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Abstract 

Background 

In a classic epidemic, the infected population has an early exponential phase, before slowing and fading to its 

peak. Mitigating interventions may change the exponent during the rising phase and a plateau can replace a 

peak. With interventions comes the risk that relaxation causes a second-wave. In the UK Covid-19 epidemic, 

infections cannot be counted, but their influence is seen in the curve of the mortality data. This work simulated 

social distancing and the lockdown in the UK Covid-19 epidemic to explore strategies for relaxation.  

Methods 

Cumulative mortality data was transposed 20 days earlier to identify three doubling periods separated by the 17th 

March—social distancing, and 23rd March—lockdown. A set of stochastic processes simulated viral 

transmission between interacting individuals using Covid-19 incubation and illness durations. Social distancing 

and restrictions on interactions were imposed and later relaxed.  

Principal Findings 

Daily mortality data, consistent with that seen in the UK Covid-19 epidemic to 24th April 2020 was simulated. 

This output predicts that under a lockdown maintained till early July 2020, UK deaths will exceed 31,000, but 

leave a large susceptible population and a requirement for vaccination or quarantine. An earlier staged 

relaxation carries a risk of a second-wave. The model allows exploration of strategies for lifting the lockdown.  

Interpretation 

Social distancing and the lockdown have had an impressive impact on the UK Covid-19 epidemic and saved 

lives, caution is now needed in planning its relaxation.   

Funding  Unfunded research. 

Research in context  

Evidence before this study 

The classical Susceptible, Infected, Recovered, (SIR) epidemiological model with additional compartments and 

sophistications have been widely used to make forecasts in the Covid-19 pandemic but are not easily accessible.  

Added value of this study  

This study adds reassurance that the interventions of social distancing introduced on the 17th March and the 

lockdown of the 23rd March 2020 have reduced mortality. The risks of a second-wave on their relaxation are real 

and illustrated graphically.   

Implications of all the available evidence 

Together with other models, credence is given to the risks of a second-wave in the UK Covid-19 epidemic on 

the relaxation of restrictions.  
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Introduction 

In response to the Covid-19 pandemic, nations have imposed social distancing of 2 metres, and reduced the 

number of social interactions in lockdowns with significant economic and social consequences. The restrictions 

‘flatten the curve’ of infections. Choosing how to lift restrictions is not easy. An early relaxation could initiate a 

second-wave.  

The doubling period in mortality in the global pandemic was initially around 6 days but more recently in Europe 

it has been higher at around 4 days, see Figure 1.  
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Figure 1 Global deaths from Covid-19 with a logarithmic axis showing doubling times (worldometers.info). 

 

On the 17th March with a forecast of 260,000 UK deaths social distancing was introduced (1) followed by the 

lockdown which started on 23rd March. UK Covid-19 deaths from 15th March were initially doubling every 3 

days, Figure 2.  
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Figure 2 UK cumulative deaths (black) from 15th March and transposed 20 days earlier (blue, green). The 𝑙𝑜𝑔2 

scale makes doubling easy to see, arrows show gradients for doubling every 2, 3, 4, 6 and 12 days. Data from 

worldometers.info. 

 

In Figure 2, when the curve for cumulative deaths is brought forward 14 days it is similar to the curve for 

confirmed cases. This tells us that the deaths arose 14 days after infections were confirmed but not about the 
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interval from acquiring infection. The curve for cumulative deaths has been transposed 20 days earlier and has a 

relationship with the introduction of social distancing 17th March and the lockdown starting on the 23–24th 

March. The doubling time in mortality then rose from 3 days to 6 days, then 12 days.  

The following are unknown; (a) the proportion of the population currently infected on any day and (b) the 

proportion of the population acquiring an infection on any day. These are related, and before immunity or death, 

the proportion currently infected is simply the sum of the proportions who acquired an infection each day up to 

that point in time. Up until that point in time, if the number of people acquiring an infection each day doubles 

every three days, then the number of people currently infected will likewise also double every three days: the 

integral of the exponential function being an exponential function with the same exponent.  

If a fraction of those who are infected die after some fixed interval, then after that interval, daily deaths will also 

double every three days when deaths first occur. As a first approximation the exponent of the exponential phase 

of the rise in daily deaths, which we know, tells us about the exponent of the exponential phase in both the 

proportion of the population acquiring infection and in the proportion of the population infected on a daily basis 

at the start of the epidemic—neither of which we know. When we consider the variance in that interval to death, 

we see that the link between these exponential curves will be less faithful. However, the variance will increase 

the doubling time (decrease the exponent) in deaths in comparison with the doubling time in the acquisition of 

infection. This is helpful to us.  

It is self-evident that if the peak proportion of the infected population is high then the risk of a second-wave is 

low, and if the peak proportion is low there is a higher risk of a second-wave. For this reason, a margin of safety 

is added if we use the known exponent of the exponential phase in mortality for the unknown exponent for the 

exponential phase in the curves representing infections. 

Preliminary WHO data suggests that the median time from onset to recovery for mild cases is approximately 2 

weeks, and 3–6 weeks for patients with severe or critical disease. Amongst patients who died, the time from 

symptom onset to death ranged from 2–8 weeks (2). 

There is often great benefit in making explicit the assumptions of ones understanding of a real-world 

phenomenon, which changes in time, in a model which can be formulated mathematically in simultaneous 

partial differential equations, and then studying the solutions. For this reason, epidemics are often followed with 

a set of differential equations representing the size of the susceptible 𝑆, infected 𝐼, and removed or recovered 𝑅 

(dead + immune) populations. Modifications using related and more sophisticated compartments are also 

described and have been recently reported for Covid-19 (3).  

In its simplest form, using positive constants 𝛽 and 𝛾, one imagines 
𝛿𝑆

𝛿𝑡
= −𝛽𝐼𝑆, 

𝛿𝐼

𝛿𝑡
= 𝛽𝐼𝑆 − 𝛾𝐼 and 

𝛿𝑅

𝛿𝑡
= 𝛾𝐼. 

From these, the early infected population grows exponentially then flattens off, peaks and then falls whilst 𝑆 

falls and 𝑅 rises. Though these equations, and their cousins, describe some of the features of epidemics they are 

deterministic whilst nearly all non-trivial real-world problems have outputs that vary because of stochastic 

processes acting during their evolution. Furthermore, real-world systems typically generate divergent outputs 

that are sometimes very sensitive to the initial conditions.  

An attractive alternative to the descriptive partial differential equations is to represent each individual in the 

memory of a computer and then manipulate them according to explicit and modifiable rules whilst incorporating 

a number of stochastic processes. Though superficially simple, with seemingly naïve axioms and assumptions, 

stochastic models can demonstrate robustness and generate useful and stable outputs.  

All models are wrong but some are helpful (4). But worryingly some could be unhelpful, especially if they 

wrongly inform public policy. When considering the Covid-19 pandemic we do not, at present, know how many 

people are currently infected or are asymptomatic but contagious. However, by transposing the mortality curves 

back 20 days we may assume that the early rise in infections was doubling every 3 days and that this changed on 

introducing social distancing and the lockdown.  

Before building the stochastic model, the following features and expectations were considered to be 

manifestations of robustness and against which the model was tested and developed: —  
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(1) Epidemics should have some stability in demonstrating similarly shaped curves in the number of 

infections over a majority but not all simulations for the same parameters. These outputs should, in the 

main and when averaged, be similar to SIR modelling.  

(2) The left-hand tail of the curve for infections should be the most variable feature over a number of 

simulations, especially if seeded with only one initial contagious individual. 

(3) Many stable curves should be found over a reasonably wide variation of input parameters, each 

allowing an infection to spread before dying out but without rapidly infecting all of the individuals. 

There should be epidemics that leave some individuals uninfected, alive and without immunity. 

(4) In contrast, there should also be some sets of parameters, under which there is sometimes an epidemic 

and sometimes no significant spread at all. These are the bifurcations one expects in chaotic systems.   

(5) There should be stable epidemics whose first peaks pass, leaving a sufficiently large susceptible 

population at risk of a second-wave. 

(6) Since this model was not going to include loss of immunity (which allows re-infection), birth or 

migration, endemic phenomena should not be expected. 

Methods 

An easily modified stochastic model was written in Microsoft Excel VBA v7·1 operating in Windows 10. 

Rather than having an 𝑅0 dictate the early exponential growth in the infected population, or a set of differential 

equations to describe populations and compartments, these simulations used a number of stochastic processes 

representing biological and behavioural phenomena.  

Individuals were assigned a number of characteristics including: age, sex, risk of mortality if infected, a measure 

of daily viral exposure, a susceptibility factor, an incubation period, and two contagious periods. One contagious 

period was for mild illness and the other for serious, critical or fatal illness. Each individual also had fields for 

location, symptom status, immune status, alive/dead, number of daily contacts, and two clocks; one for the 

individual’s assigned contagious period and one for a virtual ‘twin’ who was assigned a fatal illness contagious 

period. 

Many viral illnesses have incubation periods which are lognormal, or something remarkably similar. A 

lognormal distribution was used based on Covid-19 data (5), see Figure 3.  
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Figure 3 Lognormal distribution in black with its Probability Density Function PDF (left axis) and Cumulative 

Density Function CDF (right axis). In red and blue are the 95% confidence intervals for the distribution. 

 

For these simulations the 𝑚𝑒𝑎𝑛𝑙𝑜𝑔 and 𝑠𝑑𝑙𝑜𝑔 were 1.621 and 0.418 respectively. Each individual was assigned 

a randomly chosen age and sex such that the population represented the demographics of the 2011 UK census. 
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Knowing the age and sex, an individual was designated to die if infected based on a probability taken from early 

Chinese data, released on February 11th 2020, see Table 1.  

Age in years Mortality Male Female 

10-19  0.002 0.0033 0.001212 

20-29  0.002 0.0033 0.001212 

30-39  0.002 0.0033 0.001212 

40-49  0.004 0.0066 0.002424 

50-59  0.013 0.02145 0.007879 

60-69  0.036 0.0594 0.021818 

70-79 0.08 0.132 0.048485 

80+  0.148 0.2442 0.089697 

 

Table 1 Preliminary estimates of the mortality rate by age and sex. February 11th 2020 Chinese Centre for 

Disease Control and Prevention n=44,672. 

 

There were two contagious periods which ended with immunity or death. Individuals being assigned a fatal 

outcome in the event of becoming infected were assigned a longer contagious period. A contagious period was 

assigned to most infected individuals as a lognormally distributed random variable with a 𝑚𝑒𝑎𝑛𝑙𝑜𝑔 of 2.639 

and 𝑠𝑑𝑙𝑜𝑔 of 0.2. A random 5% were assigned to be critically ill, and together with the dying individuals, this 

group had contagious periods with a 𝑚𝑒𝑎𝑛𝑙𝑜𝑔 of 2.99 and 𝑠𝑑𝑙𝑜𝑔 of 0.223, see Figure 3. 

0 1 0 2 0 3 0 4 0

d a y s

p
ro

p
o

rt
io

n

P
D

F

0 .0 4 0

0 .0 3 0

0 .0 2 0

0 .0 1 0

0 .0 1 0

1

0 .5

0 .2 5

0 .7 5

C
D

F

 

Figure 4 Probability density functions (left axis) and cumulative density functions (right axis) for the contagious 

period for most individuals in red, and the 5% critically ill and those who die in blue. 

 

A susceptibility factor 𝑠, was randomly chosen such that it was normally distributed with a mean of 1 and 

standard deviation of 0.2. Randomly located and randomly moving individuals become infected if they exceed a 

daily viral load based on their cumulative proximity to contagious near neighbours and their susceptibility 

factor. The exposure, consequent upon an interaction between a susceptible individual 𝑖 and a contagious 

individual 𝑗, had a relationship with the inverse square distance separating the individuals 𝑑𝑖,𝑗. All separations 

𝑑𝑖,𝑗 less than 0·2 metres were assumed to be at 0·2 metres. Separations exceeding 5 metres were ignored. When 

social distancing was applied, separations less than 2 metres were treated as if at 2 metres, this rule was applied 

for a percentage 𝑥 of the interactions and is indicated as 𝑆𝐷𝑥. Thus 𝑆𝐷50 means that 50% of interactions 

achieved social distancing and 𝑆𝐷10 means that only 10% of interactions achieved social distancing. A threshold 

𝑡, determined the daily cumulative viral load required for infection such that: for any susceptible 𝑖 on any day, if 

𝑠 ∑ 𝑑𝑖,𝑗
−2 > 𝑡 then 𝑖 became infected. It was found that 𝑡 = 1 permitted epidemics with appropriate population 

densities. 

A period of one day was allowed to elapse between infection and symptoms. A percentage of symptomatic 

individuals made no movements, but still interacted with individuals that came within 5 metres. These 
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individuals stayed at their local origin representing some measure of isolation. The percentage of symptomatic 

individuals confined is designated 𝐶%. Those not confined, though designated as symptomatic, represent 

asymptomatic viral spreaders since they are fully mobile. 

Individuals moved 𝑛 times a day and designated 𝑀𝑛, as in a random walk, with step-size being 10 times the 

output of an inverse cumulative normal distribution Φ−1 (mean 0 metres, sd 10 metres). Individuals returned to 

their local origin at the end of each day. Mobile individuals were not allowed to leave the boundaries of the 

square, with some movements being reflected at the boundaries.  

In these simulations 2000 individuals were each assigned a random local origin, in a square with sides of 490 

metres giving an average population density of 8,330 km−2. In UK cities, residential population densities are in 

the region of 1,000–15,000 km−2 but social interactions in travel, work and recreation mean that far greater 

local densities are experienced for protracted periods. Only small populations were needed since each 

individual’s twin was being followed with a critically ill contagious period to death to simulate mortality data. 

The 2000 were sufficient to generate robust SIRI like epidemiological curves. One or more randomly placed 

contagious individuals were used to ignite an epidemic.   

Development 

The principal outputs were the daily numbers of susceptible, infected, immune and dead individuals. Secondary 

outputs included metrics about interactions and checks on the incubation period distribution, demographics and 

mortality rates against age and sex (not reported here). In early simulations the mortality figures were a function 

of the demographic data and had a mean that followed a curve that mimicked, but was smaller than and lagged 

in time behind, the curve representing the number of infected cases. For this reason, the mortality output 

incorporated significant and uninformative noise.  

Since the mortality from Covid-19 is probably less than 1%, and in the model, mortality had a low probabilistic 

link to the demographics, there was more information encoded in the infection output than the mortality output. 

In order to examine the fidelity of the link between the exponential phase in mortality and that in infections, and 

to overcome the noise inherent in the sparse numbers of modelled deaths, each individual was assigned a ‘twin’ 

who was given a critically ill contagious period, and after the individual had recovered and was immune, their 

‘twin’ was followed to their death. The twin did not influence the curve of current infections or the behaviour of 

the epidemic. In this way the variance in the critically ill contagious period was allowed to influence the 

exponential phase in a larger virtual mortality data set. The virtual twins became the output of a virtual, and 

much larger epidemic (at least 100 x larger), whose infected population did not need to be simulated.   

The stochastic nature of the model was examined. With lower density populations the first few contagious 

individuals could wander around for a variable number of days before igniting an epidemic. This phenomenon 

could delay the peak of infection for up to 10 weeks. This is an important observation. If there were a number of 

relatively isolated regional populations each of which suffered an epidemic peaking at a different time it does 

not follow that they were seeded at different times or that infection spread from one population to another in 

some defined sequence. Indeed, one region with a later inoculation may manifest its epidemic well before 

another region that was inoculated earlier.  

Sometimes a set of parameters, that reliably initiated a set of similar epidemics, would occasionally fail to ignite 

an epidemic and instead infect only a small number of individuals. In contrast, no set of parameters was found 

that repeatedly generated epidemics which left a reasonably sized susceptible population whilst occasionally 

generating a runaway epidemic that infected all of the population in a very short period of time. This was 

reassuring real-world like behaviour.   

With certain, easily found parameters, epidemics with approximate doubling of infected cases occurring every 

3–4 days were obtained. Repeated simulations were performed for each set of parameters. This allowed an 

estimate of the variance in the output arising from the stochastic processes.  

The Covid-19 parameters 

The Covid-19 epidemic simulations were seeded with 5 randomly placed contagious individuals to encourage 

similar, and short, left-hand tails for the simulated infected populations. With five seeds the exponential phases 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 3, 2020. ; https://doi.org/10.1101/2020.04.28.20083329doi: medRxiv preprint 

https://doi.org/10.1101/2020.04.28.20083329
http://creativecommons.org/licenses/by-nc/4.0/


7 
 

differed by no more than 3 days. This meant that the susceptible populations were similar sizes once lockdown 

was initiated.    

Simulations started with 18 movements a day (𝑀18) and social distancing was achieved for 10% of interactions 

(𝑆𝐷10), with 90% of the symptomatic individuals being confined to their local origin (𝐶90). These parameters 

established an epidemic with an exponential phase having a doubling time of around 3 days. This phase ran until 

the susceptible population had fallen to 91%. 

Social distancing restrictions were then imposed to increase the doubling time on the rising phase of the 

epidemic to mirror that seen in the UK mortality data shown in Figure 2. Social distancing was modelled such 

that 50% of interactions separated by less than 2 metres were treated as if at 2 metres (𝑆𝐷50) and movements 

were reduced from 18 to 14 a day (𝑀14). The fraction of symptomatic individuals confined to their local origin 

was maintained at 90% (𝐶90). These represented the real-life changes initiated around the 17th March.  

When the susceptible population fell below 79% the lockdown was modelled. The interval from the first 

mitigation on the 17th March to the 79% susceptible level was within 6 or 7 days, bringing us to the lockdown 

starting on 23–24 March. Lockdown involved reducing movements from 14 to 7 a day (𝑀7), increasing the 

achievement of social distancing to 60% of interactions 𝑆𝐷60, and confining all symptomatic individuals to their 

local origins (𝐶100).  

The parameters for the epidemic were as follows: {𝑀18, 𝑆𝐷10, 𝐶90} to 17th March, then the first mitigation was 

social distancing with a small reduction in movements {𝑀14, 𝑆𝐷50, 𝐶90} which ran to the lockdown starting on 

23–24 March when the parameters became {𝑀7, 𝑆𝐷60, 𝐶100}. 

Eight simulations of the UK Covid-19 epidemic appear in Figure 5 in red, blue and green for the infected 

population in its three phases (right axis). The eight grey curves are the modelled daily mortality (left axis). The 

actual UK daily mortality data is shown in the grey histogram topped with a black line.   
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Figure 5 Eight simulated epidemics. Infected populations (right-axis) in red until social distancing (17th March), 

in blue until lockdown (24th March), and then in green. Simulated mortality, with marked daily variations is 

shown in grey (left-axis). Superimposed is the actual daily UK mortality (worldometers.info) plotted to the 21st 

April in black, when the graph was first plotted. Additional data for deaths on 22–27 April have been added in 

red.  

 

In Figure 5, daily mortality peaks on 9th April and the epidemic ends in early July. The simulated daily mortality 

amongst the 2000 twins had the same shape as the actual daily mortality to 21st April. If the simulated mortality 

was magnified by a factor of 27·5 the two were superimposable. Subsequent actual deaths to the 27th April have 

been added in red and lie within the band of the simulated daily mortalities. 

The cumulative UK mortality was 20,733 on the 26th April 2020, and by that date 66% of the simulated deaths 

in the locked down epidemic had occurred. This suggests that for the UK, total deaths might reach 31,200.  
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In the locked down simulated epidemics roughly 1070 (54%) of the 2000 simulated individuals acquired an 

infection. If this proportion can represent 54% (34.8 million) of the UK population and if 31,200 of this group 

dies, then the case fatality rate is about 1/1000. This is a tenth of the estimate produced by the Chinese Centre 

for Disease Control and Prevention, see Table 1.  

The simulations were averaged and plotted using a log2 axis, see Figure 6 for comparison with Figure 2. The 

susceptible population falls to just below 50% and is plotted on a linear axis on the right.  
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Figure 6 An average of the simulations, shown in Figure 5, are plotted against a 𝑙𝑜𝑔2 axis. The doubling time is 

3·25 days (red) before the introduction of social distancing, and 6 days thereafter (blue) until the lockdown 

(green). The logarithm of the daily mortality of the simulations is shown in black. The susceptible population is 

plotted on the right axis.  

 

Examining the influence of the two distributions of the contagious periods  

Five percent of infected individuals, and those who died, were given a different distribution for their contagious 

period, see Figure 4. The 5% figure was arbitrarily chosen and its impact on the behaviour of the simulations 

was examined. Simulations show that the impact on the overall curve of infections was small in comparison to 

stochastic variations, though there was an influence on the mortality curve, see Figure 7 left panel. The 

distribution of critically ill periods influences the shape and timing of the daily mortality curve.   
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Figure 7 Two simulations of epidemics shown against the averaged simulations taken from Figure 5 in black. 

The black curves use two contagious periods, one for mild illness and one for the critically ill. [B], uses only the 

short contagious period (for mild cases) for all individuals, and [C] uses the longer contagious period (for the 

critically ill) for all individuals. The mortality curves for [B] and [C] have been smoothed for clarity 
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In Figure 7, simulations [B] and [C] compare the behaviour of using only one contagious distribution to 

influence the epidemic and its curve of infections. The periods are those shown in Figure 4. Normally the 

critically ill distribution applies to only 5% of individuals. As anticipated, in [A] the curve for infections is 

relatively insensitive to the 5% proportion having a longer contagious period whilst the mortality curve is 

shifted by about 1 week. In [B] all infected individuals had a contagious period from the critically ill distribution 

and the curve for infections was then markedly altered. It is the change in the curve of infections which leads to 

the mortality curve in the right-hand panel being larger and displaced to the right. These findings tell us that the 

critical ill fraction, and the distribution of their contagious periods is important in generating the shape of the 

daily mortality curve.  

In the following simulations the epidemic always ran with the same parameters used for Figure 5 namely 

{𝑀18, 𝑆𝐷10, 𝐶90} → {𝑀14, 𝑆𝐷50, 𝐶90} →  {𝑀7, 𝑆𝐷60, 𝐶100} with the transitions taking place on the 17th and 23–24th 

March. The infections are shown in black against the right axis and the daily mortality, being the average of a 

number of simulations, is shown in black against the left axis.  

Relaxing the lockdown 

The first relaxation of a lockdown has movements alone increasing on the 20th April, whilst maintaining social 

distancing, but at 50%, and maintaining confinement of the symptomatic. In Figure 8 the lockdown was released 

on 20th April to assume the parameters {𝑀18, 𝑆𝐷50, 𝐶100}.  
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Figure 8 Averaged locked down simulations in black. A locked down epidemic is simulated (blue) and is 

consistent with previous simulations in black. The lockdown is released (red arrow) on the 20th April, whilst 

maintaining social distancing. There is a second-wave in infections in May and a second-wave in mortality in 

late May and June (red). The second peaks are similar to the first peaks seen in March and April.  

 

In Figure 8 second-waves are seen both in infections and later in mortality. This would be a problem for 

services. The ratio of simulated mortalities was 1821/1071 which represents 53,000 UK deaths, more than 

21,000 additional premature deaths compared with maintaining the lockdown.  

   

The next simulation is of a relaxation on the 1st May and is shown in Figure 9. Movements were relaxed above 

the original 18 to 20, only 10% of interactions achieved social distancing and only 75% of symptomatic 

individuals were confined to their original location {𝑀20, 𝑆𝐷10, 𝐶75}. This represents a post-lockdown increase 

in social activity, which is a risk.  
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Figure 9 Averaged simulated locked down epidemics in black without relaxation. An additional epidemic is 

shown in blue, consistent with previous simulations until the release of the lockdown in red after the 1st May. 

There is a peak in infections rising to 40% of the population and daily deaths reaching a peak of over 1400 in 

early June.   

 

In Figure 9 the impressive second-wave would be a problem for services. There would be additional deaths. The 

ratio of simulated mortalities was 1985/1071 which represents 58,000 UK deaths. 

In the simulation shown in Figure 10 the lockdown was relaxed later on the 10th May with the same parameters  

{𝑀20, 𝑆𝐷10, 𝐶75}. 
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Figure 10 Averaged simulated locked down epidemics in black without relaxation. An additional epidemic is 

shown in blue, consistent with previous simulations until the release of lockdown in red after the 10 th May. 

There is a peak in infections rising to 25% of the population and daily deaths reaching a peak of over 800 in late 

June.   

 

The mortality associated with Figure 10 is 56,500. If we compare these two similar strategies, whose lockdowns 

were relaxed at different times, there is less of an impact on relaxing restrictions on the 10th May than on the 1st 

May, but both would represent unacceptable outcomes.  

We next move to the 21st May for two strategies which maintain social distancing whilst keeping the 

symptomatic confined. In one there are 20 movements and in the other 18 movements.  
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Figure 11 Relaxation of the lockdown on the 21st May allows only an increase in movements from 7 to 18 in 

orange and from 7 to 20 in red whilst maintaining social distancing and confining the symptomatic.  

 

In Figure 11 there is relaxation of the lockdown on the 21st May which maintains social distancing but allows 

movements to return to pre-epidemic levels 𝑀18 or exceed them slightly 𝑀20, the associated deaths equate to 

48,600 and 50,100 respectively. 

The final illustration is of a relaxation of restrictions on the 1st July, going to 20 movements a day, with social 

distancing being achieved in only 30% of interactions under 2 metres, and confining only 75% of the 

symptomatic. These parameters are sufficient to generate a second peak in the half of the population who are 

still susceptible, see Figure 12. 
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Figure 12 In black the locked down epidemic. In blue a lockdown epidemic with relaxation of the lockdown on 

the 1st July after which the epidemic is shown in red. This relaxion represents a total of 57,000 UK deaths. 

 

There are two epidemics in Figure 12 linked by only one infected individual. Repeated simulations did not 

always generate a second peak. This is a perfect example of a chaotic bifurcation. In other simulations, 

maintaining 𝑀18 and 𝐶75 but with 𝑆𝐷40, 𝑆𝐷50, 𝑆𝐷60 there was no second-wave. Social distancing was sufficient 

to prevent a second epidemic in this situation. 
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In the final illustration, the pre-mitigation parameters {𝑀18, 𝑆𝐷10, 𝐶90} were used to generate an epidemic 

without mitigations, in search of the 260,000 deaths modelled by Imperial College (1). The epidemic was 

impressive, see Figure 13.  
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Figure 13 In red, an epidemic without any mitigations (right axis), initially doubling every three days and 

without mitigating interventions. In green, the associated and subsequent mortality. The rest of the Figure is 

taken from Figure 5.   

 

The two month-long epidemic shown in Figure 13, which experienced no mitigating interventions, would have 

accounted for around 65,000 deaths in this analysis, somewhat short of the 260,000, but nonetheless a challenge 

in its magnitude and brevity. The unmitigated epidemic is shown in contrast to the achievements of social 

distancing and the lockdown which ‘flattened the curve’. 

 

Discussion 

It is well-recognised that measuring mortality is surprisingly complex, but the challenges therein should not 

deter us from examining the shape of the UK Covid-19 mortality data. It should be examined on its own and in 

the context of the two mitigating interventions, which will have left their impressions on that shape. There is a 

lot of information encoded within the mortality data. This work set out to recover that information.  

This author initially set out expecting to find, and hoping to confirm that, stochastic processes and chaotic 

dynamics would be sufficient to challenge the concept of a second-wave. The author then believed that the 

initial rapid exponential phase of unmeasured infection would have had to have been so great to create a 3-day 

doubling in deaths 20 days later, that the remnant susceptible population would be insufficient to maintain a 

second epidemic. This work did not set out to fit curves to support a hypothesis for the existence of a second-

wave, but rather it set out to disprove their possible existence for the UK Covid-19 epidemic. Having now 

modelled many epidemics the author has been surprised at the findings and impressed with the impact of the 

lockdown.  

The lockdown is crippling the economy and has other deleterious impacts on health. It is tempting to lift it now 

deaths are falling but this work supports prevailing arguments that a staged and gentle relaxion of the 

restrictions should take place. The simulations presented here demonstrate that maintaining social distancing 

during a relaxation of restrictions would be the most effective mechanism for limiting spread and containing a 

second-wave. However, this conclusion is almost inevitable since social distance through the inverse square 

relationship is central to this model’s mechanism of transmission. 

The absolute number and nature of the movements reported in this work should not be overinterpreted as having 

any implication about the actual number and nature of real-life social interactions and how they might be 

modified. This model simulates more or fewer interactions and closer or more separated interactions and 

nothing more than these. The number of movements, their magnitude and their variance were introduced into 

the model purely as a device to permit experimentation to establish adjustable parameters capable of finding 
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epidemics with the infected population growing in a similar way to that suggested by Covid-19 data and which 

permitted second-wave phenomena for study.  

Some consider that asymptomatic transmission might not be a major driver of transmission (2). Asymptomatic 

infection has been considered to be relatively rare but many cases who are asymptomatic on the date of 

identification have gone on to develop disease and so the proportion of truly asymptomatic infections remains 

unclear. There is some asymptomatic transmission in this model which could be increased.   

Individuals who remained susceptible after the first peak in infections had slightly higher susceptibility factors 

making them slightly less susceptible (data not shown). The second peak represented slightly less vulnerable 

individuals in these simulations. In the real-world something similar may also apply. 

In this model neither the number of movements nor the distances moved were stratified according to age or sex. 

It is tempting to incorporate them to simulate, for example, a greater number of interactions between children. 

Such refinements might model the impact of allowing children to return to school as part of a staged relaxation 

of social restrictions. However, it is likely that the noise generated by the stochastic mechanisms would make 

such nuances difficult to detect. There is always a risk in over-elaboration or over parameterizing an otherwise 

simple and robust model.   
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