reduce COVID-19 mortality and healthcare demand”, Imperial College 

London (16-03-2020), doi: /10.25561/77482. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 5, 2020. ; https://doi.org/10.1101/2020.06.03.20121608doi: medRxiv preprint 

http://cnes2.datasus.gov.br/Mod_Ind_Tipo_Leito.asp?VEstado=00
http://tabnet.datasus.gov.br/cgi/deftohtm.exe?cnes/cnv/leiutibr.def
https://doi.org/10.25561/77482
https://doi.org/10.1101/2020.06.03.20121608
http://creativecommons.org/licenses/by-nc-nd/4.0/


 27 

• He D, Dushoff J, Day T, Ma J & Earn DJD (2013), “Inferring the causes of the three waves of the 

1918 influenza pandemic in England and Wales”, Proc R Soc B, v.280 Article 20131345. 

doi:10.1098/rspb.2013.1345. 

• He D, Ionides EL & King AA, (2010), “Plug-and-play inference for disease dynamics: measles in 

large and small populations as a case study”, J. R. Soc. Interface, v.7, pp.271-283. 

doi:10.1098/rsif.2009.0151. 

• Li R, Pei S, Chen B, Song Y, Zhang T, Yang W & Shaman J (2020a), “Substantial undocumented 

infection facilitates the rapid dissemination of novel coronavirus (SARS-CoV2)”, Science, 

doi:10.1126/science.abb3221. 

• Li Q, Med M, Guan X, Wu P, Wang X, Zhou L et al. (2020b), “Early transmission dynamics in 

Wuhan, China, of novel coronavirus-infected pneumonia”, The New England Journal of Medicine, 

doi:10.1056/NEJMoa2001316. 

• Lin Q, Zhao S, Gao D, Lou Y, Yang S, Musa SS, Wang MH, Cai Y, Wang W, Yang L, Hee D 

(2020), “A conceptual model for the coronavirus disease 2019 (COVID-19) outbreak in Wuhan, 

China with individual reaction and governmental action”, International Journal of Infectious 

Diseases, v.93, pp.211–216. 

• López L & Rodó X (2020), “A modified SEIR model to predict the COVID-19 outbreak in Spain 

and Italy: simulating control scenarios and multi-scale epidemics”, medRxiv (preprint – March 26, 

2020), doi: 10.1101/2020.03.27.20045005. 

• Lyra W, do Nascimento Jr JD, Belkhiria J, de Almeida L, Chrispim PPM, de Andrade I (2020), 

“COVID-19 pandemics modeling with SEIR(+CAQH), social distancing, and age stratification. 

The effect of vertical confinement and release in Brazil.”, medRxiv (preprint - April 21, 2020), doi: 

10.1101/2020.04.09.20060053. 

• Prem K, Liu Y, Russell TW, Kucharski AJ, Eggo RM, Davies N, (2020) “The effect of control 

strategies to reduce social mixing on outcomes of the COVID-19 epidemic in Wuhan, China: a 

modelling study”, The Lancet Public Health, doi: 10.1016/S2468-2667(20)30073-6. 

• Rihan FA, Al-Salti NS & Anwar M-NY (2018), “Dynamics of coronavirus infection in human”, 

AIP Conference Proceedings, v.1982, Article 020009, doi:10.1063/1.5045415. 

• Riou J & Althaus CL (2020), “Pattern of early human-to-human transmission of Wuhan 2019 

novel coronavirus (2019-nCoV), December 2019 to January 2020”, Euro Surveill, v.25, n. 4, 

Article 2000058. doi:10.2807/1560-7917.ES.2020.25.4.2000058. 

• Savi MA (2005), “Chaos and order in biomedical rhythms”, Journal of the Brazilian Society of 

Mechanical Sciences and Engineering, v.27, n.2, pp.157-169. 

• Worldometer (2020), “COVID-19 Coronavirus Pandemic”. Available from: 

https://www.worldometers.info/coronavirus/. Accessed May 20, 2020. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 5, 2020. ; https://doi.org/10.1101/2020.06.03.20121608doi: medRxiv preprint 

https://www.worldometers.info/coronavirus/
https://doi.org/10.1101/2020.06.03.20121608
http://creativecommons.org/licenses/by-nc-nd/4.0/


 28 

• Weissman GE, Crane-Droesch A, Chivers C, et al. (2020), “Locally Informed Simulation to 

Predict Hospital Capacity Needs During the COVID-19 Pandemic”, Annals of Internal Medicine, 

doi: 10.7326/M20-1260. 

• Wu JT, Leung K, Leung GM (2020), “Nowcasting and forecasting the potential domestic and 

international spread of the 2019-nCoV outbreak originating in Wuhan, China: a modelling study”, 

Lancet, v.395, pp.689-697.doi:10.1016/ S0140-6736(20)30260-9. 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 5, 2020. ; https://doi.org/10.1101/2020.06.03.20121608doi: medRxiv preprint 

https://doi.org/10.7326/M20-1260
https://doi.org/10.1101/2020.06.03.20121608
http://creativecommons.org/licenses/by-nc-nd/4.0/

