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Abstract 

Background 

Non-pharmaceutical interventions (NPIs) for control of COVID include a range of methods from 

masks to closures of schools and businesses with the efficacy of any individual strategy 

contingent on which other NPIs are employed and the extent of compliance with those strategies. 

In the case of a public health intervention, one typically looks at historical data for comparison, 

but, because COVID is a new disease, we have no such data. However, we do have extensive 

historical data for influenza, a respiratory disease with similar modes of transmission. Influenza 

incidence and mortality dropped dramatically during the COVID pandemic, almost certainly 

because of these NPIs. The extent of that drop provides an indirect measure of the efficacy of 

COVID NPIs in stopping the transmission of respiratory infections. 

This study evaluates the association of influenza mortality reduction (IMR) during the pandemic 

with age-adjusted COVID mortality among US states, adjusting for mortality prior to the 

introduction of NPIs and vaccination rates, while taking into account the impact of population 

density on NPI effectiveness. 

Results 

A simple linear model with pre-intervention COVID mortality, IMR, vaccination rate, and 

population density explained 70% of the state-to-state variability in age adjusted COVID 

mortality. The resulting model suggests that NPIs prevented 831,000 COVID related deaths in 

the United States over the course of the pandemic.  

Conclusions 

These results provide strong evidence that IMR is an accurate indicator of the efficacy of NPIs in 

controlling transmission of respiratory infections, including COVID.  This analysis suggests that 

NPIs together with vaccination prevented an estimated 2.15 million COVID related deaths and 

full intervention could have prevented over 700,000 more.    
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Background 

Since the outset of the COVID pandemic, non-pharmaceutical interventions (NPIs) to protect 

public health have come under heavy criticism for their impact on everything from the economy1 

to mental health2–4 to education5,6. Furthermore, almost every intervention has, at some point, 

been declared ineffective, including masking,7,8 routine testing,9 school closures,10 and business 

“lockdowns”.11,12  

 

Meta-analyses of studies of the efficacy of individual NPIs have tended to find beneficial 

effects13–15 with a few prominent exceptions.7,8 Closures of businesses and schools, limits on 

social gathering, travel restrictions, social distancing rules, masking mandates, and other NPI’s 

act in concert to reduce the transmission of respiratory infections. Some protect the individual 

from the infection in the community, some protect the community from the infected individual, 

and some do both. Also, the effectiveness of NPI’s depends on compliance, which is difficult to 

quantify. How, then, do we evaluate the overall impact of these interventions on the transmission 

of COVID? 

 

In an ideal natural experiment, we would have two isolated regions experiencing epidemic 

conditions that are identical in every way except for fully quantified and controlled differences in 

NPIs. Alternatively, we might have historical data for a particular disease and could examine 

changes in incidence and mortality after interventions were imposed. No such natural experiment 

occurred and, because COVID is a new human disease, we have no historical data. All of this 

makes the aggregate impact of NPI’s on COVID difficult to assess directly.  

 

However, the impact of these NPIs was not limited to COVID. Interventions designed to stop 

one respiratory pathogen will stop others as well. Therefore, the extent to which these NPIs 

halted the spread of respiratory pathogens with similar patterns of airborne transmission may 

provide a surrogate for the efficacy of NPIs for COVID. By far the best characterized of these 

diseases is influenza. 
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The marked seasonal patterns of influenza incidence and mortality have been measured for 

decades. As a result, the expected influenza mortality and the variability in that mortality are 

well established. Multiple studies have noted the dramatic, global decline in influenza incidence 

and mortality 16–18 during the COVID pandemic and suggested an association with NPIs. In the 

United States, influenza mortality rates for the first two complete flu seasons (2020-22) were 

80% below historic rates,19 as can be seen in Figure 1.  The sharpness of this decline and the fact 

that flu mortality rose back to pre-pandemic levels once precautions were lifted in 2022-23 

makes it unlikely that the drop was due to any change in the prevalent virus or treatment options. 

Influenza vaccination rates did rise 7% above historical averages during the pandemic,20 

probably due to concurrent vaccination with COVID, but this cannot explain an 80% drop in 

influenza mortality. 

 

It appears that something changed during the pandemic that resulted in a dramatic drop in 

respiratory disease transmission. By far the most likely explanation of this is COVID NPI’s. That 

suggests that the extent to which influenza mortality decreased from expected levels represents a 

drop in respiratory disease transmission and may provide an indicator of the effectiveness of 

COVID NPI’s.  

 

The current study explores the association between the influenza mortality reduction (IMR) and 

COVID mortality at the state level. Other factors considered in the analysis were COVID 

mortality during the first month of the pandemic and vaccination rates. Because the effectiveness 

of NPIs can be influenced by population density, it was also included in the model as an 

interaction term.  

 

Results 

As listed in Table 1, state-level influenza mortality rates were an average of 78% lower during 

the two full flu seasons of the pandemic, 2020-21 and 2021-22, as compared to the three full flu 

seasons prior to the pandemic, 2016-17, 2017-18, and 2018-19. The decrease in mortality ranged 

from 49% (North Dakota) to 94% (Washington). This radical difference in influenza mortality 

during the pandemic at the state level is highly unlikely to reflect simple seasonal variation in the 

flu strain or vaccine effectiveness (p<<0.0001 by simple ANOVA). 
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COVID mortality had a strong negative correlation with IMR and vaccination rates (p<0.001). 

As shown in Figure 1, IMR explains almost a third of the variability in COVID mortality. IMR is 

also strongly correlated with vaccination rates (Table 2).  

 

Multiple linear regression model results are provided in Table 3. Model 1, with only four 

predictor variables, IMR, COVID mortality, vaccination rates, and population density, predicts 

COVID mortality at the state level with an r2 to 0.66. Introducing an interaction term for IMR 

and population density in Model 2 improves the adjusted model r2 to 0.70. This interaction had a 

positive coefficient, suggesting the rate of reduction in COVID mortality associated with IMR 

was diminished in more densely populated states. Also, introducing the interaction to the model 

converted the direction of the effect of population density on COVID mortality from positive to 

negative. The close fit of the model to actual age-adjusted state COVID mortality rates can be 

seen in Figure 2. 

 

The predictive power of these models allows us to explore two key counterfactuals, the zero-

intervention case and the full intervention case. Analysis of the zero-intervention case provides 

an estimate of how many more COVID deaths would have occurred without NPI’s or vaccines. 

The full intervention case suggests how many additional lives might have been saved if NPIs had 

been fully implemented and vaccination rates had reached 100%. 

 

The results of the counterfactual models are provided in Table 4. With IMR set to zero, COVID 

deaths rise by 824,000. Note that Model 1 was used for this case because the interaction term is 

meaningless in this case. With vaccine rates set to zero, COVID deaths rise by 1,326,000 using 

Model 2. (Note that using Model 1 results in a higher estimate of lives saved but was presumed 

to be less accurate.)  If neither vaccines nor NPI’s were available, the model estimates 2.15 

million additional deaths would have occurred. If, instead, IMR and vaccination rates were raised 

to 100%, an additional 158,000 and 588,000 additional lives respectively might have been saved 

for each individual intervention and the two combined would have saved 735,000 lives. Note 

that, in both the non-intervention and full intervention cases, the individual estimates do not 

precisely add to the total because of the effect of the interaction term. 
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Discussion 

The current study provides strong evidence that NPIs played a key role in limiting the impact of 

the pandemic. The final model estimates that NPIs and vaccinations prevented 830,000 and 1.3 

million COVID deaths respectively.  

 

It is conceivable that decreased influenza mortality was the result of a decrease in ascertainment 

rather than reduced transmission. Some have even suggested that COVID deaths are actually 

influenza deaths,21 but several observations allow us to dismiss these possibilities. First, failure 

to diagnose a fatal case of the flu correctly, even during the pandemic, seems unlikely given the 

well-established surveillance system and diagnostic tools for influenza. Second, the sharp drop in 

influenza incidence during the pandemic was observed in data from the Seattle Flu Study, which 

was an active surveillance program that demonstrated pandemic-related decreases for a broad 

range of respiratory infections.22,23 All respiratory infections dropped sharply including 

influenza, respiratory syncytial virus, and non-COVID corona viruses. Finally, if flu deaths were 

being misdiagnosed as COVID, we would expect the reduction in influenza mortality to have a 

strong positive correlation with COVID mortality rates, not the strong negative correlation 

observed in these data.  

 

It is notable that the regression coefficient for population density changes sign when interaction 

with IMR is included in the model. This may reflect the fact that population density is a two-

edged sword with respect to COVID mortality, inferring a higher transmission risk but providing 

better access to life-saving medical care. Also of note is the negative association between the 

pre-intervention COVID mortality and total COVID mortality. This may reflect greater 

compliance with interventions in the states hardest hit at the outset of the pandemic. 

 

One key advantage in using state IMR as a measure of NPI efficacy is that a region can serve as 

its own control. Comparing influenza mortality during the pandemic to historical mortality rates 
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of influenza incidence and mortality with those that prevailed during periods when COVID NPIs 

largely eliminates the effect of time invariant confounders.  

 

The ability of this relatively simple model to explain over 70% of the variability in state COVID 

mortality provides compelling evidence that IMR is useful indicator for the effectiveness of NPIs 

against COVID and that the factors included in the model were the primary drivers of COVID 

mortality. Although IMR appears to be an excellent indicator of the effect of NPIs, it does not 

provide any insight into exactly which interventions were effective. Understanding the 

contribution of various NPI’s to IMR will be critical to refining management strategies for future 

epidemics of respiratory infectious disease. 

 

It appears that NPI’s, as indicated by IMR, prevented 824,000 COVID related deaths and 

vaccines prevented another 1,326,000, suggesting that COVID would have killed 3.3 million 

Americans without interventions. This is consistent with the controversial early estimates from 

the Imperial College of London,24 although that relatively simple model assumed a far more 

rapid spread of the disease. The model further suggests that, raising both IMR and vaccination 

rates to 100% would have reduced the US COVID deaths by 65%. 

 

Methods 

Weekly counts of influenza deaths for the period from 2016 through 2023 were abstracted from 

the CDC FluView System25 for each state. Average annual influenza mortality rates for each 

state were calculated for the pre-COVID period 2016 through 2019 and for the two flu seasons 

during the pandemic, 2020-21 and 2021-22. The decrease in average flu season mortality for 

each state during the pandemic as compared to average mortality rates prior to the pandemic 

were calculated for each state to determine the Influenza Transmission Control. 

 

State specific, weekly COVID mortality data were obtained from the CDC COVID Data Tracker 

and used to calculate mortality rates for March of 2020 to determine initial COVID mortality 

rates.26 Vaccination rates at the end of 2023 were obtained from the same site with vaccination 

defined as receipt of two initial doses.26 Age adjusted COVID mortality was determined based 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 7, 2024. ; https://doi.org/10.1101/2024.03.06.24303834doi: medRxiv preprint 

https://doi.org/10.1101/2024.03.06.24303834
http://creativecommons.org/licenses/by/4.0/


  

 8 

on data fron NCHS.27 Population density for 2020 was obtained from the United States Census 

Bureau.28  

 

All statistical analyses were conducted using the STATA statistical package. 

 

The counterfactual cases were evaluated by entering 0% (for the zero-intervention case) or 100% 

(for the full intervention case) into the model for each state, determining the difference from the 

actual mortality rates, multiplying by the state population, and summing the results. Two 

different models were used, one which included a term for the interaction between IMR and 

population density and one with no interaction term. The model with no interaction term was 

used to consider the cases when the NPI indicator, IMR, was set to 0%. 
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Table 1. Vaccination, population density, influenza and COVID mortality rates (deaths/100,000). 

State 

Pre-Covid 

Influenza 

Mortality 

Rate  

2020-2022 

Influenza 

Mortality 

Rate  

Infection 

Mortality 

Reduction 

(IMR) 

Vaccination 

Rate (2023) 

Population 

Density  

(Per mi2) 

3/2022 

Covid 

Mortality  

Age-

Adjusted 

Covid 

Mortality 

Alabama 2.55 0.77 71.0% 52% 99 0.52 410 

Alaska 2.73 0.95 60.6% 64% 1 3.59 253 

Arizona 2.35 0.51 77.8% 64% 63 0.35 375 

Arkansas 4.09 0.88 77.7% 56% 58 0.86 385 

California 2.51 0.28 88.8% 74% 254 0.07 275 

Colorado 3.15 0.80 73.4% 72% 56 0.45 285 

Connecticut 3.59 0.40 88.2% 82% 745 0.73 295 

Delaware 2.97 0.34 87.7% 72% 508 2.55 297 

Florida 1.88 0.67 66.4% 69% 402 0.12 299 

Georgia 1.58 0.57 67.4% 56% 186 0.24 371 

Hawaii 3.07 0.35 87.6% 81% 227 1.84 106 

Idaho 4.34 0.87 77.2% 56% 22 1.34 315 

Illinois 2.80 0.35 86.3% 70% 231 0.21 289 

Indiana 3.76 0.69 80.3% 57% 189 0.38 384 

Iowa 5.38 1.00 79.8% 63% 57 0.82 298 

Kansas 5.25 1.07 79.0% 64% 36 0.90 321 

Kentucky 4.52 0.80 81.5% 59% 114 0.58 420 

Louisiana 2.52 0.60 75.7% 55% 108 0.58 378 

Maine 5.16 0.68 85.6% 82% 44 1.89 180 

Maryland 2.03 0.37 83.0% 78% 636 0.43 286 

Massachusetts 3.27 0.79 75.3% 82% 901 0.38 270 

Michigan 3.18 0.65 79.3% 62% 178 0.26 333 

Minnesota 3.68 0.61 82.4% 71% 72 0.46 246 

Mississippi 2.77 1.17 57.3% 53% 63 0.90 486 

Missouri 4.55 0.78 81.5% 58% 90 0.43 343 

Montana 4.86 1.06 76.7% 58% 8 2.33 324 

Nebraska 4.77 1.16 72.9% 65% 26 1.33 272 

Nevada 1.62 0.53 69.1% 63% 28 0.82 403 

New Hampshire 4.04 0.82 77.1% 70% 154 1.88 189 

New jersey 1.94 0.25 86.9% 78% 1263 0.28 367 

New Mexico 2.79 0.76 74.7% 74% 18 1.25 385 

New York 1.64 0.35 78.2% 79% 429 0.13 370 

North Carolina 3.47 0.44 86.7% 65% 215 0.24 308 

North Dakota 3.32 1.66 49.0% 57% 11 3.36 377 

Ohio 3.46 0.49 85.1% 60% 289 0.22 380 

Oklahoma 4.51 1.57 64.1% 59% 58 0.65 447 

Oregon 5.55 0.34 92.8% 71% 44 0.62 190 

Pennsylvania 3.44 0.73 77.5% 72% 291 0.20 342 

Rhode Island 4.78 0.50 88.4% 86% 1061 2.40 324 

South Carolina 3.54 0.61 82.1% 59% 170 0.49 369 

South Dakota 5.29 1.69 64.6% 65% 12 2.87 351 

Tennessee 3.31 1.16 65.8% 56% 168 0.37 420 

Texas 2.15 0.67 68.7% 62% 112 0.09 412 

Utah 2.07 0.50 74.8% 66% 40 0.77 231 

Vermont 5.41 0.46 90.7% 84% 70 4.07 114 

Virginia 2.36 0.47 79.1% 75% 219 0.30 262 

Washington 4.61 0.26 93.6% 75% 116 0.34 190 

West Virginia 5.07 1.30 73.1% 59% 75 1.49 377 

Wisconsin 3.91 0.52 85.8% 67% 109 0.45 260 

Wyoming 3.48 0.77 75.0% 52% 6 4.51 302 

Average 3.50 0.72 78% 67% 207 1.05 317 
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Table 2. Pairwise correlations for model variables. 

 

| 

COVID 

mortality 

Initial 

COVID NPI-S 

Vaccination 

Rate 

Population 

Density 

COVID mortality 1.00     

Initial COVID -0.29 1.00    

IMR -0.53 -0.18 1.00   

Vaccination Rate -0.63 0.02 0.55 1.00  
Population Density -0.01 -0.18 0.34 0.57 1.00 

 

 

 

Table 3. Multiple linear regression results for US state, age adjusted COVID mortality rates as a 

function of Influenza Mortality Reduction (IMR), vaccination rate (at least 2 doses), COVID 

mortality in the first month of the pandemic, and population density. Model 2 introduces a term 

for the interaction between IMR and population density.  

 State Characteristics Coef. 95% C.I. P>|t| 

Model 1 Vaccination Rate -534.68 -731 -339 0.00000 

r2= 0.66 Initial COVID Mortality -27.95 -42 -14 0.00000 

 Influenza Mortality Reduction -466.22 -669 -264 0.00000 

 Population Density -0.789 -1.49 -0.0927 0.028 

 Constant 1044.35 898.29 1190.41 0.00000 

Model 2 Vaccination Rate -587.7 -792.2 -383.2 0.00000 

r2= 0.70 Initial COVID Mortality -19.8 -32.8 -6.7 0.004 

 Influenza Mortality Reduction -314.5 -492.7 -136.4 0.001 

 Population Density 0.133 0.0715 0.195 0.00000 

 IMR x Population Density 946 812 1080 0.00000 

 Constant -587.7 -792.2 -383.2 0.00000 
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Table 4. Model estimates of lives saved by actual interventions and potential lives saved by full 

interventions. Mortality data in model based on values when US COVID mortality was 1.1 

million. Model 2 was used in all cases except with NPI=0 when Model 1 with no interaction 

term was used (see text for discussion). The results with Model 1 for the zero-vaccine case were 

included for comparison, but the combined case uses the lower number. 

 

 

Estimated 

COVID Deaths 

with specified 

Intervention set 

to zero 

Estimated Lives 

Saved by Actual 

Intervention 

Estimated COVID 

Deaths with Full 

Intervention 

Estimate of 

additional Lives 

Saved with full 

intervention 

NPI 1,923,132 823,530 941,259 158,342 

Vaccine (Model 1) 2,425,358  1,325,756 NA NA 

Vaccine (Model 2) 2,298,515 1,198,913 511,262 588,340 

Both 3,251,175 2,151,574 364,456 735,145 
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Figure 1. CDC estimates of deaths from influenza for past 13 flu seasons. Note that the CDC did not provide 

an estimate for the 2020-2021season because the mortality rates were too low for their estimation procedures, 

which seek to account for unreported cases, so the number provided is the actual count.  
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Figure 2. Actual age adjusted COVID mortality as compared to model estimates for US states. 
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