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Abstract 

SARS-CoV-2 is a new member of the genus Betacoronavirus, responsible for the 

COVID-19 pandemic. The virus crossed the species barrier and established in the 

human population taking advantage of the spike protein high affinity for the ACE 

receptor to infect the lower respiratory tract. The Nucleocapsid (N) and Spike (S) 

are highly immunogenic structural proteins and most commercial COVID-19 

diagnostic assays target these proteins. In an unpredictable epidemic, it is 

essential to know about their genetic variability. The objective of this study was to 

describe the substitution frequency of the S and N proteins of SARS-CoV-2 in 

South America. A total of 504 amino acid and nucleotide sequences of the S and N 

proteins of SARS-CoV-2 from seven South American countries  (Argentina, Brazil, 

Chile, Ecuador, Peru, Uruguay, and Colombia), reported as of June 3, and 

corresponding to samples collected between March and April 2020, were 

compared through substitution matrices using the Muscle algorithm in MEGA X. 
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Forty-three sequences from 13 Colombian departments were obtained in this study 

using the Oxford Nanopore and Illumina MiSeq technologies, following the 

amplicon-based ARTIC network protocol. The substitutions D614G in S and 

R203K/G204R in N were the most frequent in South America, observed in 83% 

and 34% of the sequences respectively. Strikingly, genomes with the conserved 

position D614 were almost completely replaced by genomes with the G614 

substitution between March to April, 2020. A similar replacement pattern was 

observed with R203K/G204R although more marked in Chile, Argentina and Brazil, 

suggesting similar introduction history and/or control strategies of SARS-CoV-2 in 

these countries. 

It is necessary to continue with the genomic surveillance of S and N proteins during 

the SARS-CoV-2 pandemic as this information can be useful for developing 

vaccines, therapeutics and diagnostic tests. 

 

Highlights  

• The spike and nucleocapsid proteins of SARS-CoV-2 circulating in 

Colombia and South-American countries have similar patterns of non-synonymous 

substitutions  

• Substitutions D614G in Spike and R203K-G204R in Nucleocapsid are the 

most frequent in Colombia and South-American countries 

• The identification of genetic variability of SARS-CoV-2, is useful for 

vaccines, diagnostic test, and therapeutic designs. 
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1. Introduction 

The recently emerged SARS-CoV-2 responsible for the coronavirus disease 2019 

(COVID-19) pandemic, has increased significantly in the number of cases and 

deaths, so that daily, about 70,000 new cases are reported globally  

(WHO, 2020a, 2020c). The first case of COVID-19 in South America was reported 

in Brazil on February 26,  in a 61 years old man traveling from Italy (gob.br, 2020). 

In Colombia, the first case of COVID-19 was announced on March 6, in a traveler 

from Italy, after which the number of patients has exceeded 43,000 and over 1500 

deaths (INS, 2020).  

 

The SARS-CoV-2 genome consist of a single, positive-stranded RNA (ssRNA[+]), 

with 29,903 nucleotides long. This virus has shown an extraordinary infectiousness 

and transmission capacity in the human population (He et al., 2020), even 

exploring other vertebrate species (Shi et al., 2020). The SARS-CoV-2 genome 

has nine open reading frames (ORFs); the first one, subdivided in ORF1a and 

ORF1b by ribosomal frameshifting, encodes the polyproteins pp1a and pp1ab 

which are processed into non-structural proteins involved in subgenomic/genome 

length RNA synthesis and virus replication. Structural proteins, Spike (S), Envelope 

(E), Membrane (M), and Nucleocapsid (N) are encoded in subgenomic mRNA 

transcripts within ORFs 2, 4, 5, and 9, respectively (SIB, 2020; Yount et al., 2005) 

 

Spike protein, a type I membrane glycoprotein, is the most exposed viral protein 

recognized by the cellular receptor angiotensin-2-converting enzyme (ACE2) 

during the infection of the lower respiratory tract and considered the main inducer 

of neutralizing antibodies. The N protein is associated with the RNA genome to 

form the ribonucleocapsid and is abundantly expressed during infection. Both N 

and S proteins are highly immunogenic and most commercial COVID-19 diagnostic 

tests (molecular and immunologic) target these proteins (Álvarez-Díaz et al., 2020; 

Lee et al., 2020). 
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Furthermore, non-synonymous mutations in the S and N proteins have been 

reported, their implications in the potential emergence of antigenically distinct 

and/or more virulent strains remain to be studied, although it was reported that 

mutations in the receptor-binding domain (RBD) at the S protein of SARS-CoV-

related viruses disrupt the antigenic structure and binding activity of RBD to ACE2 

(Du et al., 2009) Similarly, how non-synonymous mutations could impact the 

antibody response and the specificity and sensitivity of serological tests for COVID-

19 diagnosis is unknown. Thus, identifying variable sites at these proteins can 

provide a valuable resource for choosing the target antigens for the development of 

SARS-CoV-2 vaccines, therapeutics, and diagnostic tests (Du et al., 2009; 

Jacofsky et al., 2020). The objective of this study is to describe the frequency of 

substitutions in S and N proteins of SARS-CoV-2 in South America.  

 

2. Materials and methods 

2.1 Ethics  

This work was developed according to the national law 9/1979, decrees 786/1990 

and 2323/2006, which establishes that the Instituto Nacional de Salud (INS) from 

Colombia is the reference lab and health authority of the national network of 

laboratories and in cases of public health emergency or those in which scientific 

research for public health purposes as required. The INS is authorized to use the 

biological material for research purposes, without informed consent, which includes 

the anonymous disclosure of results. This study was performed following the 

ethical standards of the Declaration of Helsinki 1964 and its later amendments. 

The information used for this study comes from secondary sources of data that 

were previously anonymized and do protect patient data.  

2.2 Patients and samples 
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Nasopharyngeal swab samples from patients with suspected SARS-CoV-2 

infection were processed for RNA extraction using the automated MagNA Pure LC 

nucleic acid extraction system (Roche Diagnostics GmbH, Mannheim, Germany) 

and viral RNA detection was performed by real-time RT-PCR using the SuperScript 

III Platinum One-Step Quantitative RT-qPCR kit (Thermo Fisher Scientific, 

Waltham, MA, USA), following the Charité-Berlin protocol (Corman et al., 2020) for 

the amplification of the SARS-CoV-2 E (betacoronavirus screening assay) and 

RdRp (SARS-CoV-2 confirmatory assay) genes.  

2.3 Complete genome sequencing of SARS-CoV-2 through NGS 

NGS of SARS-CoV-2 from 43 patients was performed using the amplicon-based 

Illumina and Nanopore sequencing approaches, ARTIC network protocol (Quick, 

2020a). Following cDNA synthesis with SuperScript IV reverse transcriptase 

(Thermo Fisher Scientific, Waltham, MA, USA) and random hexamers (Thermo 

Fisher Scientific, Waltham, MA, USA), a set of 400-bp tiling amplicons across the 

whole genome of SARS-CoV-2 were generated using the primer schemes nCoV-

2019/V3 (Quick, 2020a).  

SARS-CoV-2 specific oligonucleotides were used for the generation of amplicons 

by means of a high-fidelity DNA polymerase (Q5® High-Fidelity DNA Polymerase - 

(New England Biolabs Inc., UK, EB), in order to avoid the introduction of artificial 

substitutions.  

2.4 Sequence Analysis 
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Reads were mapped to the Wuhan-Hu-1 reference genome (NC_045512.2) using 

BWA (Li et al., 2020) and BBmap (brian-jgi, 2020); then, assembled sequences 

were submitted to GISAID. Substitution matrices of nucleotides and amino acids of 

S and N proteins were generated from a multiple sequence alignment with the 

reference genome against the 43 assembled Colombian SARS-CoV-2 genomes 

(Table 1) using the Muscle algorithm (Edgar, 2004) in MEGA X (Kumar et al., 

2016). Subsequently,461 SARS-CoV-2 sequences from South American countries, 

including Argentina, Brazil, Ecuador, Peru, Uruguay and other sequences from 

Colombia available on the GISAID, NCBI, and GSA databases were analyzed 

(Supplementary Table S1, and Supplementary Table S2).  

 

3. Results 

3.1 Non-synonymous substitutions in the Spike and Nucleocapsid proteins in 

Colombia 
 

Several non-synonymous substitutions were observed in the S and N proteins of 

the Colombian SARS-CoV-2 sequences generated in this study. Three amino acid 

substitutions were observed in the S protein, D614G was present in 81% (35/43) of 

the sequences. Furthermore, substitutions G181V and D936Y were found in low 

frequencies of 2.3% (1/43) and 2.3% (1/43) respectively (Table 1). In the N protein, 

five amino acid substitutions were found; the most frequent being R203K and 

G204R in 13.95% (6/43) of the sequences. Amino acid substitutions, R191C, 

R209I and G238C were found in 4.65% (2/43), 4.65% (2/43) and 6.97% (3/43) of 
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the Colombian sequences, respectively (Table 1). Some nucleotide substitutions 

were synonymous.  

3.2 Non-synonymous substitutions in the Spike and Nucleocapsid proteins in 

South America 
 

Genomic resource databases, NCBI, GISAID and GSA were consulted to 

determine the substitutions in S and N proteins of SARS-CoV-2 from South 

America. A total of 504 genomes reported as of June 3Th 2020, were analyzed, 126 

from Colombia (including the 43 genomes reported in this study), 29 from 

Argentina, 145 from Brazil, 153 from Chile, 4 from Ecuador, 2 from Peru and 45 

from Uruguay. Fifty sequences of S and 27 of N were excluded from the analysis 

because the presence of undetermined bases that did not allow the proper 

identification of the S and N ORFs in the amino acid substitution matrices.  

Twenty-eight and twenty-two non-synonymous substitutions were identified in the 

sequence of S and N proteins respectively, in genomes of South America (Table 

S1 and S2). The most frequent in S were D614G (83%) V1176F (2.2%) and 

P1263L (1.5%), while the most frequent in N were R203K (34.5%), G204R 

(34.3%), I292T (15.8%) and S197L (3.3%). The remaining substitutions in both, S 

and N occurred in less than 1% of the sequences. These included G181V and 

D936Y in S, and R191C and G238C in N, as observed in the Colombian genomes 

(Fig. 1).  

3.3 Spatiotemporal distribution of substitutions in Spike and Nucleocapsid 

The analysis of substitution frequencies by country shows that D614G substitution 

in the S protein was frequent in Argentina, Brazil, Chile, Colombia and Peru, with 
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80-100% of the reported sequences (Fig. 2A). In Ecuador and Uruguay D614 

position was predominant by March, however by April the G614 substitution 

reached 80% in Uruguay. In general, the percentage of genomes in South America 

with this substitution augmented nearly to 100% from March to April (Fig. 2B).   

 

Non-synonymous substitutions R203K and G204R, which are the hallmarks of the 

B.1.1 lineage, were the most frequent in the N protein of South American 

sequences. Both substitutions were frequent in Argentina and Brazil with 55% and 

74% of the reported sequences respectively (Fig. 3A). In Ecuador and Chile the 

frequency of these substitutions was about 20%, while in Uruguay the frequency 

was similar to Colombia. Furthermore, the proportion of genomes with this double 

substitution augmented in Chile, Argentina and Brazil from March to April. In 

contrast, this proportion increased slightly in Colombia and Uruguay, and remained 

below 20% (Fig. 3B).  

 

The substitution I292T in the N protein was rare in Argentina (10.7%), Chile (4.6%) 

and Uruguay (2.2%); and absent in Colombia, Peru and Ecuador. In contrast, this 

substitution was very frequent in Brazil (56.3%) (Fig. 3C). The spatiotemporal 

distribution pattern of this substitution was similar to that of R203K and G204R, 

increasing from March to April in Chile, Argentina and Brazil in contrast to 

Colombia and Uruguay where this substitution was almost absent in genomes 

registered on April (Fig. 3D). 
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4. Discussion  

The first COVID-19 case in Colombia was confirmed on March 6, 2020, from a 

traveler who entered the country from Italy on February 26, 2020 

(EPI_ISL_418262). By June 11, 2020, a total 43,810 confirmed cases and 1,505 

deaths have been reported (INS, 2020). This study evidenced the presence of the 

D614G substitution in the S protein in 89.6% (112/125) of Colombian SARS-CoV-2 

sequences, by April 27, 2020, while the first introduced cases presented the 

conserved position reported in the Wuhan-Hu-1 reference genome (Bhattacharyya 

et al., 2020). 

 

D614G was detected in 85% of sequences being present in most of the South 

American countries with available genomic information. Several studies have 

suggested a potential role of the D614G substitution in increase the virus infectivity 

(Becerra‐Flores and Cardozo, 2020; Korber et al., 2020; Nakashima, 2020), 

transmissibility (Bhattacharyya et al., 2020; Brufsky, 2020), mortality rate and 

immune system evasion (Kim et al., 2020); however, it was not possible to rule out 

the association with founder effects. 

 

On the other hand, the co-occurrence of R203K and G204R substitutions in the N 

protein, was identified in 34% of South American sequences. The B.1.1 lineage is 

defined by the three-nucleotide mutation in 2 adjacent codons leading to the two 

consecutive amino acid changes in the N protein (Bartolini et al., 2020; Rambaut et 

al., 2020), while most of amino acid changes evidenced in the S and N proteins 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 16, 2020. ; https://doi.org/10.1101/2020.06.02.20120782doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.02.20120782
http://creativecommons.org/licenses/by-nc-nd/4.0/


11 
 

cannot be directly related to a specific lineage (Bhattacharyya et al., 2020; Korber 

et al., 2020). 

 

This lineage has been reported in samples from travelers with connection to Italy 

(Gupta and Mandal), also observed in the first confirmed case of SARS-CoV-2 in 

Colombia (EPI_ISL_418262) and another patient with travel connection to Spain 

(EPI_ISL_456149) (Table 1). Furthermore, multiple countries outside Italy have 

reported this lineage among their samples including, Belgium, Switzerland, 

Vietnam, India, Nigeria and Mexico, demonstrating a wide distribution worldwide 

(Gupta and Mandal).  

 

RNA viruses are known to possess high substitution rates compared to DNA 

viruses, leading to high genetic variability and the rapid action of evolutionary 

mechanisms of natural selection and genetic drift (Li et al., 2020; Tang et al., 

2020). Despite some evolutionary changes may be in fact adaptive, it is important 

to be careful with conclusions in the absence of an experimental model to evaluate 

the impact of every mutation in the virus phenotype and virus-host interaction 

(Villabona-Arenas et al., 2020). 

 

The S and N proteins are the most widely used for serological assays, there are 

138 FDA-approved serological tests of which only 24% specifically report the 

screened antigen of these, 39% use the S and 42% use N, and 18% use both 

(Supplementary Table S3). Recombinant proteins or synthetic peptides of SARS-

CoV-2 are widely explored as alternatives to be used in serological tests and 
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therapeutics against SARS-CoV-2 and related Betacoronavirus (Du et al., 2009; 

Jacofsky et al., 2020), considering that S and N proteins are the major 

immunogenic proteins of SARS and MERS coronavirus and the first choice for 

producing recombinant antigens (Yan et al., 2020).  

  

5. Conclusion 

Amino acid changes were found in the S and N proteins of SARS-CoV-2 circulating 

in South America, the most frequent being D614G in S, R203K-G204R and I292T 

in N. It is necessary to continue with genomic surveillance of changes in these 

proteins during the SARS-CoV-2 pandemic, even more considering that these 

proteins are the most commonly used in serological and molecular tests.  

The identification of nucleotide substitutions, amino acid changes and their 

frequencies in circulating viruses, can be useful for public health decision-making, 

including vaccine design efforts, design of SARS-CoV-2 diagnostic tests, and 

therapeutic compounds.  
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Figures and Tables 

Table 1.  Nucleotide substitutions and amino acid changes in the Spike and Nucleocapsid 
proteins of 43 SARS-CoV-2 genomes from Colombia generated in this study. Location of 
the substitutions was estimated based on the reference genome NC_045512.2. Left panel: 
nucleotides; right panel: amino acids. ?: Uncovered nucleotide and amino acids during 
complete genome sequencing. 
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Figure 1. Non-synonymous substitutions in the Spike and Nucleocapsid proteins of 
SARS-CoV-2 in South America. A. Non-synonymous substitution sites in the S protein. 
Blue bars represent the genomes with conserved positions, red bars represent the 
genomes with substitution at the indicated site (at least one genome per site). B. Non-
synonymous substitutions in the N. Blue bars represent the genome with conserved 
positions, red bars represent the genomes with substitution at the indicated site (at least 
one genome). Green bars represent the number of genomes with undetermined amino 
acids at the indicated site. Black arrows show substitutions found in the 43 Colombian 
genomes generated in this study. The location of the substitutions was estimated based on 
the reference genome NC_045512.2 
 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 16, 2020. ; https://doi.org/10.1101/2020.06.02.20120782doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.02.20120782
http://creativecommons.org/licenses/by-nc-nd/4.0/


17 
 

 
 
 
Figure 2. Spatiotemporal distribution of the D614G substitution in the Spike protein 
of SARS-CoV-2 in South America. A. Distribution of D614/G614 substitutions in SARS-
CoV-2 genomes reported as of Jun 3th 2020 in South American countries B. 
Spatiotemporal distribution of D614/G614 substitutions in SARS-CoV-2 genomes 
sequenced between March and April, 2020 in South America, according with the sample 
collection date.   
 
 
 

 
 
Figure 3. Spatiotemporal distribution of the most frequent substitutions in the 
Nucleocapsid protein of SARS-CoV-2 in South America. A. Distribution of R203/G204 
and K203/R204 substitutions in SARS-CoV-2 genomes reported as of Jun 3th, 2020 in 
South American countries. B. Spatiotemporal of R203/G204 and K203/R204 substitutions 
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in SARS-CoV-2 genomes sequenced between March and April, 2020 in South America, 
according with the sample collection date. C. Distribution of I292/T292 substitutions of 
nucleocapsid protein in SARS-CoV-2 genomes reported as of Jun 3th, 2020 in South 
American countries. D. Distribution of I292 and T292 substitutions in SARS-CoV-2 
genomes sequenced between March and April, 2020 in South America, according with the 
sample collection date. 
 
 
Supplementary Table S1.  Amino acid substitutions in the Spike protein of SARS-CoV-2 
genomes from South America. Location of the substitutions was estimated based on the 
reference genome NC_045512.2. ? Indeterminate amino acids. 
 
Supplementary Table S2.  Amino acid substitutions in the Nucleocapsid protein of SARS-
CoV-2 genomes from South America. Location of the substitutions was estimated based 
on the reference genome NC_045512.2. ? Indeterminate amino acids. 
 
Supplementary Table S3.  Technical details of 138 FDA approved serological Test for 
anti-SARS-Cov-2 antibody detection.  
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