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València, València, Spain

bDepartment of Mathematics, New Mexico Tech, 801 Leroy
Place, Socorro, 87801, NM, USA

cDepartment of Mathematics, Iowa State University, 411 Morrill
Rd, Ames, 50011, IA, USA

Abstract

As the world becomes ever more connected, the chance of pandemics in-
creases as well. The recent COVID-19 pandemic and the concurrent global
mass vaccine roll-out provides an ideal setting to learn from and refine our
understanding of infectious disease models for better future preparedness. In
this review, we systematically analyze and categorize mathematical models
that have been developed to design optimal vaccine prioritization strategies
of an initially limited vaccine. As older individuals are disproportionately
affected by COVID-19, the focus is on models that take age explicitly into
account. The lower mobility and activity level of older individuals gives rise
to non-trivial trade-offs. Secondary research questions concern the optimal
time interval between vaccine doses and spatial vaccine distribution. This
review showcases the effect of various modeling assumptions on model out-
comes. A solid understanding of these relationships yields better infectious
disease models and thus public health decisions during the next pandemic.
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1. Introduction1

In December 31, 2019, the World Health Organization (WHO) was in-2

formed of several cases of a pneumonia of unknown cause occurring in Wuhan,3

China (Centers for Disease Control (CDC)). Only 71 days later, the WHO4

declared - after 118,000 cases in 114 countries and 4,291 deaths - COVID-19,5

caused by the Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV-6

2), a pandemic. Despite the widespread implementation of numerous types of7

non-pharmaceutical interventions (NPIs), aimed at curbing virus spread and8

keeping hospitals functional, COVID-19 continued to spread rapidly in the9

absence of a vaccine (Odusanya et al., 2020). Recent advances in mRNA vac-10

cine technology enabled rapid development of highly effective vaccines (Zhang11

et al., 2019). Since the globalized world had never experienced a pandemic,12

nor a mass vaccine roll-out at this scale, various formerly mainly theoretical13

questions related to vaccine access and prioritization became all of a sudden14

very important. These included: Who should be vaccinated first? Should the15

second vaccine dose be delayed in order to provide a first dose to more peo-16

ple? What parameters must be taken into account to accurately determine17

the best prioritization strategy? Should high-income countries share some18

of their limited vaccine with poorer countries? For ethical reasons only, or19

does a more equitable vaccine coverage have even epidemiological benefits?20

In response to these quickly emerging questions, scientists from many fields21

started to collaborate and suggest answers.22

Globally, by the end of 2023, there have been over 770 million confirmed23

COVID-19 cases and over 7 million deaths, reported to the WHO (World24

Health Organization (WHO)). Despite the development of highly effective25

vaccines and 13.6 billion administered COVID-19 vaccine doses, with over 7226

percent of the world population having received at least one dose (New York27

Times), the disease still surges in waves around the world in early 2024. While28

the infection fatality rate is now substantially lower than in the beginning29

of the pandemic (Sorensen et al., 2022) and most NPIs have disappeared,30

large COVID-19 outbreaks and community spread still appear around the31

world, causing, for example, numerous individuals to suffer from so-called32

long COVID symptoms that can linger for years post infection (Sudre et al.,33

2021). Reasons COVID-19 has not disappeared after sufficient production34

of vaccines include the ongoing emergence of SARS-CoV-2 variants, partial35

vaccine escape by some variants (Chakraborty et al., 2022; Wang et al., 2021),36

issues related to vaccine access and distribution specifically in low-income37
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countries (Sheikh et al., 2021), as well as vaccine hesitancy and wariness38

driven by rampant misinformation (Sallam, 2021). Learning from mistakes39

made during the COVID-19 pandemic and the first global mass vaccine roll-40

out is thus paramount for future pandemic preparedness.41

This review identifies and analyzes a variety of studies related to finding42

the optimal vaccine allocation given a limited supply. While the specific re-43

search questions and settings differ from study to study, age is a crucial factor44

in all COVID-19 vaccine prioritizations as older people have a substantially45

higher COVID-19 fatality rate. The primary focus in this review is there-46

fore on studies that were based on a mathematical model, which takes age47

into consideration. Other important attributes which were used by public48

health decision-makers to differentiate COVID-19 vaccine access and which49

are investigated in some of the studies include, among others, occupation50

(e.g., prioritizing healthcare and essential workers) and comorbidity status51

(e.g., prioritizing individuals with known risk factors). Moreover, the rec-52

ommended two-dose vaccine regimen for most COVID-19 vaccines raised the53

related prioritization question whether it is beneficial to delay the second dose54

in order to increase initial vaccine coverage. Another related prioritization55

question concerns spatial aspects (e.g., the optimal distribution of limited56

vaccine supply between different states or countries). We summarize innova-57

tive and interesting mathematical model-based studies that investigate these58

related prioritization questions, no matter whether the models specifically59

consider age.60

Given the large number of studies related to optimal COVID-19 vaccine61

allocations, we decided to restrict ourselves to studies that employ a math-62

ematical model for decision-making. The included studies employ several63

modeling frameworks. Most studies are based on an ordinary differential64

equation (ODE) model, in which the population is stratified into different65

compartments. The simplest model, colloquially known as SIR model and66

first studied nearly 100 years ago (Kermack and McKendrick, 1927), con-67

tains three compartments: susceptible (S), infected (I), and recovered (R).68

More complex models possess additional compartments for individuals that69

are e.g. infected but not yet infectious, asymptomatically versus symptomat-70

ically infected, quarantined but not yet recovered, or dead. To account for71

different ages and possibly other attributes (e.g., occupation), the population72

is stratified into a finite number of sub-populations (e.g., age classes) and the73

compartments are duplicated for each sub-population. Each sub-population74

can have its own characteristics. This enables modelers to account for het-75
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erogeneity (e.g., age dependency) in contact patterns, NPI adherence, vac-76

cine hesitancy, susceptibility to infection, as well as various factors related77

to disease progression. ODE-based models implicitly make a number of as-78

sumptions that are inaccurate for COVID-19 disease dynamics and hard to79

overcome within the ODE modeling framework. Among others, they assume80

that (i) the population is homogeneously mixed, (ii) the time spent in each81

transient compartment is exponentially distributed, and (iii) disease dynam-82

ics are deterministic.83

Another modeling framework, agent-based models (ABMs; also known as84

individual-based models), is stochastic in nature and employed by a smaller85

number of studies. In ABMs, individual agents (i.e., people) are modeled;86

agents interact with each other and possibly spread the disease through e.g.87

heterogeneous interaction networks. This modeling framework is highly flex-88

ible (e.g., each individual can have its own characteristics and decision rules)89

and can be adaptive (e.g., the decisions of an agent can depend on other’s90

decisions). However, ABMs inherently rely on simulations. Their stochastic91

nature further increases the computational needs, rendering an exhaustive92

exploration of a large parameter space impossible. Lastly, a few studies93

employ partial differential equation (PDE) models. These studies typically94

focus on spatial aspects of vaccine prioritization.95

Contrary to other review articles on this topic (Saadi et al., 2021; Liu and96

Lou, 2022; Noh et al., 2021; Thakkar and Spinardi, 2023), the focus of this97

review is on understanding the effect of modeling assumptions and parame-98

ters on policy recommendations. For example, while most studies agree that99

elderly and vulnerable should be vaccinated first due to their substantially100

higher infection fatality ratio, some studies suggest the opposite. We look in101

detail at which model parameters and assumptions cause these discrepancies.102

This review includes 94 articles, which use a mathematical model to an-103

swer at least one of three questions related to COVID-19 vaccine prioritiza-104

tion:105

1. How should a limited vaccine be optimally distributed among a popu-106

lation stratified by age (and possibly other factors)?107

2. For limited vaccines with a two-dose regimen, should the second dose108

be delayed in order to provide more people with a first vaccine dose?109

3. How should a limited vaccine be optimally distributed given spatial110

heterogeneity?111

In Section 2, we briefly describe how we identified articles of interest. Sec-112
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A B

Figure 1: Number of (A) investigated and (B) included studies, stratified by source.

tion 3 summarizes, at a high-level, the main findings of these articles related113

to vaccine prioritization. Section 4 puts these findings into context, particu-114

larly those without a clear consensus strategy. Several key COVID-19 model115

parameters and assumptions are introduced, with a focus on how they affect116

optimal vaccine prioritization strategies. Section 5 provides a brief summary117

of particularly interesting and noteworthy studies. Finally, Section 6 briefly118

presents related works that employ optimal control methods to answer ques-119

tions related to vaccine prioritization.120

2. Methods121

To find studies of interest, we searched PubMed, the Web of Science Core122

Collection and MathSciNet (all in February 2024) for research articles that123

contain the following keywords: ’age’ AND ’model’ AND (’COVID-19’ OR124

’SARS-CoV-2’) AND (’vaccine’ OR ’vaccination’) AND (’best’ OR ’optimal’125

OR ’priorit*’) AND (’mathematical’ OR ’computational’ OR ’stochastic’ OR126

’network’). After removing duplicates (e.g., preprints and journal articles)127

and non-peer-reviewed preprints, this yielded a total of 285 articles, which128

we manually reviewed, in addition to 43 articles known to the authors and/or129

referenced in one of the 285 articles (Fig. 1A). For each article, we decided if130

it contained a mathematical model that answers at least one of the COVID-131

19 vaccine prioritization questions stated above. This yielded a total of 94132

articles included in this review (Fig. 1B). Any article that did not assume lim-133

ited vaccine availability (e.g., studies looking into the epidemiological effect134

of boosters in high-income countries) was excluded.135

Eighty of the included articles contain an age-stratified mathematical136
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model that provides answers to our primary research question: How should137

a limited vaccine be optimally distributed among a population stratified by138

age? Fifteen articles contain a mathematical model (not neccessarily age-139

stratified) to answer the secondary research question: For limited vaccines140

with a two-dose regimen, should the second dose be delayed in order to pro-141

vide more people with a first vaccine dose? Finally, seven articles contain142

a mathematical model that considers spatial aspects of vaccine distribution.143

The low number of articles related to the latter two research questions is, at144

least partially, due to the fact that the keywords were selected to preferen-145

tially find articles investigating our primary research question.146

3. Summary of findings147

Collectively, the included articles contain models that are tailored to148

cities, states or countries from all continents except Antarctica (Fig. 2). A149

few studies tailor their model to more than one country to showcase how150

variability in e.g. age distributions, age-stratified contact patterns, or imple-151

mented NPIs can affect optimal vaccine prioritization, see e.g., Gozzi et al.152

(2021); Liu et al. (2022b); Wang et al. (2022); Liu et al. (2022a). Other stud-153

ies employ more abstract models, frequently ABMs, which are not tailored154

to any specific setting, see e.g., Romero-Brufau et al. (2021); Grauer et al.155

(2020); Kadelka and McCombs (2021). These models contain tuneable pa-156

rameters and are well-suited to reveal the qualitative dependence of optimal157

allocation strategies on key parameters and assumptions.158

While the included articles employ a variety of metrics to quantify the159

quality of a given vaccine allocation strategy, there are several common ob-160

jectives. In decreasing order of use (Fig. 3), these include: minimizing deaths161

(used in 80 of the 94 included studies), cases/infections (56), hospitalizations162

(22), and years of life lost (YLL; 10). Other, less frequently used objectives163

include minimizing quality- and disability-adjusted life years (QALYS and164

DALYS, respectively; used in 6 studies), minimizing the peak number of165

hospitalized, as well as several equitable and economic considerations. While166

technically different and considered as separate objectives in at least one167

study (Islam et al., 2021), we do not differentiate between the objectives168

minimizing cases and infections. Some studies attempt, furthermore, to op-169

timize multiple objectives at the same time, e.g., through the use of optimal170

control methods (summarized in Section 6), or an analysis of Pareto-optimal171

allocation strategies.172
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number of studies
with models tailored
to a country

1
2
3
4
5
6
13
23

Figure 2: Number of studies that contain a model for a specific country. Some
studies include models tailored to several countries, while others are more abstract and
not tailored to a specific country. Census data and age-stratified contact matrices are two
examples of frequently used country-specific data.

When minimizing mortality is the sole objective, the majority of studies173

(47 out of 70) agree that vaccinating older individuals, vulnerable individu-174

als, and - if considered - health care workers first is optimal, irrespective of175

the specific setting or assumptions (Fig. 3A, Table 1). There exists, how-176

ever, some disagreement about the prioritization among these subpopula-177

tions. Interestingly, 23 model-based studies (32.9%) conclude that under178

certain circumstances a prioritization of younger people who have on aver-179

age more contacts leads to lower death counts. Qualitatively, the optimal180

prioritization strategies do generally not shift much when minimizing other181

morbidity-based metrics such as YLL or hospitalizations. On the other hand,182

most studies (41 out of 48, 85.4%) agree that to minimize the total number183

of infections and/or the effective reproductive number younger individuals184

should be vaccinated first since they typically have more contacts and thus185

more chances to spread the virus (Fig. 3A).186
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A B

Figure 3: High-level summary of findings. (A) Number of studies that agree at a
high-level on a given prioritization strategy (columns) when minimizing a given metric
(rows). Only studies that are based on a mathematical model that considers stratifying
vaccine access by age are included. Note that all studies that recommend prioritization of
the oldest and most vulnerable people, possibly after vaccinating health care workers, were
nevertheless counted as prioritizing older. (B) Number of studies that agree at a high-level
on a dosing interval strategy (columns) when minimizing a given metric (rows). (A-B) The
second column (“depends”) includes all studies that present more subtle findings where
the prioritization and dosing interval depends on certain assumptions. In Table 1 and
Table 2, the high-level summaries are stratified by study.
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Table 1: High-level summary of COVID-19 vaccine prioritization studies. Each
row summarizes the high-level prioritization strategy identified by a given study (white:
not assessed, red: prioritize older/vulnerable population, blue: prioritize younger/high-
contact population, gray: prioritization depends on model assumptions). Fig. 3A provides
summary counts. Only studies that were based on a mathematical model that accounts
for age were included. The models are further classified by framework, type of vaccine
roll-out (as specified in 4.4), as well as considered vaccine functions.
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Althobaity et al. (2022) 2
Angelov et al. (2023) 2
Anupong et al. (2023) 2
Aruffo et al. (2022) 4
Ayoub et al. (2021) 4
Ben-Zuk et al. (2022) 2
Bubar et al. (2021) 2
Buckner et al. (2021) 2
Bushaj et al. (2023) ?
Campos et al. (2021) 5
Cartocci et al. (2021) 2
Cattaneo et al. (2022) 5
Chen et al. (2021) 5
Childs et al. (2022) 2
Choi et al. (2021) 2
Choi and Shim (2021) 2
Conway et al. (2023) 4
Ferranna et al. (2021) 2
Ferreira et al. (2022) 4
Foy et al. (2021) 2
Gavish and Katriel (2022) ?
González-Parra et al. (2022) 2
Gozzi et al. (2021) 2
Gozzi et al. (2022) 4
Grundel et al. (2021) 2
Han et al. (2021) 2
Hogan et al. (2021) 5
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Table 1 continued
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Hong et al. (2022) 5
Hupert et al. (2022) 5
Islam et al. (2021) 5
Jahn et al. (2021) 5,4
Jentsch et al. (2021) 2
Kadelka and McCombs (2021) 5
Kadelka et al. (2022) 4
Karabay et al. (2021) 2
Kekić et al. (2023) 4
Kiem et al. (2021) 4
Li et al. (2021) ?
Li et al. (2022) 4
Liu et al. (2021) 4
Liu et al. (2022a) ?
Liu et al. (2022b) 2
Luangasanatip et al. (2023) 2
Luebben et al. (2023) 4
Luo et al. (2022) 2
MacIntyre et al. (2022) 2
Makhoul et al. (2020) 5
Mandal et al. (2021) 5
Matrajt et al. (2021b) 2
Matrajt et al. (2021a) 5
McBryde et al. (2021) 5
Miura et al. (2021) 5
Molla et al. (2022) 2
Moore et al. (2021a) 5
Moore et al. (2021b) 2
Morales-Zamora et al. (2022) 2
Nuraini et al. (2021) 4
Pearson et al. (2021) 4
Penn and Donnelly (2023) ?
Rahmandad (2022) 2
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Table 1 continued
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Rao and Brandeau (2021a) ?
Rao and Brandeau (2021b) 5
Rodriguez-Maroto et al. (2023) 4
Saldaña and Scoglio (2022) 2
Shim (2021) 5
Stafford et al. (2023) 5
Tatapudi et al. (2021) 4
Tran et al. (2021) 2
Trejo et al. (2024) 4
Vo et al. (2023) 4
Walker et al. (2022) 2
Wang et al. (2022) 5
Yasuda et al. (2022) 5
Zanella et al. (2021) 2
Zavrakli et al. (2023) 3
Zhao et al. (2021b) 1
Ziarelli et al. (2023) 4
Zuo et al. (2022) 2

187

The recommended dosage for some of the most effective and initially most188

widely available COVID-19 vaccines, e.g., the Pfizer-BioNTech, the Moderna,189

and the AstraZeneca vaccine, was two doses. While a single dose offers some190

protection, two doses, spaced out at least a few weeks, induce a substan-191

tially stronger protection. Thus, a related prioritization question concerns192

the optimal allocation of each individual vaccine dose. If the vaccine supply193

is limited, a delay of the second dose allows for more individuals to receive a194

first dose. A total of 15 studies (not necessarily age-structured) investigated195

this particular prioritization question. Most studies agree that a delay of196

the second dose is beneficial, irrespective of the specific objective (Fig. 3B,197

Table 2). This aligns with findings from a pooled analysis of four randomised198
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trials (Voysey et al., 2021). Several studies identify the relative protection199

induced by the first dose compared to the full vaccine regimen as a key pa-200

rameter in this decision (Romero-Brufau et al., 2021; Matrajt et al., 2021b;201

Souto Ferreira et al., 2022), highlighting the need for detailed vaccine effec-202

tiveness data.203

Table 2: High-level summary of COVID-19 vaccine dosing interval studies. Each
row summarizes the high-level dosing interval recommendation identified by a given study
(indexed by reference number). White: not assessed, green: delay second dose, orange:
shorten dosing interval, gray: recommendation depends on model assumptions. Fig. 3B
provides summary counts. Only studies that were based on a mathematical model were
included. The models are further classified by framework, type of vaccine roll-out (as
specified in 4.4), as well as considered vaccine functions.
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Barmpounakis et al. (2022) 4
Childs et al. (2022) 2
Diarra et al. (2022) 5
Ferreira et al. (2022) 4
Gianatti et al. (2023) 2
Jimenez-Rodriguez et al. (2022) 2
Kobayashi and Nishiura (2022) 2
Liu et al. (2022a) ?
Mak et al. (2022) 4
Matrajt et al. (2021b) 2
Moghadas et al. (2021) 2
Romero-Brufau et al. (2021) 2
Souto Ferreira et al. (2022) 4
Tuite et al. (2021) 5
Zuo et al. (2022) 2

204

Countries are spatially heterogeneous. Thus, spatial factors can affect205

the optimal allocation of limited vaccine. While not the primary objective of206
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this review, we identified a number of studies that investigate spatial aspects207

of vaccine distribution (Table 3). The considered questions are more diverse208

than in the previous two research questions; we therefore provide most details209

in Subsection 5.3. In summary, the investigated studies all agree that spa-210

tial factors are important when designing deaths-minimizing optimal vaccine211

prioritization plans and that non-trivial trade-offs emerge, e.g. between pri-212

oritizing regions with high incidence counts whose inhabitants are on average213

younger and regions with more retirees. Economic factors are also taken into214

consideration by multiple studies.215

Table 3: Summary of spatial COVID-19 vaccine distribution studies. Each row
describes a study that developed a spatial vaccine prioritization model. The models are
classified by framework, type of vaccine roll-out (as specified in 4.4), as well as considered
vaccine functions.

modeling
framework

vaccine-induced
reduction in
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Caga-anan et al. (2023) 4
Grauer et al. (2020) 2
Hong et al. (2022) 5
Lemaitre et al. (2022) 2
Molla et al. (2022) 2
Vo et al. (2023) 4
Zhou et al. (2021) 5

216

4. Key implementation details in vaccine prioritization models217

Modelers make many decisions - some consciously, some unconsciously218

- when creating a mathematical vaccine prioritization model. Some choices219

can fundamentally affect the resulting optimal vaccine allocation. In this220

section, we focus on the studies that identify a dependence of the optimal221
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prioritization strategy (Fig. 3) to better understand the effect of certain mod-222

eling assumptions as well as the impact of setting-to-setting differences in key223

parameters.224

4.1. Modeling framework225

The choice of modeling framework may affect outcomes of vaccine pri-226

oritization models. In particular, as briefly described in the introduction,227

the popular ODE-based compartmental models come with several implicit228

assumptions. The homogeneous mixing assumption can be overcome by229

stratifying the population into sub-populations and accurately describing230

heterogeneous mixing (see Subsection 4.6). Another implicit assumption of231

ODE-based models is that the time spent in each transient compartment is232

exponentially distributed. This is frequently unrealistic. For example, upon233

infection with SARS-CoV-2 the virus needs time to replicate before a person234

becomes contagious. The latent period is therefore not exponentially dis-235

tributed Zhao et al. (2021a). While most included studies ignore this issue236

- likely since there exists no apparent direct effect on vaccine prioritizations237

-, some studies stratify a single transient compartment into multiple (see238

e.g., Moore et al. (2021b); Childs et al. (2022)). This has the effect that the239

total time spent in these compartments follows an Erlang distribution (as-240

suming equal average time in each of the multiple compartments) rather than241

an exponential distribution. The Erlang distribution, as a special case of the242

Gamma distribution, is more flexible and can thus describe more accurately243

the average time an individual is e.g. latently infected with SARS-CoV-2244

(Lloyd, 2001).245

4.2. Prediction horizon246

Public health decision makers typically operate within a defined plan-247

ning horizon. That is, they attempt to make decisions that yield ”optimal”248

outcomes over the course of a given time period. Similarly, mathematical249

models compare outcomes (e.g., total deaths or cases under different vaccine250

allocation strategies) over a defined time interval whose length is known as251

prediction horizon. The main benefit of a short prediction horizon is reduced252

uncertainty since long-term disease dynamics are very difficult to predict. A253

German ODE-based study nicely highlights that the choice of prediction hori-254

zon fundamentally influences who to vaccinate first (Grundel et al., 2021).255

If the horizon is too short (less than 8 weeks in the study), prioritization256

targets may switch as the strategy suffers from shortsightedness. Another257
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study shows that vaccinating elderly is always preferred for a short prediction258

horizon, which may however yield sub-optimal long-term outcomes (Campos259

et al., 2021).260

4.3. Vaccine eligibility261

Given an initially limited COVID-19 vaccine supply, people with a known262

history of COVID-19 infection were excluded from early vaccine access by263

most public health agencies. Correspondingly, most reviewed mathematical264

models assume that only susceptible individuals can be initially vaccinated.265

Some ODE-based studies with more compartments (see e.g., Islam et al.266

(2021); Karabay et al. (2021); Taboe et al. (2023); Luo et al. (2022); Anupong267

et al. (2023); Grundel et al. (2021)) allow for vaccination of any individuals268

without known COVID-19 history. That means pre- or asymptomatically269

infected as well as recovered individuals without known history of infections270

(e.g., through positive test results or symptoms) are also eligible for early271

vaccination, leading to some vaccine doses being used sub-optimally. A few272

studies even quantify the reduction in deaths, YLL, and infections that could273

be achieved through the hypothetical use of seroprevalence tests prior to274

vaccination (Bubar et al., 2021; Ayoub et al., 2021). While challenging to275

implement, these studies find, as expected, that vaccinating only seronegative276

individuals always leads to improved outcomes, with the difference being277

larger at higher levels of seroprevalence.278

4.4. Vaccine roll-out279

When deciding who to vaccine first, public health officials must antici-280

pate the speed of the vaccine roll-out. In mathematical models, this results281

in assumptions about the daily number of vaccinations. Post-hoc analyses282

benefit from access to historic vaccination data and can simply ask the ques-283

tion: Given this number of vaccinations per day, how could these vaccines284

have been allocated in an optimal way? When such data is unavailable, e.g.,285

prior to the start of a mass vaccine roll-out, modelers typically make one of286

the following assumptions in ODE models. Here, let X = X(t) denote the287

subset of the population that is eligible for vaccination (e.g., all suscepti-288

bles) at time t. Then, vaccination of part of these eligible individuals can be289

described by290

dX(t)

dt
= −f(X, t). (1)
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Note that this equation only considers the vaccination process. The size of291

X may also change due to natural infection, immunity waning, etc. The rate292

of newly vaccinated, f(X, t), typically takes one of the following forms:293

1. f(X, t) = νX(t), where ν ≥ 0 describes the proportion of eligible indi-294

viduals vaccinated per unit time. This form implies that the number295

of vaccinations is proportional to the size of X. Specifically, as the size296

of X decreases over time (due to vaccination, natural infection, etc.),297

the number of newly vaccinated decreases as well. Mathematically, this298

form guarantees that X(t) remains positive for all time. This form is299

used in Zhao et al. (2021b); Acuña-Zegarra et al. (2021).300

2. f(X, t) = c, where c ≥ 0 is a constant that describes the number of301

vaccinations per unit time. Mathematically, this form does not guar-302

antee positivity of X(t) for all time, as all individuals may eventually303

become vaccinated (or otherwise removed from X). This necessitates304

careful attention when numerically solving the ODE. Nevertheless, this305

form is used in many models (Table 1), likely due to its simplicity.306

3. f(X, t) = ν(t)X(t). This form is the most complex. The proportion307

of eligible individuals being vaccinated may vary over time. This form308

has the same nice mathematical property as form 1: positivity of X(t)309

is guaranteed for all time. Contrary to form 1 and form 2, this more310

complex third form allows for the rate - and also the number - of vacci-311

nations to increase over time, as is typically the case at the beginning312

of a mass vaccine roll-out. Form 1 (and form 2), on the other hand,313

assume that the number of vaccinations decreases (remains constant,314

respectively) as the number of eligible individuals decreases. This form315

is used in a few models that employ optimal control techniques (Acuña-316

Zegarra et al., 2021; Zavrakli et al., 2023).317

4. f(X, t) = c(t). In this form, the number of vaccinations only depends318

on time but not on the size of X. This form is well-suited for post-hoc319

analyses, in which the number of vaccinations that were conducted per320

unit time (e.g., day or week) is known, see e.g. Islam et al. (2021);321

Gozzi et al. (2022); Luebben et al. (2023); Kekić et al. (2023); Aruffo322

et al. (2022); Ziarelli et al. (2023); Ferreira et al. (2022); Cattaneo323

et al. (2022). Mathematically, this form requires careful attention when324

solving the ODE numerically, to ensure X(t) remains non-negative at325

all time. This can be achieved by adding a number of model constraints,326

as in Han et al. (2021). One study tailors an ODE model to three327
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different Indonesian provinces and optimizes the function c(t) such that328

active cases remain below an acceptable threshold and total vaccination329

cost is minimized; interestingly, the optimal function c(t) is highly non-330

monotonic (Nuraini et al., 2021). Another study optimizes c(t) as well,331

by assuming that vaccines are produced at a constant speed but that332

vaccine stock needs not to be used immediately (Souto Ferreira et al.,333

2022).334

5. A number of studies do not specify f(X, t). Rather, they assume that335

all vaccinations have been completed prior to the simulation of the336

disease spread. This simplifying assumption decouples the vaccine roll-337

out from the disease spread. A modified version of this approach is338

implemented in Matrajt et al. (2021b) where the simulation of disease339

dynamics is stopped once a week when a specified number of (weekly)340

vaccinations occur. A similar approach is implemented in an ABM341

in Jahn et al. (2021).342

Despite different implementations of the vaccine roll-out, model-based studies343

generally agree that prioritization of younger, high-contact individuals may344

be beneficial and even lead to fewer deaths, when the entire vaccine roll-out345

takes place very quickly, i.e., when vaccines for a large proportion of the pop-346

ulation are available quickly (Matrajt et al., 2021a; Buckner et al., 2021; Liu347

et al., 2022b; McBryde et al., 2021). In this case, the vulnerable population348

is protected indirectly, by reaching herd immunity and a stop of community349

spread. This strategy becomes particularly reasonable in situations with low350

community spread (i.e., the effective reproductive number Reff ≈ 1) (Chen351

et al., 2021; Althobaity et al., 2022; Gozzi et al., 2021) and in which the352

epidemic is already in decline (i.e., dReff(t)/dt < 0) (Molla et al., 2022). One353

prominent study agrees that younger individuals should only be prioritized,354

when minimizing deaths, if effective reproductive numbers are low but finds355

that a slow roll-out (and not a fast one) is an additional requirement (Bubar356

et al., 2021).357

4.5. Vaccine function and efficacy358

In theory, vaccines can improve outcomes in a variety of ways. A vac-359

cinated individual may be less likely (than an unvaccinated individual with360

same characteristics) to (i) become infected, (ii) experience symptoms when361

infected, (iii) require hospitalization due to severe symptoms, (iv) die. In362

addition, a vaccinated person (v) may be less contagious (e.g., due to a lower363
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average viral load), and (vi) may have a shorter duration of infectiousness,364

i.e., faster disease progression. To illustrate how these different vaccine func-365

tions are frequently included in compartmental models, consider the following366

COVID-19 model, which stratifies the population by disease status (suscep-367

tible (S), recently infected but not yet infectious (E=exposed), symptomati-368

cally infected (I), asymptomatically infected (A), severely infected/requiring369

hospitalization (H), deceased from COVID-19 (D), recovered (R)) and vac-370

cine status (superscript v for vaccinated)):371

dS(t)

dt
= −ΛS,

dSv(t)

dt
= −(1− ϵ1)ΛS

v,

dE(t)

dt
= ΛS − γEE,

dEv(t)

dt
= (1− ϵ1)ΛS

v − γv
EE

v,

dI(t)

dt
= pE→IγEE − γII,

dIv(t)

dt
= (1− ϵ2)pE→Iγ

v
EE

v − γv
I I,

dA(t)

dt
= (1− pE→I)γEE − γAA,

dAv(t)

dt
= (1− (1− ϵ2)pE→I)γ

v
EE − γv

AA,

dH(t)

dt
= pI→HγII − γHH,

dHv(t)

dt
= (1− ϵ3)pI→Hγ

v
I I − γv

HH,

dD(t)

dt
= pH→DγHH,

dDv(t)

dt
= (1− ϵ4)pH→Dγ

v
HH,

dR(t)

dt
= γAA+ (1− pI→H)γII + (1− pH→D)γHH,

dRv(t)

dt
= γv

AA
v + (1− (1− ϵ3)pI→H)γ

v
I I

v + (1− (1− ϵ4)pH→D)γ
v
HH

v,

where Λ = β(A+ I + αAv + αIv) is the force of infection, with α ∈ [0, 1]372
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describing the vaccine-induced reduction in onward transmission. Vaccine-373

induced faster disease progression may be implemented by γv
x ≥ γx for x ∈374

{E, I, A,H}.375

Three important notes: First, this model implements a so-called leaky376

vaccine: any vaccinated individual may still become infected, at a lower rate377

than unvaccinated. A leaky vaccine represents the most frequent implemen-378

tation of vaccine function. An alternative, also frequently observed assump-379

tion is an all-or-nothing vaccine. In that case, ϵ1 determines the fraction of380

vaccinated individuals that are completely immune to infection, while the381

remaining proportion of vaccinated (1 − ϵ1) are typically assumed to be as382

susceptible as unvaccinated individuals. In some models, their susceptibility383

is reduced by a certain degree. Second, a stratification by age can easily384

be included by duplicating all compartments for each age group, including385

contact patterns in the force of infection, and considering age-dependent pa-386

rameters. Third, the parameters ϵ2, ϵ3, ϵ4 describe conditional probabilities.387

For example, ϵ2 describes the reduction in symptomatic disease among in-388

fected vaccinated compared to infected unvaccinated individuals. The overall389

vaccine-induced reduction in symptomatic disease, measured in clinical tri-390

als and commonly referred to as vaccine efficacy (Halloran et al., 1997), is391

thus VECOVID = 1 − (1 − ϵ1)(1 − ϵ2). Similarly, the overall vaccine-induced392

reduction in deaths is VEdeath = 1− (1− ϵ1)(1− ϵ2)(1− ϵ3)(1− ϵ4).393

Used in 90 of the 94 investigated models (Table 1), reduction in infection394

(ϵ1, implemented either as a leaky or all-or-nothing vaccine) is the most395

frequently considered vaccine function, followed by reduction in symptoms396

(ϵ2, used in 28 studies), reduction in severe disease (ϵ3, used in 22 studies),397

reduction in onward transmission (α, used in 17 studies), and reduction in398

death (ϵ4, used in 15 studies). Other vaccine functions considered in only a399

few models include a shorter period of infectiousness (Makhoul et al., 2020;400

Penn and Donnelly, 2023), as well as a reduced vaccine efficacy for older401

individuals (Bubar et al., 2021; Aruffo et al., 2022; Buckner et al., 2021) and402

children (Han et al., 2021). 46 out of 94 studies (48.9%) considered only403

one type of vaccine function, while three studies (Liu et al., 2022a; McBryde404

et al., 2021; Mak et al., 2022) differentiated five types (Table 1).405

The range of parameter values considered for a given vaccine function406

also varied wildly. One study investigated optimal prioritization strategies407

for mass vaccinations with commonly used vaccines that had shown some408

beneficial heterologous effects against SARS-CoV-2 infection (Hupert et al.,409

2022). This study considered ϵ1, ϵ2, ϵ4 ∈ [5%, 15%]. In line with results from410
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COVID-19 vaccine clinical trials, most studies assumed relatively high levels411

of vaccine efficacy against symptomatic disease, VECOVID, with the specific412

values varying based on vaccine product, number of doses and predominant413

virus variant. Moreover, the relative contribution of ϵ1 and ϵ2 differs, with414

some studies (see e.g., Islam et al. (2021); Matrajt et al. (2021b,a); Han415

et al. (2021); Ayoub et al. (2021); Makhoul et al. (2020); Choi and Shim416

(2021); Hogan et al. (2021); Moore et al. (2021a); Liu et al. (2022b); Jahn417

et al. (2021); Kiem et al. (2021)) contrasting optimal vaccination strategies418

for both extreme cases: ϵ1 = VECOVID, ϵ2 = 0 (sterilizing vaccine), and419

ϵ1 = 0, ϵ2 = VECOVID (non-sterilizing vaccine). These studies agree that420

at a fixed (overall) vaccine efficacy against symptomatic disease, higher ϵ1421

(i.e., lower ϵ2) leads to better outcomes. The higher ϵ2 relative to ϵ1, the422

more important is the prioritization of older and vulnerable people when423

optimizing morbidity-based metrics (Islam et al., 2021; Choi and Shim, 2021;424

Liu et al., 2022b; Kiem et al., 2021). Although hard to disentangle in practice,425

it is therefore important for optimal prioritization design to understand the426

relative contribution of ϵ1 and ϵ2 to the vaccine efficacies observed in clinical427

trials.428

Studies which differentiate between single-dose and ”fully” vaccinated in-429

dividuals include two parameters for each vaccine function. One study shows430

that, for a fixed VECOVID, delaying second doses and thus covering a larger431

part of the population with first doses becomes more important at higher ϵ1432

(i.e., lower ϵ2) when minimizing mortality (Matrajt et al., 2021b). Another433

important factor is the speed of the vaccine roll-out. One study shows that434

a generally delayed second dose only leads to fewer deaths if the roll-out is435

slow (Romero-Brufau et al., 2021). An age-dependent strategy (providing436

two doses to people 65 and older but delaying the second dose for younger437

people) performs consistently well, irrespective of the speed of the roll-out.438

The most important parameter in determining whether a delay of second439

doses is beneficial is, however, the relative difference in the reduction in sus-440

ceptibility after one dose versus two doses. As expected, all studies agree441

that a delay becomes more beneficial the smaller the difference, irrespective442

of the optimization objective (Romero-Brufau et al., 2021; Moghadas et al.,443

2021; Mak et al., 2022; Souto Ferreira et al., 2022; Matrajt et al., 2021b;444

Childs et al., 2022; Gonzalez-Parra, 2021; Tuite et al., 2021). One notewor-445

thy ABM-based study uses differential vaccine function parameters for the446

Moderna and Pfizer-BioNTech vaccine, and finds that to minimize cases the447

second Moderna dose should be delayed while a delay of the second Pfizer-448
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BioNTech dose may be detrimental if pre-existing immunity is low and if449

single dose-induced immunity wanes (Moghadas et al., 2021). To minimize450

deaths or hospitalizations, this study suggests delayed second doses, irrespec-451

tive of the type of vaccine.452

The various studies differ in how the two-dose vaccination campaign is im-453

plemented. In compartment-based models, separate compartments for single-454

dose (V1) and “fully” vaccinated (V2) individuals are used. One common im-455

plementation employs two rates ν1(t), ν2(t) ≥ 0 to describe the proportion of456

susceptible and single-dose vaccinated that receive a vaccine dose on a given457

day t (see e.g., Zhao et al. (2021b); Childs et al. (2022); Liu et al. (2022a)).458

That is,459

dS(t)

dt
= −ν1(t)S(t),

dV1(t)

dt
= ν1(t)S(t)− ν2(t)V1(t),

dV2(t)

dt
= ν2(t)V1(t),

with constraints on ν1(t) and ν2(t) ensuring that only available vaccines are460

used. Other implementations include delay differential equations (Souto Fer-461

reira et al., 2022; Sepulveda et al., 2023) or weekly pulse vaccinations (Ma-462

trajt et al., 2021b).463

4.6. Transmission rates and heterogeneous contact patterns464

The rate at which susceptible individuals acquire an infection, the force465

of infection, depends, among others, on contact rates, the community in-466

cidence and the infectivity of the virus. It is well-established that human467

interactions are age-assortative and that older individuals have on average468

fewer contacts (Mossong et al., 2008). A realistic account for age-specific469

mixing patterns is thus of paramount importance in infectious disease mod-470

els that guide policy-makers to prioritize either high-contact young people471

or lower-contact older people. A common approach to model infection of472

sub-population i, i = 1, . . . , n in an age-structured ODE is473

dSi(t)

dt
= −βi

n∑
j=1

Cij(aAj + Ij)Si,

where474
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• a ≥ 0 represents the relative contagiousness of asymptomatic (A) com-475

pared to symptomatic (I) individuals. All investigated studies chose476

a ∈ (0, 1].477

• The transmission rate βi can account for age-dependent susceptibility478

and risk mitigation (e.g., mask wearing). Multiple studies assumed479

that older, more vulnerable individuals suffer from higher susceptibil-480

ity (Davies et al., 2020; Moore et al., 2021b; Jahn et al., 2021) but also481

engage in more risk mitigation measures (Masters et al., 2020; Kadelka482

and McCombs, 2021; Bushaj et al., 2023; Vo et al., 2023). The trans-483

mission rate may also vary over time, e.g., due to the emergence of more484

transmissible SARS-CoV-2 variants (Islam et al., 2021; Moore et al.,485

2021b), or time-varying social distancing levels (Moore et al., 2021b).486

It may further vary from location to location in spatially distributed487

models (Vo et al., 2023).488

• The n × n-matrix C describes the average number of contacts an in-489

dividual in sub-population i has with individuals from sub-population490

j. Just like βi, this matrix may also vary over time and by location to491

account for periods of school closures, work-from-home orders, etc. A492

reduction in activity levels of sub-population i (e.g., due to NPI adher-493

ence) can be implemented in two ways: (i) through a reduction in βi,494

or (ii) through a proportional reduction of row and column i of contact495

matrix C. It is very important to understand the differential effect of496

these choices on the model. Only the latter choice reduces both new497

infections of sub-population i and onward transmission by members of498

sub-population i. For this reason, this choice should be preferred in499

infectious disease models.500

The seminal, diary-based POLYMOD study surveyed roughly one thou-501

sand individuals each in eight European countries and established country-502

specific contact matrices for a population stratified into 15 age groups (0 −503

4, 5 − 9, . . . , 75 − 79, 80+) (Mossong et al., 2008). Contact rates were fur-504

ther stratified by location (home, workplace, school, other). By combining505

this data with various other data sources, age-and-location-specific synthetic506

contact rates were obtained for 177 countries, and it was shown that syn-507

thetic and empirical contact matrices employed in epidemiological models508

yield similar findings (Prem et al., 2017, 2021).509
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Most investigated mathematical models use a country-specific contact510

matrix. One ODE-based study shows explicitly how the optimal prioriti-511

zation strategy depends on the country-specific age pyramid and contact512

matrix: to minimize deaths, it is optimal to first vaccinate the oldest people513

in India and Italy but middle-aged people in China (Wang et al., 2022). An-514

other study quantifies the inter-generational mixing, which is typically lower515

in high-income countries (Gozzi et al., 2021). Since the population in high-516

income countries is on average also older, non-trivial dependencies arise when517

designing morbidity- or mortality-minimizing vaccine allocation strategies.518

One commonly stated limitation of these contact matrices is that they519

have been derived before the COVID-19 pandemic, during which relative520

mixing patterns may have shifted. Two general approaches have been used521

to overcome this issue. First, several studies recomputed the overall contact522

matrix as a linear combination of the four location-specific pre-pandemic523

contact matrices (Matrajt et al., 2021b; Foy et al., 2021; Kiem et al., 2021;524

Chen et al., 2021; Moore et al., 2021b). That is,525

C(t) = a1(t)Chome + a2(t)Cwork + a3(t)Cschool + a4(t)Cother.

All studies agree that during a pandemic, a1(t) ≥ 1 while 0 ≤ a2(t), a3(t), a4(t) <526

1. Cell phone mobility data (Jentsch et al., 2021; Foy et al., 2021) as well527

as specific policy implementations (school closures, work-from-home orders,528

etc) (Jentsch et al., 2021; Karabay et al., 2021) have been used to inform529

the weights a1(t), . . . , a4(t). The Oxford Stringency Indices are based on530

information on implemented government policies related to closure and con-531

tainment, health and economic policy, and provide means to quantify the532

time-varying level of NPIs in 180 countries - for several countries, even at533

the level of individual jurisdictions (Hale et al., 2021). Second, empirical con-534

tact matrices have been derived during the pandemic in several settings, and535

are used by a variety of studies, see e.g. (Han et al., 2021; Tran et al., 2021;536

Zhao et al., 2021b). Comparisons of Chinese as well as Belgian diary-based537

pre-pandemic contact matrices with contact matrices obtained during and538

after the first COVID-19 lockdowns revealed not only drastic changes in the539

number of contacts but also in the mixing patterns (Zhang et al., 2020, 2021;540

Coletti et al., 2020). Contact matrices during a pandemic - specifically dur-541

ing periods of strong NPI adherence, e.g., a lockdown - exhibit much lower542

levels of age-assortativity, likely due to school and work closures.543

While age-assortativity decreases during a pandemic, assortative mixing544

with respect to other attributes, also known as homophily (McPherson et al.,545
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2001), may be high or even increase, and may profoundly influence disease546

dynamics. High levels of homophily with respect to COVID-19 vaccine status547

have been reported (Are et al., 2024). Both network- and ODE-based studies548

show that this may lead, at a fixed level of vaccine coverage, to more frequent549

outbreaks and higher attack rates (Kadelka and McCombs, 2021; Hiraoka550

et al., 2022; Burgio et al., 2022). Another study, employing a novel approach551

to include homophily with respect to binary attributes in established contact552

matrices (Kadelka, 2023), shows that accounting for high levels of ethnic553

homophily in the United States, coupled with proportionately more people554

of color working in high-contact jobs but fewer being of old age, leads to555

non-trivial trade-offs in optimal vaccine prioritization design (Kadelka et al.,556

2022).557

A less frequently mentioned limitation of contact matrices is that they558

are by default non-reciprocal. In empirical contact matrices, elderly tend to559

more frequently report a brief contact (Mossong et al., 2008), and generally560

provide less reliable responses in surveys Perry (1982). Physical contacts,561

which are required for COVID-19 spread, are however reciprocal. That is,562

NiCij = NjCji

should hold for all i, j = 1, . . . , n, where Ni is the size of sub-population i;563

otherwise, disease dynamics are inaccurate. A common procedure to generate564

a reciprocal contact matrix is outlined in (Funk et al., 2019; Kadelka, 2023).565

Several studies employ this or a similar procedure (see e.g. Matrajt et al.566

(2021b); Kadelka et al. (2022); Islam et al. (2021)).567

4.7. Behavioral responses568

The force of infection depends proportionately on the contact level. Over569

the course of a pandemic, implemented government policies, adherence to570

NPIs (e.g., social distancing), and thus contact levels differ. Variations in571

contact levels that affect the entire population homogeneously can be easily572

implemented by multiplying contact matrices with a time-varying factor, as573

described above. Heterogeneous behavioral responses, reported in several574

surveys (see e.g. Masters et al. (2020); Dryhurst et al. (2022); Pasion et al.575

(2020)), are often much harder to model but crucial to accurately predict,576

for example, the effect of a specific vaccine prioritization strategy. A variety577

of studies included aspects of homogeneous and heterogeneous behavioral578

responses.579
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Several studies assume that the population-wide contact level depends on580

the number of recent infections, hospitalizations and/or deaths (Rahmandad,581

2022; Althobaity et al., 2022; Gozzi et al., 2021), the number of currently ac-582

tive cases (Jentsch et al., 2021; Islam et al., 2021), recent changes in these583

numbers, or a combination of these factors. For example in Islam et al.584

(2021), the population-wide contact level has been modeled to depend on585

the number of active cases, using a sigmoidal function. Another study, ex-586

panding the ODE model by Bubar et al (Bubar et al., 2021), assumes that587

the contact reduction depends exponentially on the number of deaths re-588

ported a few days ago (Rahmandad, 2022). The authors argue that inclusion589

of this endogenous behavioral feedback loop provides a better model fit to590

data. This study further assumes that the level of contact reduction can591

depend on age/perceived risk, and specifically, that vaccinated individuals592

may engage in less contact reduction. This complicates the trade-off in vac-593

cine prioritization when minimizing deaths or YLL: vaccinate high-contact,594

less NPI-compliant individuals first or more compliant people at higher risk.595

This study concludes that the answer primarily depends on the speed of the596

vaccine roll-out, as well as the differences in NPI compliance. Several other597

studies come to the same or similar conclusion (Bushaj et al., 2023). An598

ABM-based study employs a binary stratification of NPI compliance, and599

quantifies how much lower the compliance level of low-risk (versus high-risk)600

individuals must be for them to be the optimal prioritization target (Kadelka601

and McCombs, 2021). It finds that the switching point depends on the vac-602

cine efficacy, as well as the level of homophily with respect to vaccine status603

and NPI adherence. An ODE-based model, first proposed in Gozzi et al.604

(2021) and then adapted to several Arab countries in Althobaity et al. (2022),605

uses the same binary classification and explicitly models dynamic shifts be-606

tween these two sub-populations that depend on the vaccine coverage and607

the number of recent deaths. These studies find that, at Reff = 1.15, elderly608

should be prioritized when minimizing deaths as long as the vaccine roll-out609

is sufficiently fast; the speed at which the optimal prioritization switches610

is country-dependent. Some studies have been even shown that a vaccine611

with low effectiveness may be detrimental and yield worse outcomes than in612

the absence of a vaccine, due to behavior adaptation and a false belief of613

protection (Kadelka and McCombs, 2021; Luebben et al., 2023).614
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4.8. Vaccine hesitancy615

Despite the availability of highly effective vaccines, a sizeable proportion616

of people refuses to get vaccinated against COVID-19. When determining617

the optimal roll-out of a limited vacccine, this factor must be taken into618

account, either explicitly by certain modeling assumptions or implicitly by619

only considering those roll-out solutions that appear feasible given levels of620

vaccine hesitancy. A number of survey-based studies have accessed these lev-621

els in different countries and at different times during the pandemic (Sallam,622

2021; Soares et al., 2021). While vaccine hesitancy differs from country to623

country, it generally differs more with age. As expected, older individuals624

who are more at risk are also more willing to be vaccinated.625

Many infectious disease models explicitly include vaccine hesitancy by626

assuming that a proportion of each sub-population cannot be vaccinated.627

Some models simply assume that this proportion is fixed (Bubar et al., 2021;628

Gavish and Katriel, 2022; Islam et al., 2021; Li et al., 2022; Luebben et al.,629

2023; Kadelka et al., 2022; Makhoul et al., 2020; Miura et al., 2021; Moore630

et al., 2021a; Rodriguez-Maroto et al., 2023; Tatapudi et al., 2021; Walker631

et al., 2022; Hogan et al., 2021; McBryde et al., 2021; Rahmandad, 2022),632

while others account for lower hesitancy among older individuals (Liu et al.,633

2022a; Moghadas et al., 2021; Han et al., 2021; Liu et al., 2022b; Moore634

et al., 2021b; Zavrakli et al., 2023). Most models in the latter category635

differentiate hesitancy using a binary age threshold. A Greek model infers636

age-specific values from a telephone survey (Sypsa et al., 2022; Barmpounakis637

et al., 2022). One study assumes that the level of hesitancy evolves over time638

following an ODE formulation (Jentsch et al., 2021). An ABM-based study639

shows that COVID-19 outbreaks are more frequent, at a given level of vaccine640

coverage and NPI adherence, if those who comply with NPIs are also those641

who get vaccinated, as is frequently the case (Kadelka and McCombs, 2021).642

4.9. Effective reproductive number643

While the basic reproductive number describes the number of secondary644

infections caused on average by an infected individual in a fully suscepti-645

ble population, the effective reproductive number varies over time and takes646

into account population-wide levels of immunity, NPI adherence, emergence647

of more infectious variants, etc. Many models have investigated how opti-648

mal prioritization schemes depend on this key epidemiological parameter. As649

described above, prioritization of high-contact, low-risk younger individuals650
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becomes a reasonable choice, when minimizing deaths, if the effective repro-651

ductive number is close to 1 (Chen et al., 2021; Althobaity et al., 2022; Gozzi652

et al., 2021; Bubar et al., 2021), especially if it is decreasing (Molla et al.,653

2022). A French study further clarifies that young individuals should only654

be prioritized if the vaccine acts almost entirely by reducing infections (that655

is, if ϵ1 >> ϵ2) (Kiem et al., 2021). In these circumstances, the vulnerable,656

older part of the population is indirectly protected by the vaccine through657

herd immunity, pending no changes in NPI adherence.658

4.10. Variant Considerations659

Like most RNA viruses, SARS-CoV-2 evolves rapidly (Markov et al.,660

2023). Over the course of the last four years, a plethora of variants has661

emerged. These variants exhibit different phenotypes characterized e.g. by662

transmissibility, severity of disease and immune evasion. The vaccine roll-out663

happened in parallel to the emergence of SARS-CoV-2 variants. For exam-664

ple, the United States started to vaccinate individuals in December 2020. By665

April 2021 - when weekly vaccination counts still increased - Alpha (B.1.1.7),666

which was an estimated 50% more transmissible, had become the dominat-667

ing virus strain, followed soon after by Delta (B.1.617.2), which was even668

more contagious and caused also more hospitalizations and deaths (Camp-669

bell et al., 2021). Therefore, mathmematical models used to predict optimal670

vaccine allocation strategies should consider the emergence of variants. In671

practice, the time to emergence of a new variant and its specific phenotypic672

characteristics can, however, not be reliably predicted. Some studies used673

genomic SARS-CoV-2 surveillance time-series and estimates of the pheno-674

typic characteristics of circulating variants to predict the future distribution675

of circulating virus strains (Islam et al., 2021; Childs et al., 2022). This dis-676

tribution can yield estimates of the time-varying transmissibility and various677

transition probabilities, even when the model does not account explicitly for678

variant-specific infections (Liu et al., 2022a). A few studies went further679

and even included different compartments for those infected with e.g. the680

wildtype and Alpha variant (Aruffo et al., 2022; Gozzi et al., 2022). Qualita-681

tively, accounting for the emergence of more infectious variants yields higher682

effective reproductive numbers (pending no changes in NPI adherence, etc)683

with effects as described in Subsection 4.9.684
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5. Summary of selected modeling studies685

In the previous sections, we focused on key modeling assumptions, both686

explicit and implicit ones, and their impact on the outcomes of vaccine pri-687

oritization models. We highlighted different studies wherever suitable. In688

this section, we provide a brief summary of selected modeling studies that689

present interesting features. Only some features of the models and findings690

from the studies can be described. Subsection 5.1 summarizes studies that691

answer the question: How should a limited vaccine be optimally distributed692

among a population stratified by age? Subsection 5.2 summarizes studies693

that answer the question: Should the second COVID-19 vaccine dose be de-694

layed given limited vaccine availability? Subsection 5.3 summarizes spatial695

vaccine distribution studies.696

5.1. Summary of studies that employ an age-structured mathematical model697

5.1.1. Differential equation and difference equation based models698

In Bubar et al. (2021), the authors compared five different vaccine priori-699

tization strategies using an age-stratified ODE-based SEIR model. Outcomes700

were assessed using the number of infections, deaths and YLL. The authors701

found that prioritizing adults aged 20 to 49 years minimized infections at all702

considered values of the effective reproduction number (1.1-2). Furthermore,703

this same prioritization provided the best way to reduce mortality and YLL704

when the effective reproduction number is low (≤ 1.15) and if the vaccine705

roll-out is slow. This study highlights the importance of the transmissibility706

of SARS-CoV-2 and the pace of vaccine roll-out on the choice of an opti-707

mal vaccination strategy. The authors also consider the potential benefit of708

seroprevalence tests prior to vaccination.709

In Moore et al. (2021b), an ODE-based SEAIHR model was fitted to data710

from the United Kingdom. The authors show that even a vaccine as effective711

as those by Pfizer-BioNTech and Oxford-AstraZeneca would not suffice to712

contain the COVID-19 outbreak, partially due to age-varying vaccine hesi-713

tancy. The study furthers highlights that the number of deaths that appear714

among vaccinated will naturally increase as vaccine coverage increases. The715

model accounts for time-varying population-wide social distancing levels as716

well as the emergence of more transmissible variants.717

In Buckner et al. (2021), the authors investigated optimal vaccination718

strategies by using an ODE-based SEPIAR model that takes into account719

essential workers. Stochastic nonlinear programming techniques were used720
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to find the vaccine prioritization. Assuming Reff = 2.5, vaccines were as-721

signed only to susceptible individuals and updates to the prioritization were722

made each month. Outcomes were assessed using the number of infections,723

deaths and YLL. The authors found that to minimize infections, it is opti-724

mal to prioritize older essential workers. However, depending on the objective725

and alternative model scenarios considered, younger essential workers may726

be prioritized to control SARS-CoV-2 spread or elderly to directly control727

mortality. A combination of a genetic algorithm (global) and a simulated an-728

nealing algorithm (local) was used to obtain the optimal vaccination strategy729

each month.730

In Foy et al. (2021), the authors employed an age-structured ODE-based731

SEIARQ (Q = quarantined, not spreading) model to inform the optimal vac-732

cine roll-out in India. Assuming Reff = 2.4, four vaccine prioritizations were733

compared: even across the population, prioritize 20–40 year olds, 40–60 year734

olds, or those 60 and older. To minimize deaths, the authors found that pri-735

oritizing the oldest is optimal regardless of the vaccine efficacy, control mea-736

sures, vaccination pace, or immunity dynamics. However, this prioritization737

results in more symptomatic infections. To minimize infections, vaccination738

of 20-40 year olds should be prioritized. A faster vaccine roll-out reduces the739

differences between the compared vaccine prioritizations.740

In MacIntyre et al. (2022), the authors employed an ODE-based SEPA-741

IQR model that was extended to include several additional classes such as742

traced, undiagnosed and highly infectious. The model was fitted to the Aus-743

tralian state New South Wales and age-targeted and ring vaccination pro-744

grams were compared. The population was stratified by occupation (health-745

care workers) and age. The authors found that vaccinating older people746

prevents more deaths and that herd immunity can only be reached by mass747

vaccination campaigns, and only if the vaccine is sufficiently effective and748

rolled out sufficiently fast.749

In Hogan et al. (2021), an extended SEIR discrete-time model was used to750

evaluate the public health impact of vaccines using data from different coun-751

tries. The model uses a class of individuals with a mild infection that includes752

both symptomatic and asymptomatic but that does not require hospitaliza-753

tion. The authors identified death-minimizing vaccine allocation strategies754

within- and between-countries. They found if less than 20% vaccine coverage755

is available, it is better to prioritize the elderly. However, in less limited756

settings, high transmitters should be prioritized.757

In Moore et al. (2021a), an ODE-based SEAIR model was used to in-758
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vestigate optimal vaccine allocations in the UK. Outcomes were assessed by759

deaths and loss in QALYs. For a range of model assumptions, the authors760

found elderly should be prioritized. However for vaccines that have low effi-761

cacy among the elderly (< 20%), other prioritizations proved more effective.762

In Shim (2021), an ODE-based SEIAR model was calibrated South Ko-763

rea. The authors found that to minimize deaths (infections) older (younger)764

individuals should be prioritized. Interestingly, the YLL-minimizing strat-765

egy is sensitive to vaccine efficacy and the number of vaccine doses available.766

When vaccine efficacy (assuming a vaccine that only reduces infections) is767

relatively low (≤ 30%) groups with high case-fatality rates should be pri-768

oritized, thereby maximizing the direct benefit of vaccines. However, with769

vaccines that have higher efficacy, prioritization shifts toward younger age770

groups: 40–69 year olds at 50–70% efficacy or 30–59 year olds at 90% effi-771

cacy.772

In Islam et al. (2021), a detailed ODE-based model was calibrated to773

evaluate the U.S. vaccine roll-out. The population was stratified by age,774

comorbidity status, job type and living situation. The model also accounts for775

time-varying population-wide social distancing levels as well as the emergence776

of more transmissible variants. The authors compared 17.5 million 4-phased777

vaccine allocation strategies and found that a strategy that prioritizes people778

with comorbidities in all age groups is Pareto-optimal, yielding slightly fewer779

deaths, infections and YLL than the strategy recommended by the Centers780

for Disease Control (CDC).781

In Penn and Donnelly (2023), an ODE-based SIR model was used to782

study the effect of the basic reproduction number R0 on the optimal vacci-783

nation plan. An interesting counter-intuitive result was found: It is better784

to prioritize 45–49 year olds than 55–59 year olds despite higher case fatality785

rates in the latter group. The authors explained this by the fact that the786

latter group has much fewer contacts with those 75 and older (as parents of787

those 55-59 years old have already died to a large degree). Thus, prioriti-788

zation of 45–49 year olds substantially increases the secondary protection of789

the elderly. This result shows the importance of the age-stratified contact790

matrices.791

In Zhao et al. (2021b), three different ODE-based SEIAR models were792

used to find the optimal vaccination strategy against COVID-19 in Wuhan793

City, China. The authors used the effective reproduction number to estimate794

the SARS-CoV-2 transmission between age groups. They found that, before795

NPIs were implemented, the highest transmissibility existed among those796
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15-44 years old. In order to control transmission, this age group should be797

prioritized. To minimize deaths, those ≥ 65 years old should be prioritized,798

irrespective of their lower contact rates.799

In Matrajt et al. (2021a), an ODE-based model with many compartments800

was used to determine which age group(s) should be vaccinated assuming in-801

stantaneous vaccination and 10-100% vaccine coverage. The authors studied802

many scenarios and found that for low vaccine effectiveness (10-50%), regard-803

less of vaccination coverage, it is optimal to prioritize elderly people when804

minimizing deaths. However, for higher vaccine effectiveness and if the basic805

reproductive number is low, it is better to prioritize younger people, espe-806

cially if available vaccination coverage is ≥ 40%. The optimization routine807

includes a coarse global search algorithm, coupled with a fast optimizer, to808

explore the entire space of possible combinations of vaccine allocations.809

In Kadelka et al. (2022), an age-and-ethnicity-stratified ODE-based model810

was used to study the optimal distribution of available vaccines in the United811

States to two different groups: White and Asian persons and all others. Dif-812

ferent levels of ethnic homophily were considered. The authors found that813

vaccine allocations that stratify vaccine access by ethnicity could have pre-814

vented a number of deaths, especially assuming high levels of ethnic ho-815

mophily. Moreover, the authors highlight a second trade-off when designing816

mortality-minimizing vaccination plans and accounting for ethnic homophily:817

the elderly population is predominantly White and Asian, while those em-818

ployed in high-contact occupations are predominantly from the other ethnic819

groups.820

In Stafford et al. (2023), an age-and-race-stratified ODE-based model was821

used to study the distribution of available vaccines in the United States to822

two different groups: non-Hispanic White persons and all others. Several823

objective functions that include mortality, YLLs, measures of inequity and824

joint disease burden were considered. The authors found that there exists825

a trade-off between minimizing disease burden and minimizing inequity, es-826

pecially if vaccine is very limited (e.g., 10%). If vaccine coverage is ≥ 30%,827

both inequity and mortality can be optimized at the same time.828

In Zuo et al. (2022), an ODE-based SEIQR model was used, combined829

with google mobility data to modify contact matrices. This study highlights830

that the optimal vaccine prioritization depends on particular parameters re-831

lated to the transmission rates. Assuming fixed daily doses, the authors832

found that in a scenario with low infection rate and low vaccine availability,833

vaccinating first people over 60 minimizes deaths, but that with more vaccine834
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availability vaccinating first those 51-60 year old is preferable due to their835

higher contacts.836

In Gavish and Katriel (2022), an ODE-based model is used to investigate837

whether children should have been vaccinated earlier. The authors found that838

prioritization strategies that include vaccination of children lead to Pareto-839

optimal outcomes regarding minimizing deaths and infections, especially if840

the basic reproductive number is high.841

In Rao and Brandeau (2021b), an ODE-based SIR model with two age842

groups (with age threshold 65) was used to study which vaccine allocation843

minimizes the effective reproduction number. Assuming that all vaccinations844

take place at once, the authors found that the answer depends on available845

vaccine coverage, vaccination pace and the initial effective reproduction num-846

ber. In Rao and Brandeau (2021a), the same authors used the model to847

minimize infections, deaths, YLL and loss in QALY. They found that it is848

better to prioritize the young group to minimize infections, but the older in-849

dividuals for all other metrics. This result was obtained by simple analytical850

conditions that describe the optimal vaccine allocation for each objective.851

In Rahmandad (2022), an ODE-based SEIR model was used to study the852

effects of behavioral responses to risk by means of an endogenous feedback853

loop. Specifically, the author assumed that population-wide social distancing854

levels fluctuate depending on the recently reported numbers of COVID-19855

deaths. The author argues that high-contact individuals should be prioritized856

to minimize deaths or YLLs, as long as the vaccine roll-out happens fast857

enough. This is because the vulnerable population is already more risk-averse858

and thus engages in more risk mitigation.859

In Han et al. (2021), an ODE-based SIR model was used to study optimal860

vaccine prioritization plans in China. The authors show that a time-varying861

vaccination program (i.e., allocating vaccines to different target groups as862

the epidemic evolves) can yield much better outcomes since it is capable863

to simultaneously achieve different objectives (e.g., minimizing deaths and864

infections). In addition, a high vaccination pace in the early phase of the865

vaccination plan is better. In a sensitivity analysis, the authors employed a866

contact matrix derived from contact diaries collected in Shanghai in March867

2020, at a time when the lockdown was over, but severe NPIs were still in868

place. The “pandemic” contact matrix exhibits much less age-assortativity.869

In Makhoul et al. (2020), an ODE-based model was used and the authors870

found that a vaccine with efficacy against infection ≥ 70% would eliminate871

COVID-19. Outcomes were assessed over the course of ten years and the872
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authors assumed full vaccine protection over this time course, which appears873

too high retrospectively. The authors studied two vaccination programs:874

80% coverage before the onset of the epidemic and 80% coverage within one875

month of the onset of the epidemic.876

In Campos et al. (2021), an ODE-based SIR model was used to predict877

the COVID-19 dynamics and compare with out-of-sample data from Rio de878

Janeiro. In addition, numerical simulations were used to compare age-based879

vaccine allocation strategies policies. Three age groups of similar size were880

considered as vaccination targets. In in all the tested scenarios, prioritization881

should be given to either those 15-34 or 50 year and older. The optimal choice882

depends on the evaluation time period, vaccination schedules and efficacy of883

the vaccine.884

In Angelov et al. (2023), a non-standard age-structured ODE-based model885

was proposed that differentiates between isolated and non-isolated as well as886

symptomatically and asymptomatically infected. The model further takes887

into account the heterogeneity of the infected sub-population with respect to888

the time since infection. Solving an optimal control problem, which considers889

as one of the constraints the hospital capacity, the authors found that deaths890

in Austria are minimized if those 18-30 years old (highest transmitters) are891

vaccinated first, followed by those 80 and older (most at risk), followed by892

other age groups.893

In Babus et al. (2023), a linear programming problem is solved in order894

to find a U.S. vaccination plan that minimizes deaths and the economic895

cost of a stay-at-home order. The study considered occupation-based risk896

exposure (454 occupations). The authors compared three different plans.897

Under the only considered plan without a stay-at-home order, the largest898

number of vaccines should be allocated to those 50–59 years old, followed by899

those 60–69. In general, the best plans focused on age-based risk rather than900

occupation-based risk exposure.901

In Miura et al. (2021), the age-specific transmission intensities (i.e., the902

next generation matrix) are reconstructed using an approximation method.903

This enables the inference of the expected impact of vaccinating each sub-904

group from data on incidence and force of infection. This unique approach905

requires only routine surveillance data on the number of cases to determine906

the best possible allocation of vaccines, and can be employed in data-scarce907

environments. The method is tested with data from the Netherlands. The908

authors conclude that the optimal timing of changing from vaccinating one909

age group to another depends on the specific objective.910
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In Cartocci et al. (2021) an ODE-based SIR model that considers time-911

varying parameters and sex was used to compare Italian vaccination pro-912

grams, using the outcomes YLL, deaths and infections. According to the913

model, deaths (infections) are minimized by prioritizing elderly (younger).914

However, the optimal YLL-minimizing strategy depends on the effective re-915

productive number. If it is high, younger individuals should be prioritized.916

In Galli et al. (2023) an ODE-based SIR model was used to predict917

COVID-19 dynamics and evaluate vaccination plans in the Southwest Shewa918

Zone in Ethiopia. A plan that prioritizes those 50 years and older was found919

to avoid more critical cases than a random vaccine allocation.920

In González-Parra et al. (2022), two ODE-based SIAR models were used921

to study vaccine allocation strategies. Different scenarios related to the speed922

of the vaccine roll-out were compared. The authors found that generally923

those 55 years and older should be prioritized to minimize deaths. However,924

whenever the transmission rate is relatively high and elderly have a substan-925

tially lower transmission rate than younger people, the optimal prioritization926

switches.927

In Aruffo et al. (2022), an ODE-based model with many compartments928

is used to study different Canadian vaccine roll-out and NPI-lifting scenar-929

ios. To minimize infections and shorten the time until NPIs can be lifted,930

those 20-59 years old should be prioritized. Different reopening scenarios931

and strategies were compared, with total cases and deaths depending on the932

timing of lifting NPIs.933

5.1.2. Agent-based models (ABMs)934

ABMs offer more flexibility and potential realism than ODE-based models935

but a proper analysis of these stochastic models requires simulations and is936

thus computationally expensive.937

In Jahn et al. (2021), an ABM was developed to derive optimal vaccine938

allocation strategies for Austria. The model contains 9 million agents, one939

for each Austrian resident. Each agent possesses an associated state variable940

that describes its disease state. The model further accounts for age, occupa-941

tion (health care workers), testing and notification delays. The probability of942

an infection occurring during a single contact between an infected and a sus-943

ceptible was determined by calibrating the model to the number of detected944

Austrian COVID-19 cases in March 2020. The authors found that hospital-945

ization and deaths were minimized if elderly and vulnerable were prioritized,946

assuming very limited vaccine availability. To assign more vaccines, the au-947
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thors highlight the usefulness of a stepwise optimal allocation technique, in948

which small batches of vaccine are assigned at a time.949

In Ben-Zuk et al. (2022), an ABM was used to derive and compare op-950

timal vaccine allocation strategies for two Israeli cities of similar size but951

with different household size and age distributions. The authors compared952

two strategies: vaccinate those prioritized by public health decision makers,953

or dynamically prioritize neighborhoods with a high estimated reproductive954

number. Using infections and deaths as outcomes, the study highlights that955

optimal vaccination plans depend on subpopulation-specific infection rates956

and unique demographic characteristics.957

In Kadelka and McCombs (2021), an ABM was used to highlight the ef-958

fect of homophily and correlation between attitudes and opinions on vaccine959

prioritization. The authors argue that the U.S. society exhibits high levels960

of homophily w.r.t. to vaccine willingness and NPI adherence and that these961

two attributes are correlated, i.e., that people who get vaccinated are also962

more likely to engage in other risk mitigation. The authors found that these963

attributes must be taken into account to inform the optimal vaccine prior-964

itization strategy, as they influence at which relative contact level of older965

compared to younger individuals the optimal prioritization target switches.966

In Tatapudi et al. (2021), an ABM that considers various NPIs was de-967

veloped to track the number of COVID-19 cases, hospitalized, and deaths968

for all age groups. 2.8 million agents were used to represent each resident969

in Miami Dade County, United States. Three vaccine allocation strategies970

were compared: (i) random allocation, (ii) prioritization by age, (iii) a minor971

variant of the CDC strategy, which prioritizes health care workers in addition972

to elderly. The authors found that a random allocation minimizes infections,973

while the CDC strategy minimizes deaths and YLL, although it proved only974

slightly better than the other two strategies.975

In Bushaj et al. (2023), the Covasim ABM from Kerr et al. (2021) was976

expanded to compare a random with an age-structured vaccine allocation977

strategy. The authors show that a “governor Deep Reinforcement Learning978

agent” can learn effective strategies and suggest, based on a multi-objective979

reward structure, optimal ABM interventions when presented with a spe-980

cific epidemic situation. Moreover, the study shows that focused vaccina-981

tion of super-spreaders can substantially reduce infections at the expense of982

marginally more total deaths. The model was tested with data from the U.S.983

states New Jersey and Kansas.984

In Cattaneo et al. (2022), the Covasim model is used to determine the985
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number of infections and deaths prevented by vaccines in the Italian region986

Lombardy, and to retrospectively evaluate vaccine allocation strategies. Pri-987

oritization of the elderly and at-risk categories, as used in Italy, was validated988

as the most effective in reducing deaths, however only as long as the vaccine989

roll-out happens fast enough.990

5.2. Summary of optimal COVID-19 vaccine dosing interval studies that em-991

ploy a mathematical model992

The following studies all use a mathematical model that differentiates993

between those vaccinated with a single dose and two doses (i.e., fully vac-994

cinated). The fundamental vaccine prioritization trade-off is between vacci-995

nating more people at lower levels of protection or inducing higher protection996

for fewer individuals.997

In Moghadas et al. (2021), an age-structured ABM with compartments998

SEPIAR was used that differentiated between the Pfizer and the Moderna999

vaccine. Varying rates of vaccine-induced immunity waning were consid-1000

ered. In addition, maximum vaccine coverage (i.e., vaccine hesitancy) was1001

assumed to be age-dependent. Model parameters were informed by data from1002

the United States. Outcomes were assessed by infections, hospitalizations,1003

and deaths. The authors found that a delay of the second dose of at least 91004

weeks would have averted deaths and hospitalizations compared to the rec-1005

ommended 4-week interval. For infections, the results differed for the two1006

considered vaccines: while a delay of the second dose of Moderna vaccines1007

would have reduced infections, delaying second doses of Pfizer vaccines may1008

have caused more infections if pre-existing immunity is below 30% and if1009

vaccine-induce one-dose immunity wanes.1010

In Tuite et al. (2021), a decision analytic cohort model was used to as-1011

sess strategies for dose allocation (assuming a steady vaccine supply). The1012

authors found that variants of a flexible strategy that keeps only 10% of the1013

supply for second doses during the first 3 weeks are better than the fixed1014

strategy employed by the United States.1015

In Souto Ferreira et al. (2022), an age-structured SEAIHR delay differen-1016

tial equation model was used to study the optimal timing between first and1017

second dose. A constant vaccine production rate was assumed and vaccina-1018

tion rates were optimized using linear programming, with outcomes assessed1019

by deaths. The authors found that the best strategy depends on an interplay1020

between the vaccine production rate and the relative efficacy of the first dose.1021
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In Ferreira et al. (2022), a discrete-time compartmental model, fitted1022

to Brazil and differentiating between three different vaccines, was used to1023

investigate the optimal vaccine priortization and dosing interval, which was1024

varied from 8 to 12 weeks. The authors found that a shorter time interval1025

between first and second dose for the AstraZeneca vaccine would minimize1026

deaths. However, in their analysis, it appears that the vaccine availability is1027

not fixed, i.e., a shorter time interval corresponds to more available vaccine,1028

which is obviously beneficial. Moreover, the authors assumed large differences1029

in vaccine efficacy between the first and the second doses, contrary to many1030

other studies.1031

In Zuo et al. (2022), an ODE-based SEIQR model was fitted to South1032

Africa and used to answer questions related to vaccine priortization and1033

delay of the second dose. The authors found that, assuming limited vaccine1034

availability, a delay of second doses leads to fewer severe COVID-19 cases.1035

In Gianatti et al. (2023), a discrete-time model with compartments SEPIHR1036

(no age groups) is fitted to data from the city of Tandil, Argentina. Assuming1037

constant numbers of daily available vaccines, different fixed delays between1038

the vaccine doses (28, 42, 72 days) were compared using death as the out-1039

come metric. An optimal control problem was solved to determine the best1040

way to administrate the available vaccines, by considering two controls that1041

represent the number of first and second doses applied each day. The authors1042

found that delaying the second dose as long as possible (72 days in the study)1043

was optimal.1044

In Mak et al. (2022), an ODE-based SEPAIHR model was used to in-1045

vestigate three different policies related to vaccine roll-out: holding back1046

second doses, releasing second doses, and delaying the time between doses.1047

The authors found that releasing second doses reduces infections. However,1048

stretching the between-dose time flattens the infection curve and reduces1049

both hospitalizations and mortality compared with a strategy that releases1050

second doses. The model includes details related to the inventory dynamics1051

of the vaccine roll-out process not found in other models. The authors further1052

conduct extensive sensitivity analyses related to age composition, risk-based1053

prioritization, supply disruptions, and disease transmissibility.1054

In Romero-Brufau et al. (2021), an age-structured ABM was used to in-1055

vestigate the effect of a delayed second dose on deaths, infections and hospi-1056

talizations. A total of 100k agents interact in 3 types of networks (occupation,1057

family and random) over a period of six months. In all compared vaccina-1058

tion plans, the allocation started with the oldest group and proceeded by1059
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decreasing age. The authors found that a delayed second dose yields lower1060

deaths as long as the first dose is sufficiently effective (≥ 80%) but that a1061

delay does not affect the YLL and infections much.1062

In Diarra et al. (2022), an ODE-based SEIARQ model, an adaptation1063

of the CoMo model (Aguas et al., 2020), was used to study vaccination1064

strategies in Senegal. Three particular vaccination strategies were evaluated,1065

using deaths as outcome metric. The authors found the second dose should1066

be delayed for those 40 years or younger.1067

In Childs et al. (2022), an age-structured ODE-based SEIS model that1068

considers reinfections and immunity was used to determine questions related1069

to vaccine prioritization and delay of the second dose in Canada. The authors1070

found that a delay, as well as earlier vaccination of 15-19 year olds would both1071

yield lower infections numbers.1072

5.3. Summary of spatial vaccine distribution studies that employ a mathe-1073

matical model1074

In Grauer et al. (2020), a computational model with Brownian agents1075

moving randomly through a continuous square space with periodic bound-1076

ary conditions was introduced. Each agent has an internal state variable1077

describing its disease state (e.g., S, I, or R). A statistical mean-field model1078

was applied to study three vaccine allocation strategies: (i) distribution of1079

vaccines proportional to population density, (ii) an “infection weighted strat-1080

egy” that distributes vaccines proportional to the quantitative value of the1081

bi-linear incidence rate βSI, and (iii) a “focusing strategy” that distributes1082

the vaccines sequentially by prioritizing the regions with the highest inci-1083

dence rate. The authors found that the last strategy minimized deaths; age1084

was however not considered.1085

In Molla et al. (2022), a spatial ODE-based model was developed to model1086

COVID-19 disease dynamics in five different Finnish regions. The authors1087

combined age-specific contact data with geographic movement data to in-1088

vestigate the optimal vaccination strategies. Using optimal control methods,1089

the authors found that allocating vaccines demographically and in an age-1090

descending order is not optimal for minimizing deaths or infection cases.1091

Instead, it proved optimal to prioritize high-incidence regions and allocate1092

vaccines at the same time to different age groups.1093

In Zhou et al. (2021), the authors used cell phone data from a Chinese1094

city to develop a spatial ABM for a realistic urban scenario. To compare1095

seven different scenarios related to vaccine allocation, the authors assigned1096
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the vaccines by fulfilling the priority group before advancing to the next pri-1097

ority group. The authors found that the vaccine coverage to reach herd im-1098

munity varies strongly across locations, highlighting the immense usefulness1099

of knowledge of the spatial heterogeneity when designing vaccine allocation1100

strategies.1101

In Lemaitre et al. (2022), an ODE-based spatial model of the 107 Italian1102

provinces, originally developed in Gatto et al. (2020), was used to study opti-1103

mal vaccine distribution across space. Google Community Mobility Reports1104

was used to estimate the variations in mobility across provinces and as a1105

proxy for changes in social contacts. The authors developed a novel optimal1106

control framework that yields the best vaccination strategy under realistic1107

supply and logistics constraints. The identified optimal strategy, which sub-1108

stantially outperforms standard strategies, has a complex structure: while1109

mainly dependent on the projected incidence of each province, it also takes1110

into account the spatial connectivity between provinces.1111

In Vo et al. (2023), an age-stratified ODE-based spatial SEIR model of1112

the 50 U.S. states was used to illustrate the utility of mechanistic expressions1113

for the basic and effective reproductive number, as well as to compare two1114

vaccine prioritization strategies: a uniform allocation and an allocation along1115

the gradient of the effective reproductive number. The authors showed that1116

the latter approach yields fewer infections but they acknowledged that this1117

would come at the expense of more hospitalizations and deaths.1118

6. Related studies that employ optimal control methods1119

The majority of studies included in this review identified vaccine alloca-1120

tion strategies that optimize a given metric, e.g. minimizing deaths or infec-1121

tions. Some studies went further and identified strategies that are Pareto-1122

optimal with respect to multiple objectives, see e.g. Islam et al. (2021); Gav-1123

ish and Katriel (2022); Diarra et al. (2022). A number of studies, some1124

already described above, went even further and employed classical opti-1125

mal control theory to find vaccination strategies that minimize a variety1126

of health and/or economic outcomes. Some of these studies even consider1127

age-dependent vaccine access.1128

These studies define a functional - often a linear combination of different1129

metrics - that is optimized given some constraints, e.g., to account for limited1130

vaccine availability. A general challenge of optimal control approaches is the1131

high sensitivity of the resulting optimal vaccination strategy on the choice1132
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of weights in the functional. Moreover, the choice of functional itself affects1133

the results. Nevertheless, these studies can provide important insights as the1134

setup is more flexible, and we briefly describe some interesting approaches1135

and note that several others (e.g., Lemaitre et al. (2022); Angelov et al.1136

(2023)) are already summarized above.1137

In Acuña-Zegarra et al. (2021), an ODE-based SEAIR model (no age1138

structure) was used to show that the optimal vaccination strategy depends1139

on the speed of the vaccine roll-out and the length of natural immunity.1140

The transmission contact rates and proportion of symptomatic cases were1141

estimated by calibrating the model to observed death counts. The basic1142

reproductive number was estimated to be in the range of [3.30, 4.84]. The1143

authors minimized a functional that was a linear combination of YLL and1144

Years Lost due to Disability. The authors found that varying the number of1145

doses during the vaccine roll-out (if supply allows) yields to better outcomes1146

than an approach with fixed number of vaccinations per day.1147

In Tu et al. (2023), the authors proposed a reaction-diffusion COVID-191148

model (no age structure) to investigate how different vaccination-isolation1149

strategies impact the COVID-19 pandemic. The functional included three1150

metrics: social cost, social benefit, and the basic reproduction number. The1151

authors found that for a given social cost or benefit, there are many Pareto-1152

optimal vaccination-isolation strategies. The proposed model considered also1153

a spatial variable, in addition to parameters related to social distancing and1154

vaccination.1155

In Olivares and Staffetti (2021a), two control variables, vaccination and1156

testing, were used to find the optimal strategy that minimizes a functional1157

that accounts for the number of infected people with life-threatening symp-1158

toms and the number of deaths. The underlying model is ODE-based with1159

a variety of compartments. Several optimal control problems were solved1160

for different scenarios. Among others, the authors found that it is optimal1161

to roll-out a vaccine as fast as possible. In Olivares and Staffetti (2021b),1162

the same authors studied scenarios with different vaccine availability. The1163

functional here depends on the number of symptomatic and asymptomatic1164

infectious. The authors found again that early implementation of vaccina-1165

tion and testing reduces the number of symptomatically infected the most.1166

However, if vaccine availability increases gradually, the optimal vaccination1167

strategy differs quite strongly from other scenarios. Finally in Olivares and1168

Staffetti (2021c), the same authors considered a mass vaccination plan, and1169

polynomial chaos expansion was used to assess the uncertainty of the mod-1170

40

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 7, 2024. ; https://doi.org/10.1101/2024.03.04.24303726doi: medRxiv preprint 

https://doi.org/10.1101/2024.03.04.24303726
http://creativecommons.org/licenses/by-nd/4.0/


eling outcomes.1171

In Ziarelli et al. (2023), an age-stratified two-dose ODE-based SIR model1172

was calibrated to death counts from Italy, and several optimal control prob-1173

lems were solved, minimizing deaths, infections and hospitalizations inde-1174

pendently. In each problem, the total number of vaccine doses was fixed1175

but the distribution of the available doses among susceptibles and those who1176

already received their first dose was optimized. The authors found that the1177

deaths-minimizing strategy prioritized those 80 years and older, followed,1178

interestingly, by those 20-39 years old. On the other hand, the infections-1179

minimizing vaccination strategy prioritizes the 20-39 and 40-59 age groups1180

but not children and teenagers despite them having the most contacts. This1181

work nicely highlights the complexities of designing optimal age-based vac-1182

cine prioritization strategies.1183

In Choi and Shim (2021), an age-structured ODE-based model for South1184

Korea was developed. Solving an optimal control problem with a functional1185

that considers the cost of vaccination, as well as the cost of symptomatic1186

and hospitalized infected, the authors found that the optimal vaccination1187

strategy depends on the way the vaccine functions. While “susceptibility-1188

reducing” vaccines should be allocated relatively evenly . On the other hand,1189

“symptom-reducing” vaccines should, surprisingly, be allocated to those 20-1190

29 and 50 and older but not to those 30-49 years old. The impact of vaccine1191

function proved particular strong if the roll-out was assumed to be fast.1192

In Libotte et al. (2020), an SIR model was calibrated to data from China.1193

An inverse problem was solved to determine the transmission rate, infectious1194

period, initial number of infecteds and basic reproduction number (R0). The1195

authors developed a multi-objective optimal control problem, in which the1196

number of vaccines and the total number of infected are simultanenously1197

minimized. This problem is solved using Differential Evolution, yielding a1198

set of Pareto-optimal vaccination strategies.1199

In Zhang et al. (2024), an optimal control problem was solved with the1200

aim of minimizing deaths and conserving vaccines at the same time. The1201

population was divided into four subpopulations: health workers, young in-1202

dividuals, middle-aged individuals, and the elderly. The authors found that1203

the optimal vaccination strategy substantially improved upon a proportional1204

vaccine roll-out.1205

There exist numerous other works that use classical optimal control to1206

identify optimal COVID-19 vaccination strategies, most of them minimizing1207

an objective functional which accounts for infected cases, deaths or the num-1208
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ber of vaccines Agossou et al. (2021); Al-arydah (2023); Salcedo-Varela et al.1209

(2023); Shen et al. (2021); Zaitri et al. (2022). In particular, some works1210

have combined optimal control with age-structured models to find the opti-1211

mal vaccination allocation Avcı and Yurtoğlu (2023); Chhetri et al. (2022);1212

Kumar et al. (2021). Optimal control employed on infectious disease models1213

represents a powerful tool to identify optimal vaccine allocation strategies.1214

However, setting up the optimal control problem including the constraints1215

regarding vaccine availability is crucial but it is challenging to restrict the1216

search to vaccination programs that can be implemented in the real world.1217

The choice of the functional to be minimized is also crucial, as strongly affects1218

the optimal outcomes, see e.g., Ledzewicz and Schättler (2020).1219

7. Conclusion1220

The COVID-19 pandemic constitutes one of the worst pandemics hu-1221

mankind has ever endured, both in terms of lives lost and economic reper-1222

cussions. It is also the first pandemic in a globalized world. The rapid1223

spread of the disease around the world was enabled by high levels of connec-1224

tion, transport and travel between distant parts of the world. This is not1225

going to change, which is why the world will eventually face another pan-1226

demic. Whether this will be caused by a highly transmissible SARS-CoV-21227

that has evolved to evade immune defenses or by an entirely novel pathogen1228

cannot be predicted. However, we can learn from mistakes made during the1229

COVID-19 pandemic to ensure better preparedness for a future pandemic.1230

On the mathematical modeling front, this includes fully understanding the1231

effect realistic human behavior and social processes have on the outcomes in1232

infectious disease models. Specifically for models designed to inform priori-1233

tization strategies for a vaccine that will initially always be limited, we need1234

to look beyond the details of specific models and understand the greater1235

connections behind explicit and implicit model assumptions and outcomes.1236

This is what we attempted in this systematic review of mathematical models1237

designed to find optimal COVID-19 vaccine prioritization strategies.1238
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