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Abstract

Contact tracing is an essential tool in the public health bat-
tle for epidemiological control of infectious diseases. Contact
tracing via case-by-case interviews is effective when contacts
are known and outbreaks are small. Smartphone applications
that keep track of contacts between users offer the possibil-
ity to scale contact tracing to larger outbreaks with mini-
mal notification delays. While the benefits of reduced delays
are widely recognised, it is less well understood how to best
implement the tracing and notification protocol. The appli-
cation will detect a multitude of contacts encountering an
individual who later tests positive. Which of these contacts
should be advised to self-isolate? The resolution hinges on
an inherent trade-off: the more contacts notified, the greater
the disease control, at the cost of more healthy individuals
being instructed to self-isolate. In this study, based on a
compartmental model tailored to the COVID-19 pandemic,
we develop a framework to incorporate testing with limited
resources coupled with a mechanistic description of digital
contact tracing. Specifically, we employ a family of distribu-
tions characterising contact exposure and infection risk, and
introduce a notification threshold that controls which level of
exposure triggers notification. We detail how contact tracing
can prevent disease outbreak, as a function of adoption rate,
testing limitations, and other intervention methods such as
social distancing and lockdown measures. We find an optimal
notification threshold that balances the trade-off by minimis-
ing the number of healthy individuals instructed to self-isolate
while preventing disease outbreak.

Significance statement

Efficient contact tracing is expected to be of major importance
for maintaining control of the COVID-19 pandemic. How-
ever, successful deployment demands a minimal burden on
the general public. Previous studies have modeled the role of
contact tracing, but have not addressed how to balance these
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two competing needs. We propose a modeling framework that
captures contact heterogeneity. This allows contact prioriti-
sation: contacts are only notified if they were acutely exposed
to individuals who eventually tested positive. The framework
thus allows us to address the delicate balance of preventing
disease spread while minimising the social and economic bur-
dens of quarantine, while being directly adaptable to different
contact tracing implementations.

Introduction

The COVID-19 pandemic has seen worldwide outbreaks, re-
sulting in over five million validated cases of infection, and
hundreds of thousands of deaths (at the time of writing). The
enormous strain on healthcare infrastructure has led numer-
ous countries to deploy their entire arsenal of epidemiologi-
cal control measures to limit the spread of the disease. Epi-
demiological modeling has become one of the most important
tools to inform political decisions on which control measures
to deploy in a given situation [3]. A variety of modeling ap-
proaches are useful for this purpose, including branching pro-
cesses [15, 19], network models [16, 6], age-structured mod-
els [8], stochastic differential equations [5], individual-based
simulations [12], and classical compartmental models [11].

While contact tracing remains among the most important
tools for epidemiological control, its use has been limited to
small outbreaks due to the significant human resources re-
quired to trace contacts of infected individuals [8, 20, 10].
Moreover, the human-based approach may fail to identify con-
tacts not personally known to an infected individual, which
is especially relevant for highly infectious respiratory diseases
as opposed to sexually transmitted diseases. Smartphone ap-
plications offer the possibility to overcome both the bottle-
neck and identification failure by making contact tracing scal-
able to larger outbreaks such as the present COVID-19 pan-
demic [7]. Compartmental models with contact tracing have
been useful tools in modeling disease dynamics of HIV [14],
Ebola [4], and even COVID-19 [22]. However, several aspects
of these models severely limit their applicability.
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On the one hand, the proportion of infected individuals re-
moved due to contact traces is assumed to be independent
of the outbreak size, which is only well justified when the
outbreak remains relatively small. On the other hand, the
removal of infected contacts is assumed to be proportional
to both the number of traceable infected individuals and the
number of infected contacts. Since this product is infinitesi-
mally small compared to the disease dynamics terms at the
disease-free equilibrium (DFE), additional underlying struc-
ture describing individual interactions needs to be assumed for
the contact tracing terms to offer information on controlling
the disease in the early (or late) stages of an outbreak [6, 19].
Thus, these models can only reliably describe outbreak at-
tenuation for small epidemics, but cannot shed light on how
contact tracing influences the initial outbreak, large disease
outbreaks, or late-stage epidemics without significant added
complexity.

One class of age-structured models [8] captures the impact
of contact tracing at the disease-free equilibrium, however,
several limitations persist. An exogenous contact tracing “ef-
ficacy” is prescribed a priori (the proportion of infections that
are ultimately contact traced), which conceals the dependence
of contact tracing on factors such as social intervention mea-
sures and contact tracing participation, while assuming that
contact tracing efficacy is independent of the outbreak dy-
namics. Moreover, testing and contact tracing are assumed
to be unrelated processes, which can lead to “substantial”
errors [8].

Perhaps the most crucial ingredient absent in all of the
aforementioned models is contact heterogeneity: contact is
assumed either infectious or non-infectious. However, real-
world contact is characterised by a spectrum of exposure lev-
els, as would be detected by a digital contact tracing appli-
cation [2, 1]. Neglecting this heterogeneity means that these
models offer only limited guidance in prioritising which con-
tacts to quarantine when dozens of contacts have encountered
an infected individual.

In this paper, based on a compartmental model of COVID-
19, we develop a modeling framework that incorporates test-
ing with limited capacities and a detailed mechanistic descrip-
tion of contact tracing. We capture contact heterogeneity by
a generic contact exposure distribution, which describes the
number of contacts encountered at different levels of expo-
sure, typically accounting for the proximity and the duration
of contact, and we associate to each exposure level a prob-
ability of infection. All contacts of positively diagnosed in-
dividuals that had an exposure greater than a controllable
threshold are instructed to self-isolate. We establish how,
from this setting, the total number of notified contacts and
the proportion of those who contracted the disease from the
traced individual, may be calculated from the epidemic state
in combination with the contact exposure distribution. The
tracing and isolation of these contacts is a dominant contri-
bution to the disease dynamics near the DFE. In contrast
to previous studies, the contact tracing process depends on
both the testing and the epidemic state. Thus, our analysis

provides precise quantification of the conditions required to
prevent disease outbreak (or resurgence) when including con-
tact tracing, as well as being able to inform policy when the
disease is widespread within the population, without assum-
ing additional population structure.

Importantly, both the contact exposure distribution as well
as the corresponding infection probability may be freely spec-
ified in the framework. This allows the underlying epidemio-
logical model to be customised with contact and infectiousness
data of different locations or technology implementations.

We use our framework to investigate how saturated testing
capacities and the resulting consequences for contact tracing
lead to an acceleration of the epidemic during an early phase.
We study how the basic reproduction number (the average
number of secondary infections) determines the social inter-
vention measures and adoption fraction required to prevent
a disease outbreak. Combining these insights, we uncover
an optimal notification threshold that minimises the numbers
of individuals that need to self-isolate, while preventing dis-
ease outbreak. We deduce that a rise in social intervention
measures or contact tracing adoption allows for a higher no-
tification threshold, and hence fewer healthy individuals are
unnecessarily advised to quarantine.

Results

Disease dynamics, testing and contact tracing
framework

We model the disease dynamics via a compartmental model
tailored to COVID-19 infection progression (Figure 1 left),
while noting that our approach is directly adaptable to other
infectious disease models. The model structure has been
chosen to match previously reported key characteristics of
COVID-19 such as a large fraction of presymptomatic in-
fections [9, 17] and a non-negligible proportion of cases that
remain completely asymptomatic and are unlikely to be iden-
tified [18]. Testing is performed on symptomatic individu-
als (compartment I): upon testing positive for the disease,
a tested case is removed (compartment R, either recovered,
isolated, or deceased, so assumed not to be infecting others).
Thus, the base removal rate 77 is increased by the testing rate
7, which depends on the typical test rate 75 and the maximal
number of tests performed per unit time 7, [24]. Note that
these are positive testing rates, counting only the fraction of
tests that result in positive diagnoses.

Central to the model is the contact tracing mechanism,
which accounts for different exposure levels e when encoun-
tering contacts. The exposure level typically depends on the
contact duration and proximity [1, 2]. For example, for dif-
fusive virus transmission, the duration divided by the square
of the distance provides an exposure measure. However, our
approach is agnostic to the specific definition of exposure em-
ployed by any contact tracing application. We denote the
distribution of contacts at an exposure level e by p.(e), and as-
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Figure 1: Disease dynamics and contact tracing framework. (left) Upon infection, susceptible individuals (S) enter

a latent exposed stage (E) when the disease incubates before infectiousness. Upon becoming infectious, a proportion p, of
the population remain asymptomatic (A), while the remainder pass through a presymptomatic stage (P) before becoming
symptomatic (I). Infectious individuals are removed (R) through recovery/isolation (rates v4 and ~r), isolation after testing
(dotted arrow, rate 7), or isolation as a consequence of contact tracing (dashed arrows, rate a(l — ©)I + a©OIuk for
K € {E,A,P,I}). The total contact tracing rate a depends on the proportion of the population who adopt the contact
tracing ug, the testing rate 7, the factor (1 —us(t)), representing the reduction of transmission rates due to social intervention
measures and the notification threshold, u,,, representing the minimal exposure required to notify traced contacts. Removal
via contact tracing is partitioned into the fraction of contacts who were infected by the tested case ©, and those who were
not (1 — ©), where O represents the tracing precision and depends on the susceptible proportion S and the notification
threshold w,,. Contact tracing also causes quarantine (Q) of susceptible individuals that had non-infectious contact with an
infected case (dashed arrow at rate a(l — ©)I, return rate ¢). The force of infection, F depends on transmission rates Sx
and infection densities, and social intervention measures. (right) Heterogeneity in contacts is modeled with an exposure
distribution, p.(e), and an infection probability function, p;(e), which describe the probability (density) that a given contact
is of exposure e and the probability (mass) that a contact of given exposure e leads to an infection, respectively. The
notification threshold (illustrated for u, = 1) affects the contact tracing rate and precision via the integral f. (blue and
green shaded region) expressing the fraction of contacts notified, and the integral f; (green shaded region), which captures
the proportion of contacts who had infectious contact with the tested case.

sociate to each exposure level a probability of infection p;(e). based on the stochastic progression of an individual through
It is then natural to introduce a notification threshold, u,, the disease stages depicted in Figure 1 left (see SI Appendix
such that only contacts exposed in excess of u, are advised Section S1B).
to self-isolate.

Equipping the disease dynamics with contact tracing re-
moval (via the contact exposure p. and associated infection
risk p;) allows us to derive expressions for the contact tracing
rate, a, and the contact tracing precision (the proportion of
notified contacts that were infected by the tested case), ©.
The notified contacts are separated into those infected by the
tested case (true positives), and those not (false positives).

False positives are removed at the rate a(1 — ©)I and are
distributed uniformly among the entire population. Note that
false positives may be infected if they contracted the disease
from an individual other than the tested case. In this sense,
true or false positiveness is with respect to a single tested
individual.

True positives are removed at the rate a©I from among
the infectious and removed compartments in proportion to
ug for K € {E,A,P,I,R}. The proportions py describe
the probability of a traced contact having progressed (from
their moment of infection) to compartment K by the time
of contact tracing. True positives may reside in the R com-
partment, for example, those that, even though contracting
the disease from the tested case, recovered sooner, or those
that were false positives of a different contact trace. This is
accounted for in our model by calculating the px distribution The full model may be written as an initial-value problem,

Since the quantities a, © and pux depend exclusively on
the disease progression and contact tracing dynamics, they
are derived directly from model analysis without introducing
additional parameters or assumptions.
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comprising the following system of ODEs

S=-FS+qQ —a(l-0)IS,
Q=—qQ +a(l —0)IS,
E=FS—~gE —a(l - O)IE — a®lup,
A=p,ypE — 744 —a(l—0)[A—aOlpuy,
P=(1-pu)yeE —vpP —a(l—O)IP — a®lup
[=ypP -yl -7 —a(l-0)I*-a®lyu,
(1a)
where

F=11—u(BaA+BpP+p11),

7 = min(7g, Teo /1),

a =uzt[l = us)Cfeun)vp" + (v +7) 71,
Sfi(un) Bpyp' + Br(yr +7)7 1

T TR0 o t(u i) (1b)
fc :/ pc(e) d67

1 o0
fi= IXON) /un pe(e)pi(e) de,

subject to the initial conditions

S(O) = SOv
E(0) = Ey,

A(O) :AO;
P(0) = Py,

Q(0) = Qo, (10)
1(0) = I

System (1) is derived from first principles in SI Appendix
Section S1. The meaning of all parameters and controls is
summarized in SI Appendix Tables 1 and 2. For the illustra-
tions presented, we have adapted parameters from existing
literature as outlined in SI Appendix Section S1C. We high-
light that the state variables describe population densities on
the interval [0,1].

The framework incorporates three important control pa-
rameters: u, is the fraction of the population that adopt the
contact tracing technology, us describes the social interven-
tion measures that reduce interpersonal contact, and u,, is the
notification threshold, describing the minimum exposure be-
tween a tested case and a contact that triggers a notification
to self-isolate.

The tracing rate is proportional to the square of the adop-
tion fraction a o u?2, since only the fraction u, of tested
cases, and only the fraction u, of traced contacts, participate
in contact tracing. As opposed to previous work [7, 8], the
contact tracing rate is proportional to, and is thus limited
by, the testing rate and capacity and the social intervention
measures o x (1 — ug)7. Similarly, contact tracing precision
depends on the disease dynamics © o« S, with diminished
precision in the presence of fewer susceptibles.

Armed with system (1), we establish how the crucial con-
nection between testing, contact tracing, and isolation shapes
the disease dynamics. Building upon these insights, we then

demonstrate how analysis sheds light on the necessary inter-
vention measures to prevent an epidemic. Finally, combin-
ing outbreak prevention with the interplay of testing, contact
tracing, and isolation, we seek to prevent the epidemic while
minimising unnecessary isolation notifications.

The dual curse of limited testing resources

To demonstrate the intimate connection between testing, con-
tact tracing, and isolation, we study their combined influence
on an epidemic, that is, when disease outbreak is not pre-
vented. In the first instance, we set the notification threshold
uy, = 0, where we notify all traced contacts, and assume that
no social intervention measures are in place, us = 0, focusing
on the role of the maximal testing capacity 7, for different
adoption fractions u,. Since the contact tracing rate is pro-
portional to the testing rate, a o 7, as the disease spreads
and infections rise in the population, testing capacity may
become saturated 79/ > 7.,. When this happens, a smaller
proportion of the symptomatic population are removed due
to testing, the contact tracing removal suffers proportionally,
and ultimately the epidemic accelerates.

To investigate the impact of limited testing capacities, we
first compute the time ¢ until 0.1% of the total population
has been infected. For large enough testing capacity 7., the
duration ¢ of this early phase can be increased by nearly one
month by case isolation alone (u, = 0), while for an adop-
tion fraction of u, = 0.5, the epidemic can be slowed down
by nearly two months (see Figure 2 left). Importantly, the
dominant part of these gains are realized for 7, on the order
of the peak number of infections.

If the outbreak is not controlled in its early stages the dis-
ease invades the population. This is most drastic when testing
capacity becomes saturated (see Figure 2 right). With in-
creasing 7., the epidemic peak is delayed due to time gained
during the early phase, and reduced in magnitude. Similarly,
the total proportion of the population infected by the dis-
ease reduces significantly with increasing testing capacity 7o
and contact tracing participation u, (see SI Appendix Sec-
tion S2 C). This portfolio of improved outcomes is commonly
referred to as “flattening the curve”.

We conclude that testing, contact tracing and isolation can
buy valuable time to prepare the implementation of social in-
tervention measures, while also reducing the peak and total
strain on the healthcare infrastructure. However, the success
of these measures critically depends on sufficient testing ca-
pacity 7... In particular, 7., needs to be on the order of the
infectious peak, which may be in excess of available testing re-
sources. This highlights the need for broader social interven-
tion measures that, in helping attenuate the epidemic, lighten
the load on testing. When testing is overburdened the detri-
mental impact is two-fold: fewer individuals are diagnosed
and self-isolate, which has the knock-on effect of curbing con-
tact tracing.

The simulations demonstrate that the contact tracing re-
sulted in many healthy individuals being unnecessarily quar-
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Figure 2: Flattening the curve. (left) Early-phase disease outcomes as a function of the maximum testing capacity 7ec.
Colored curves correspond to an adoption fraction u, € {0,0.2,0.3,0.4,0.5} and show the time ¢ for 0.1% of the population
to have been infected. Black dashed lines are asymptotic approximations (detailed in ST Appendix Section S2 B). Increasing
testing capacity and the adoption fraction decelerates the initial disease outbreak. (right) Long-term disease dynamics for
u, = 0.4. Colored curves correspond to 7o, € {1,2,5,10,20} x 10~* and show the total fraction of infected individuals
E + A+ P+ 1. If present, markers along the curves (of corresponding colour) show the time when the testing capacity
saturates (smaller ¢) and desaturates (larger ). Increased testing capacity delays testing saturation, leading to smaller peak
infection proportions. [Inset] Susceptible proportion S corresponding to the same simulation as the main plot. As testing
desaturates the susceptible proportion rises. This is a result of a large number of healthy quarantined individuals @) returning

to the susceptible pool.

antined (Figure 2 right inset). This motivates a more careful
choice of notification threshold that balances sufficient dis-
ease control with the associated cost of excessive quarantin-
ing. First, we explore one approach to calculating sufficient
disease control, and then we return to the question of priori-
tising contact isolation to lessen the quarantine cost.

Contact tracing at the disease free equilib-
rium

Having demonstrated the descriptive power of the model when
the disease is widespread, it is natural to ask whether the
model can provide insight into the interventions necessary to
prevent the epidemic. The basic reproduction number (the
average number of secondary infections), denoted Ry, is a pa-
rameter that describes the disease outbreak threshold [23]: if
Ro > 1 the disease-free equilibrium (DFE) is unstable, and
the introduction of infected individuals leads to a disease out-
break, whereas if Ry < 1 the introduction of a sufficiently
small number of infected individuals does not lead to dis-
ease outbreak in the population. As opposed to earlier com-
partmental models [14, 4, 22], the contact tracing mechanism
captures an O(1) number of true-positive contacts, which are
represented by terms that are linear with respect to I and thus
their contribution is retained in the basic reproduction num-
ber Ry (see ST Appendix Section S2 A for details of the system
regularisation via asymptotic analysis and SI Appendix Sec-
tion S2D for the calculation of the basic reproduction num-

ber). As a consequence, the influence of contact tracing on
outbreak controllability can be analysed without simulating
the full disease dynamics.

The basic reproduction number of the model (1) may be
written in the form

Ro = [1 —us]S* (Ra+ Rp + Ryp),

= 2 2 L[ + 7 (O)Ch +48Ca + (31 + 7(0))5]

R =
AT 9AA

+ (v +7(0))C3 +vpCy + 0506}7

+7(0) + C
Rp = (1 —pa)ﬁp%,

+ C;
Ry = (1 _pa)61¥7
A = (71 +7(0))Co +vpCr0 + (v1 +7(0))vp + C11,

(2)

where 7(0) = sign(7o)70 (i.e. 7(0) = 0 if 7o = 0) and the
terms C; for ¢ = 1,...,11 represent (true positive) contact
tracing contributions that depend on the problem parame-
ters. Crucially, the quantities C; are proportional to the true
positive removal rate «© and are thus linear with respect to
social intervention measures (1 — us) and the square of the
adoption fraction u2. Therefore, in the absence of contact
tracing, u, — 0, these terms vanish, and the basic reproduc-
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Figure 3: Conditions for outbreak prevention via Ro analysis. (left) Basic reproduction number Ry for S* =1 and
uy, = 0 as a function of adoption fraction u, and social interventions u,. The dashed curve shows the Rg = 1 level set, which
is the intervention threshold separating an outbreak from no outbreak. Increasing social intervention us or contact tracing
adoption u, increases disease control. (right) Intervention thresholds for S* € {1,0.925,0.85,0.775,0.7} and u,, = 0. Dotted
curves show the level sets Rg|s+=15" = 1 and correspond to neglecting the dependence of the contact tracing efficiency on S*.
Previous contact tracing descriptions do not account for the susceptible proportion of the population, and thus underestimate

the necessary disease control.

tion number reduces to the form
Pr. B

w0 (S

Pa— +
YA

Since R( depends on the intervention parameters ug, u, and
Uu,, we may explore outbreak prevention within a rich param-
eter space. Naturally, increasing social intervention measures
us and increasing the adoption fraction u, lead to a reduced
number of secondary infections Rg (see Figure 3 left). When
us % 0.4 the value of Ry is below one and an outbreak is
prevented based only on social distancing and case isolation.
Contact tracing can reduce Ry further but is not strictly nec-
essary for outbreak prevention. Alternatively, if more than
80% of the population participate in contact tracing, an out-
break is prevented with no social intervention measures. For
small adoption fractions u,, however, contact tracing is no-
ticeably less effective. This observation reflects the depen-
dence on the square of the adoption fraction 42, and high-
lights the importance of high levels of participation.

The basic reproduction number (2) exhibits a non-linear de-
pendence on the proportion of susceptibles S*. This is due to
the factor of S* in (2), as well as the contact tracing precision
© depending on S*, which is inherited by the contact trac-
ing terms C; (see SI Appendix Section S2D). Neglecting the
dependence of the tracing precision on the susceptible popula-
tion leads to an underestimation of the intervention measures
required to prevent disease outbreak, which becomes signifi-
cant when there is notable immunity in the population (see
Figure 3 right). This is particularly relevant when lockdown
measures are lifted after the first wave of the epidemic has
passed.

7?10|ua:0 = [1 - us]S*

We conclude that, to accurately analyze outbreak preven-
tion, it is essential to capture the influence of contact trac-
ing at the DFE, while accounting for the intricate interplay
between the contact tracing, the population immunity, and
social intervention measures. Having studied the disease pre-
vention, we proceed to explore how to minimise unnecessary
quarantining, while still preventing disease outbreak.

Optimal digital contact tracing

To complete the characterisation of the disease outbreak and
dynamics in the (uq, us, u,)-space, we explore the impact of
the final control parameter: the notification threshold w,. It
might be tempting to minimise the basic reproduction num-
ber Rg, which would be achieved by simply setting u,, = 0 to
notify all contacts and avoid missing any true positive traced
contacts. However, for small u,,, there is no noticeable change
in the Rg value (Figure 4 left, inset), as low-exposure encoun-
ters are unlikely to lead to an infection. Furthermore, there is
a social and economic cost in requiring people to self-isolate
unnecessarily, which we quantify by integrating the suscep-
tible proportion of the population in quarantine up to some
time t = T fOT @ dt. A higher notification threshold w,, can
achieve similar reductions in R¢ while lowering this quaran-
tine cost (Figure 4 left). This suggests that we can find an
optimal notification threshold that minimises the quarantine
cost while still preventing an outbreak. The minimum reflects
the trade-off inherent in the choice of notification threshold:
Uy, 18 to be set low enough so that contact tracing occurs at a
sufficiently high rate « to control the disease, but high enough
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Figure 4: To isolate or not to isolate. (left) Quarantine cost fOTth as a function of notification threshold u,,, for
ug = 0.5, us = 0.35, and T € {1,1.5,2,3,4} years. The notification threshold axis is mapped from the interval [0, )] to
[1, 00] so as to spread out the region near criticality u, = u} to illustrate the minimum cost (with « denoting the notification
threshold for which Ry = 1). Each marked u,, value corresponds to an identical mark in the inset. As u, increases from
Uy, = 0 to the value at which the minimum is obtained, the quarantine cost improves by nearly two orders of magnitude while
there is little variation in Rg. Black dashed curves show the asymptotic approximation derived in SI Appendix Section S2 B.
[Inset] Basic reproduction number Ry for us = 0.35 as a function of u, and w,. The dashed line shows the Rg = 1 level
set. (right) Optimal contact tracing precision © (i.e. the precision associated with the optimal notification threshold), as a
function of social intervention measures us and the adoption faction u,, within the region where an outbreak is controllable
for sufficiently small u,, but not controllable for arbitrarily large u,,. At the lower Ry = 1 boundary only u,, = 0 prevents the
epidemic, which corresponds to the minimal precision O,;,. Beyond the boundary there is a rapid increase in the optimal
u, and thus a rapid increase in precision. In the vicinity of the upper boundary the optimal w,, diverges, corresponding to

the precision converging to O.x. [Inset] One-dimensional slices of the tracing precision for fixed u, (green) and fixed s

(orange). We denote by u and u’ the critical parameter values for which Ry = 1 when all else is fixed, while u™**

Wax denotes

the upper boundary of the region, beyond which there is no outbreak even in the absence of contact tracing.

so that tracing precision © ensures not too many susceptibles
are quarantined (see SI Appendix Section S3 B).

In going beyond the static calculations at the DFE, we must
choose an appropriate time horizon T'. Since the cost function
admits a minimum that is fairly insensitive to the time hori-
zon (Figure 4 left), we choose T' = oo, and seek the optimal
notification threshold: u,, that minimises the quarantine cost
while preventing an outbreak. Since the units of u, match
exposure, which are implementation-dependent, we choose to
focus on the associated contact tracing precision O, express-
ing the fraction of true positive traces. Aiming to prevent
disease outbreak via contact tracing, we focus on the region
of parameter space where contact tracing is necessary and
able to prevent disease outbreak (the blue shaded region in
Figure 4 right).

The optimal tracing precision © increases with both in-
creasing u, as well as increasing u,, from which we deduce
that increasing social intervention measures and contact trac-
ing participation allows for less aggressive notification. Since
we expect many more low-exposure contacts to be encoun-
tered than high-exposure contacts, even a small increase in
u, can mean a significant increase in ©, accompanied by a

reduction in unnecessary quarantining. For example, the op-
timal notification threshold in Figure 4 left corresponds to
notifying approximately 4% of detected contacts, at a preci-
sion of © ~ 0.61 (meaning 61% of notified contacts were in-
fected by the traced case) while still preventing an outbreak
(Ro ~ 0.96). In comparison, for u, = 0 all contacts are noti-
fied, and thus Ry ~ 0.91, but contact tracing has a precision
of only © = 0.04. Unnecessarily quarantining 96% of notified
contacts is an enormous social and economic burden that may
undermine contact tracing acceptance. The associated reduc-
tion in the quarantine cost is nearly two orders of magnitude
(compared with u,, = 0).

In summary, the model structure allows the notification
threshold to be tuned, allowing a balance between aggressive
contact tracing (low u,, ensuring high disease control) and pre-
cise contact tracing (high w,, notifying contacts more likely
to have been infected).
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Discussion

Strict social distancing policies, enforced to contain the
COVID-19 outbreak, will have to be relaxed to prevent exces-
sive damage to society and the economy. However, this must
be achieved while avoiding a resurgent disease outbreak [21].
Contact tracing is one of the key measures for reducing the
risk of subsequent epidemic waves, while allowing social dis-
tancing measures to be eased. Contact tracing needs to be
fast and scalable to effectively disrupt infection chains (see [7]
and SI Appendix Section S3D). Digital contact tracing via
smartphone applications makes this possible, but raises the
question of which among the many detected contacts to no-
tify [13]. This problem hinges on an inherent trade-off: the
lower the notification threshold, the greater the disease con-
trol, but the more healthy individuals sent unnecessarily to
quarantine.

In this work, we embedded a compartmental model for
COVID-19 disease progression, in a modeling framework that
captures testing and digital contact tracing. Our results in-
dicate that saturated testing capacities, and the consequence
of less effective contact tracing, lead to an acceleration of the
epidemic and more severe long-term outcomes. This suggests
that the model can serve as a basis for quantitative studies on
the role of limited PCR-testing during the spread of COVID-
19.

Our model introduces a mechanistic description of con-
tact tracing in a compartmental model, which, guided by an
asymptotic analysis, makes a dominant contribution at the
disease free equilibrium and thus features in the basic repro-
duction number. This allowed us to derive contact tracing
precision from the underlying process rather than prescribing
an exogenous efficacy a priori [8, 7]. We investigated out-
break mitigation and prevention as a function of social in-
tervention measures, contact tracing adoption (Figure 3 left),
initial population immunity (Figure 3 right), testing rates (SI
Appendix Section S3A) and capacities (Figure 2), delays in
contact notification (SI Appendix Section S3D), and the no-
tification threshold (Figure 4 left). The complex interplay in
this high-dimensional parameter space highlights the practi-
cal challenge of achieving disease control. We emphasise that,
when the outbreak is not preventable, contact tracing remains
an important public safety measure: in many circumstances,
every person who signs up to the contact tracing application
saves another from infection (see SI Appendix Section S3 C).

The objective of our study was primarily to establish a
comprehensive contact tracing modeling framework that can
be adapted to a wide variety of models. Therefore, we did
not present results for different parametrizations of the dis-
ease dynamics, which are expected to vary regionally and over
time, but chose to focus on one set of values reasonable for
COVID-19. While we have explored only constant control
parameters ug, g, and u,, we emphasise that the framework
allows them to vary in time.

Our results do not qualitatively depend on the precise
shapes of p.(e) and p;(e) (see SI Appendix Section S3E).

Nevertheless, to adapt the framework to a specific locale, it
is important to determine these distributions from real-world
data: the exposure distribution may be obtained directly from
contact tracing platforms, and the infection probability can
be deduced from the contact data in combination with further
virological and epidemiological studies.

We have shown that our formulation of digital contact trac-
ing, based on the contact exposure distribution p.(e) and
corresponding relative infection probabilities p;(e), exposes
a non-trivial notification threshold for optimal contact noti-
fication. Investigating this optimum reveals how, with more
stringent social distancing measures or more adoption of the
smartphone application, the contact tracing can be tuned to
notify fewer contacts while still preventing an epidemic (Fig-
ure 4 right). Importantly, this leads to an overall reduction
in unnecessary quarantining. Threshold adjustment allows
policy makers to achieve a balance between disease manage-
ment on the one hand, and social and economic cost on the
other hand. We expect that our framework, within which this
trade-off can be efficiently studied, will contribute to the im-
plementation of digital contact tracing as a central tool in the
sustainable fight against communicable diseases.
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