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ABSTRACT

Background: The COVID-19 pandemic has flooded open databases with population-level data. However, individual-level
structured data, such as the course of disease and contact tracing information, is almost non-existent in open databases.
Aim: Publish a structured and cleaned COVID-19 dataset with the course of disease and contact tracing information for easy
benchmarking of COVID-19 models.
Methods: We gathered data from Taiwanese open databases and daily news reports. The outcome is a structured quantitative
dataset encompassing the course of the disease of Taiwanese individuals, alongside their contact tracing information.
Results: Our dataset comprises 579 confirmed cases covering the period from January 21, to November 9, 2020, when
the original SARS-CoV-2 virus was most prevalent in Taiwan. The data include features such as travel history, age, gender,
symptoms, contact types between cases, date of symptoms onset, confirmed, critically ill, recovered, and dead. We also
include the daily summary data at population-level from January 21, 2020, to May 23, 2022.
Conclusions: Our data can help enhance epidemiological modelling.

1 Background & Summary
Current epidemiological models rely on population-level data, demanding precise measurements of infected individuals and
deaths. However, the accuracy of reported infection numbers can be compromised due to limited testing. In Stockholm, Sweden,
Roxhed et al. found a seroprevalence of 12.5%, implying a significant discrepancy between the potential 150,000 infections
and the 10,000 PCR-confirmed cases reported during the study period. Estimating mortality rates is also challenging. The
WHO reported approximately 15 million excess deaths by December 2021, compared to 5.4 million confirmed COVID-19
deaths. The Economist’s estimates varied from 15 million to 25.2 million excess deaths, far exceeding reported COVID-19
deaths. Additionally, calculating the basic reproduction number (R0) is challenging due to reporting errors in infection numbers.
For COVID-19, R0 estimates ranged widely from 0.17 to 4.5 with broad confidence intervals1. These issues highlight the
unreliability of commonly used population-level measurements.

To mitigate the inaccuracies inherent in population-level data, utilizing more informative individual-level data is advisable.
For example, Lee et al. published a case report of the course of disease of a 46-year-old woman diagnosed based on positive
real-time RT-PCR test from oropharyngeal swab samples2. The days of fever, cough, dyspnea, dysuria, etc are listed. With
three consecutive negative results of real-time RT-PCR tests for SARS-CoV-2, the woman was discharged after 24 days
of hospitalization. In another instance, the report on France’s first three cases3 meticulously documented essential details,
including travel history, symptom onset, medical consultations, hospitalization, confirmation, critical condition, and contact
tracing.

Individual-level data finds valuable application in predicting specific risks. Garibaldi et al. developed the COVID-19
Inpatient Risk Calculator (CIRC), forecasting severe illness or death within 7 days for COVID-19 patients based on data from
832 consecutive admissions4. Wongvibulsin et al. created a system predicting progression from moderate to severe illness or
death within 14 days using demographics, admission source, comorbidities, vital signs, lab measurements, and clinical severity
data from 3494 COVID-19 patients5. In the pandemic’s early stages, when individual-level data accessibility was limited,
Lichtner et al. trained a model on 718 non-COVID viral pneumonia patients’ data, effectively predicting adverse outcomes in
critically ill COVID-19 patients6. Unfortunately, none of these datasets are publicly available.

In this study, data is collected from diverse open-source databases, resulting in a comprehensive structured dataset
encompassing demographics, epidemiological details, disease progression information, and subject contact tracing. Previously,
we developed a model for forecasting the end of a local outbreak based on the moving average ratio of daily infected to
suspected cases which utilizes the daily summary data we included in this dataset7.
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2 Methods
We collected individual-level COVID-19 data from public Taiwanese databases and converted the data into a unified format.
The data collection process and data preprocessing are described in the following sections.

2.1 Data collection
The data was collected from the following open-source databases: Taiwan Centers for Disease Control press release (CDC
press release)8, United Daily News (COVID-19 Visualization)9, Taiwan CDC Open Data Portal, Regents of the National Center
for High-performance Computing (COVID-19 Dashboard)10, Taiwan Centers for Disease Control open data portal (CDC open
data portal)11, and Taiwan Centers for Disease Control press conference (CDC press conference)12. The flow chart of the data
collection process is shown in Figure 1.

2.1.1 Individual-level data
We collected individual-level epidemiological data, course of disease data, and contact tracing data from January 21st, 2020
to November 9th, 2020 covering the first outbreak in Taiwan. The individual-level data in our dataset primarily originates
from daily reports issued by the Taiwan CDC. These reports contained detailed information about confirmed COVID-19 cases.
While this source was informative, the data was presented in an unstructured text format, necessitating manual conversion
into a structured and quantifiable format. We also obtained valuable data from the COVID-19 Visualization, which provided
visualizations of the contact networks among locally confirmed cases. Furthermore, the COVID-19 Dashboard served as a
source for the course of disease data, including report dates and confirmed dates. We augmented this information with metadata
and conducted validation processes based on CDC press conference.

The confirmed cases data contained 579 samples with 64 features including travel history, age, gender, nationality, the onset
of symptom, confirmed date, symptoms, way of discovery, and contact types between cases. We categorized the contact type
into groups such as couple, parents, grandparents, siblings, family, friends, live together, flight, flight (nearby seat), travelling,
school, car, coworker, hospital, hotel, Panshi combat ship (military ship), Coral Princess (cruise ship), and others. Some cases
also included ICU admission, recovery, and death dates, as available from our sources. When accessible, Taiwan CDC provided
details like the count of close contacts, contact dates, and case indexes for contacts.

2.1.2 Daily summary data
The daily summary data, sourced from Taiwan CDC press releases8, provides essential population-level information. However,
inconsistencies in reporting intervals and changes in counting methods, notably on 2020-03-06, impact data accuracy. To
mitigate this, we accessed the "Daily Number of Cases Suspected SARS-CoV-2 Infection Tested" dataset from the Taiwan
CDC Open Data portal11. This dataset comprises daily counts of suspected SARS-CoV-2 cases derived from three sources:
notifications of infectious diseases, home quarantine and inspection, and expanded monitoring.

The data spans from January 21, 2020, to May 23, 2022, providing a comprehensive overview of the pandemic’s progression.
To ensure data consistency and reliability, we manually transformed this data into a structured format. This dataset includes
daily statistics on various COVID-19 aspects, such as the number of suspected cases, excluded cases, abroad positive cases,
local positive cases, positive cases with unknown sources, deaths, recovery cases, and hospital quarantine cases.

2.2 Data preprocessing
When structuring the data, we identified a few anomalous cases, which we investigated as part of our data preprocessing. For
instance, Case ID 19 was confirmed on February 15th, 2020. However, due to a mistaken diagnosis of pneumonia, ID 19 was
placed in the ICU on February 3rd, 2020, which was before the confirmed date. Since there was no hospital transmission,
it’s likely that the case was isolated after being admitted to the ICU. Therefore, the confirmed date (monitor isolation) should
be readjusted to February 3rd, 2020. Case ID 530 was later identified as a false positive and subsequently removed from the
dataset by the Taiwan CDC. Case ID 555 had contact with infected individuals on September 13, 2020, and was confirmed
as a COVID-19 case on September 18, 2020, in the Philippines. Subsequently, the case was discharged from the hospital on
October 3, 2020, tested negative on October 9, 2020, and travelled to Taiwan on October 15, 2020. The case was tested and
confirmed on October 30, 2020, which resulted in a long period of susceptibility to infection. To rectify this, we removed case
ID 555’s infection date.

3 Data Records

The data is publicly available in figShare repository13.
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3.1 Data description of individual-level data
Our dataset encompasses a total of 578 cases, including epidemiological data, course of disease data, and contact tracing
data. In this section, we offer a comprehensive overview of the dataset’s characteristics and composition. Table 1 provides
an overview of epidemiological data, categorizing it based on case origin, travel date, travel history, gender, and age. Each
category lists the number of cases alongside their corresponding percentages. Additionally, Table 2 explores the distribution of
the course of disease data, indicating data availability through the count of cases with available data, along with the respective
percentages. Specific aspects, such as asymptomatic date, symptoms, symptomatic date, confirmed date, critically ill date,
recovery date, death date, and report to CDC date, are highlighted. Among 578 subjects, 452 had reported symptoms recorded
by Taiwan CDC, and 442 of them provided their symptomatic dates. The number of recovered and deceased cases is reported
in CDC’s daily summary data. The number of critically ill cases is not directly provided by Taiwan CDC and is thus estimated
as the sum of critically ill and deceased cases.

3.2 Kaplan-Meier plot
The Kaplan-Meier plot is a statistical tool used to estimate and visually represent the probability of an event occurring over
time, commonly applied in medical studies to illustrate survival or state transition dynamics. In a subject’s course of disease, a
subject could go to asymptomatic (infection with no symptoms, IA), symptomatic (infection with symptoms, IS), confirmed (C)
critically ill (ICU admission, IC), recovered (two consecutive negative PCR tests, R), and death (D) as shown in the bottom
right plot in Figure 2. Infection and immune status can be determined by an antigen test, PCR test, and antibody test. The
nonpharmaceutical interventions (NPI) inhibit the transition from S to I, and the intensive care units (Care) activate the transition
from IC to R, and the vaccination activates the transition from S to R. In Figure 2, the Kaplan-Meier plot illustrates state
transitions from one state to another without passing through intermediate states. For example, the samples from symptomatic
to recovered do not include individuals who transitioned from symptomatic to critically ill to recovered.

3.3 Contact network
The contact network comprises 8,842 nodes, with 578 nodes representing infected individuals, constituting approximately 7%
of the total nodes. In terms of edges, the network encompasses a total of 46,008 connections, of which 1,183 (2.6% of the
edges) are infection-related. Among these edges, 37 have identifiable infection paths, resulting in directed edges, while the
remaining 1,146 are forming undirected edges. The proportion of directed edges to total edges is 0.08%, rising to 3.1% for
infection-related edges. Additionally, the network displays 152 clusters, ranging in size from 2 to 1,898 nodes, with a median
cluster size of 16.5 and a mean cluster size of 58.2.

The left panel of Figure 3 presents a mixed graph representation of a contact network, where infection paths are denoted
by arrows. The contact network is visualized with Cytoscape. In this instance, the initial case, I277, transmits the infection
to individuals I269 and I288, and subsequently, I269 spreads the infection to I299. Distinct contact types such as ’family’
(highlighted in red), ’same flight’ (depicted in blue), and ’other/unknown’ connections (in gray) are visually differentiated.
Smaller nodes represent uninfected contacts within the network.

The right panel of Figure 3 provides an overview of different contact types within the network. These contact types are
categorized to ensure mutual exclusivity and comprehensive coverage. For simplicity, the plot shows larger contact groups.
For example, diverse ship-related contacts, such as ’Ship’, ’Panshi fast combat support ship’, and ’Coral Princess’, were
consolidated under the category ’Ship’.

4 Technical Validation
We conducted a thorough validation of our dataset through a crossover check using diverse datasets from various sources.
Specifically, each cases’ course of disease was verified through a double-check process involving CDC press releases and press
conferences, while the accuracy of the contact tracing data was confirmed by cross-referencing CDC press releases, CDC press
conference, and COVID-19 Visualization. Additionally, the integrity of the final dataset underwent a double-check process
involving other lab member.

To enhance the validation of our dataset, we performed an in-depth analysis and compared our results with other research
focused on COVID-19 in Taiwan. Liu et al.14 conducted a study akin to ours, where they examined 321 imported cases sourced
from Taiwan CDC press releases. Their analysis primarily focused on the interaction between demographic information, import
sources, symptoms, and travel history. It’s essential to note that our dataset includes 579 cases, encompassing their 321 cases
offering a more comprehensive view. Our data spans from January 21, 2020, to November 9, 2020, and has been meticulously
transformed into a structured, accessible format, ensuring ease of access and utilization.

In our validation process, we replicated a portion of Liu et al.’s statistical analysis using our dataset. We isolated the 321
imported cases (case ID 1 to 373), excluding local positive cases, among which 53% were female. Notably, 37.1% fell within
the 20-29 age group, and 23.7% were in the 30-39 age group, closely mirroring Liu et al.’s findings with only a slight difference
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in the 20-29 age group (37.4% in their report). Our Figure 4A reproduces Liu et al.’s Figure 1, depicting the age-gender
distribution. Figure 4B replicates Liu et al.’s Figure 2, illustrating the relationship between the date of arrival and the infection
source. The overall trend closely aligns with the original article, with minor variations potentially attributed to differences in
defining continents or regions. When multiple travel countries were involved, and Taiwan CDC didn’t specify the infection
source country, we defined the last country as the infection source. Figure 4C corresponds to their Figure 3, depicting arrival
dates vs onset-of-symptom and case numbers. Our reproduction maintains the original pattern, although slight discrepancies,
like those on days 1 and 2. Figure 4D replicates Liu et al.’s Figure 4, with minor differences due to missing information on the
source of detection for some cases, especially in contact tracing.

5 Usage Notes
We introduced a Taiwanese dataset that encompasses both population-level and individual-level data related to COVID-19.
This meticulous approach to collecting and structuring data has resulted in a comprehensive dataset that empowers researchers
to delve into individual-level COVID-19 data with confidence. To the best of our knowledge, this dataset represents the first
comprehensive public structured dataset for COVID-19, providing individual-level information. However, it’s important to
acknowledge the limitations of this dataset, primarily stemming from its reliance on publicly available sources. As explained by
Taiwan CDC, detailed information on recovered cases has not been reported since March 12, 2020, due to privacy concerns,
with only the daily count of recoveries provided. Similar limitations apply to critically ill cases. Furthermore, obtaining the
precise infection date is inherently challenging and would necessitate more extensive individual contact history data. These
factors collectively impact the depth of information available in our dataset. Concerning the contact information for subjects,
our dataset depends on the information available in the CDC’s reports. Importantly, contact tracing poses inherent challenges,
and despite the CDC’s best efforts, it is likely that some contacts may be missed. As a result, the contact numbers we provide
should be considered lower-bound estimates of the true values.

In conclusion, we provided a structured dataset for COVID-19 in Taiwan in the early phase of the pandemic, covering both
individual-level and population-level data. Despite the limitations due to the scope of data collection and privacy concerns, this
dataset offers more details for epidemiological modelling compared to the existing population-level data. The dataset includes a
wide range of variables, such as epidemiological data, course of disease data and contact types between infected and uninfected
cases. We hope that this dataset will empower researchers to develop more accurate and predictive applications for combatting
future pandemics. Future work could focus on expanding the dataset with more individual-level data and refining the data
processing techniques to extract more valuable information.

6 Code availability
The code for data processing and visualization can be found in the following GitHub repository: https://github.com/
nordlinglab/COVID19TW-Viz
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Table 1. Description of epidemiological data. This table outlines the distribution of epidemiological data within the Taiwanese
dataset, categorizing it by case origin, travel history, gender, and age. The dataset comprises a total of 578 cases. For each
category, both the number of cases and their respective percentages are provided.

No. cases Percentage

Case origin 578 100%
Abroad 486 83.9%
Local 55 9.5%
Navy 36 6.2%
Unknown 1 0.2%

Traveling date of origin 486 100%
Date of traveling 482 99.2%
Unknown date of traveling 4 0.8%

Travel history 486 100%
Travel country 435 89.5%
Unknown travel country 51 10.5%

Gender 578 100%
Male 293 50.7%
Female 280 48.4%
Unknown 5 0.9%

Age 578 100%
0-9 4 0.7%
10-19 33 5.7%
20-29 209 36.2%
30-39 134 23.2%
40-49 57 9.9%
50-59 65 11.2%
60-69 55 9.5%
70-79 17 2.9%
80-89 3 0.5%
Unknown 1 0.2%

Table 2. Description of course of disease data. The table outlines the distribution of course of disease data within the
Taiwanese dataset. Data availability is indicated by the number of cases with available data and the corresponding percentage.
The asymptomatic date refers to the first contact date with the source case, i.e., the infection date.

No. cases with available data/No. expected cases Percentage

Course of disease data
Asymptomatic date 33/578 5.7%
Symptoms 452/452 100%
Symptomatic date 442/452 97.8%
Confirmed date 578/578 100%
Critically ill date 58/65 89%
Recovery date 79/526 15%
Death date 7/7 100%
Report to CDC date 500/578 86.5%
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Figure 1. Flowchart depicting the collection process for Taiwanese COVID-19 data, including daily summary data, the course
of the disease for confirmed cases, and contact information.
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Figure 2. Daily state transition Kaplan-Meier plot of Taiwanese data. The 95% confidence interval was calculated by
Greenwood’s Exponential method. The different states are denoted as asymptomatic (IA), symptomatic (IS), confirmed (C)
critically ill (IC), recovered (R), and death (D). The bottom right figure depicts the state trasition process. The detail of the state
transition process is described in the Supplementary.

7/10

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 29, 2024. ; https://doi.org/10.1101/2024.02.28.24303518doi: medRxiv preprint 

https://doi.org/10.1101/2024.02.28.24303518
http://creativecommons.org/licenses/by/4.0/


5697

5698

5699

5700

5701

5702

5703

5704

5705

5706

5707

5708

5709I277

I284

I269

I299

5686

5687

5688

5689
5690

5691

5692

5693

5694

5695

5696

Frie
nd

Hote
l

Work
pla

ce

Heal
th 

car
e

Cou
ple

Hou
seh

old

Fam
ily Car

Trav
el

Flig
ht 

(ne
arb

y s
eat

)

Sch
oo

l
Flig

ht

Mun
ici

pa
lity Ship

100

101

102

103

104

105

Fr
eq

ue
nc

y

Infected contacts
Total contacts

Figure 3. Visualization of the contact network of case I269 cluster and bar chart of each contact type. The left figure shows
the isualization of the contact network of case I269 cluster. Infected cases are highlighted in pink and depicted as larger nodes,
while uninfected cases are illustrated in white and represented by smaller nodes. The network is presented as a mixed graph,
where infection paths are denoted by arrows and other connections are indicated by solid lines. Contact types are differentiated
by color: ‘Family’ contacts are shown in red, ‘Flight’ contacts are marked in blue, and ‘Municipality’ connections are depicted
in gray. The right figure shows the bar chart depicting the distribution of each contact type. The chart displays the number of
edges for infected cases in blue and all edges in green. A total of 14 different contact types are represented along the x-axis.
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Figure 4. Visualization of Figures 1 to 4 from Liu et al. using our dataset. The overall trend aligns with their study. There are
only a few minor differences. Figure B includes an additional ‘unknown’ category, indicating cases where the exact source was
not identified. In Figure C, we observed more cases on day 2 than day 1, contrary to Liu et al.’s findings. Notably, we observed
cases beyond day 13, a deviation from Liu et al.’s observations. In Figure D, we lack some data in the contact tracing and
testing group, especially in the asymptomatic-on-arrival bar.
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