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We present results on the existence of various common patterns in the growth of the total number
of patients affected by COVID-19, a disease acquired through infection by a novel coronavirus, in
different countries. For this purpose we propose a scaling model that can have general applicability in
the understanding of real data of epidemics. This is analogous to the finite-size scaling, a technique
used in the literature of phase transition to identify universality classes. In the disease model, the size
of a system is proportional to the volume of the population, within a geographical region, that have
been infected at the death of the epidemic or are eventually going to be infected when an epidemic
ends. Outcome of our study, for COVID-19, via application of this model, suggests that in most of
the countries, after the ‘onset’ of spread, the growths are described by rapid exponential function,
for significantly long periods. In addition to accurately identifying this superuniversal feature, we
point out that the model is helpful in grouping countries into universality classes, based on the
late time behavior, characterized by physical distancing practices, in a natural way. This feature of
the model can provide direct comparative understanding of the effectiveness of lockdown-like social
measures adopted in different places.

I. INTRODUCTION

Understanding of the pattern in the spread of an
epidemic [1–4] is of immense importance. This helps
minimize damage via optimal imposition of lockdown-
like physical distancing (PD) measures [5], before
medical solutions are found. A well-known theoreti-
cal result predicts exponential behavior for the natural
spread of an epidemic [3, 4, 6, 7], viz.,

n = n0 exp(mt), (1)

where n is the number of people infected till time t,
with n0 and m being constants. There exist other
expectations as well [4]. Power laws or even slower
rates [4, 7] may not be surprising outcomes in real
situations. Even if exponential, it can last only for a
limited period. The late time deviation from Eq. (1)
can occur due to natural reasons as well as because of
imposed social restrictions.
Advanced methods of analysis [8, 9] are needed to

obtain accurate picture of the overall real trend. There
should be search for techniques that can help, for a
given epidemic, identify the existence of common fea-
tures, in the global scenario, for periods of ‘actual’
natural spread as well as spread during social restric-
tions. This is in line with the investigation of univer-
sality that is observed in phenomena associated with
growth during phase transitions in materials [10–24].
Accumulation of such information has immense im-
portance in tracking deficiencies in facilities related
to medical testing as well as in identifying inadequa-
cies in social measures. These are relevant for fighting
both current and future catastrophes. Here we present
results on the spread of COVID-19 [5, 7, 25–34], by ap-
plying one such model to the real data [5]. The model

can have general applicability in the studies of epi-
demic and is related to the finite-size scaling [8, 9, 35–
43], a technique used in numerical [9, 44, 45] studies
to identify universality in phase transitional anoma-
lies [10–24, 46]. The motivation behind the choice is
more clearly sketched below.

Like in materials, concepts of phase transitions and
universality exist in lives and societies [47, 48] as well,
which are, in a sense, part of the currently popular
area concerning biologically “active matter” [49–53].
Universality emerges from the fact that, if there exists
some basic similarity, microscopic details do not mat-
ter [10–14, 20]. In the societal context also, as long
as there exists interaction among individuals, there
should exist universality in the quantitative outcomes
of various phenomena, including the spread of infec-
tious disease. This is despite differences in cultures
and governments across boundaries. It is of utmost
importance to quantify such feature.

A key point behind the universality in anomalous
behavior is the divergence of appropriate character-
istic length scale with the approach to certain fixed
point [10–24]. In finite systems there is scaling of
these lengths with the size of the systems, in a limit-
ing situation [8, 9, 37, 38]. This fact is exploited in
numerical studies with finite systems [8, 9, 35–38] to
identify the anomalies in various quantities. Such a
strategy should work for the real data on the spread
of epidemic as well. In this problem, countries can
be identified with materials as well as finite systems,
given that the populations are nondivergent. How-
ever, unlike the standard scenario of studies in com-
puters, where the size of a system is a priori assigned,
here the issue is not straight-forward, particularly for
an ongoing epidemic.

Outcome of our study, using real data [5], suggests
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that, for a large number of countries, the early time
growth can be described by a prolonged “universal”
exponential form, varying from country to country
only via a metric factor. Various effects, including
those from the practices of PD, modify this growth
at late times. This is analogous to the emergence of
finite-size effects [8, 37, 38]. It is shown how from
the shape or form of such PD affected parts of the
overall scaling function the countries can be grouped
into classes in a natural way, thereby suggesting the
change that may be needed in future to strengthen
the PD. From academic as well as practical points of
view, it is extremely encouraging and interesting to
observe that the scaling concepts of statistical physics
work for real data of epidemic.

II. MODEL

In the equilibrium context, say, in critical phenom-
ena, anomaly in a property X, thermodynamic or dy-
namic, is quantified as [10, 12–14, 20–24] X ∼ ǫ−x,
where ǫ is typically the deviation of the temperature
of the system from the critical value and x is a critical
exponent. The value of x is same for vastly different
materials, implying universality. Note that ξ diverges
as ξ ∼ ǫ−ν , for thermodynamically large systems [10],
so that X ∼ ξx/ν . In finite systems such divergences
get restricted. This is because [8] ξ cannot grow be-
yond L, the size of the system. For ξ = L, “true” at
finite-size criticality, one writes the singularity as [8, 9]
X ∼ Lx/ν . This is the expected behavior when X is
estimated at the “finite-size” critical points [36, 54].
The L = ∞ and L < ∞ behavior are bridged by the
introduction of a scaling function Y (y) as [8, 9, 35]
X = Y (y)Lx/ν . Here y (= (L/ξ)1/ν) is a scaling vari-
able that provides information on the deficiency of the
size of a system with respect to the thermodynamic
limit. Y is a constant in the y = 0 limit. For y → ∞,
one has Y ∼ y−x, that is consistent with the diver-
gence of X for L = ∞.

In the finite-size scaling method, correct behavior of
a quantity is identified by observing collapse of data
[9], along with the satisfaction of the limiting behav-
ior, from different system sizes, for Y . In the case of
power-laws, one treats the values of the exponents as
adjustable parameters in the collapse experiments.

Similar analyses [37, 38, 42, 43] have been per-
formed for quantifying the singularities in the
nonequilibrium domain. The current problem is more
closely related to this. Here we briefly discuss the case
of ℓ. This quantity diverges as ℓ ∼ tα, where α is the
growth exponent. In the long time limit ℓ = L and one
writes for the scaling ansatz [37, 38] ℓ = Y (y)L, with
y = (L/ℓ)1/α (= L1/α/t). In the y → ∞ (i.e., L → ∞

or t → 0) limit [37, 38], one should have Y ∼ y−α. Of

course, Y is a constant in the other limit.
As already mentioned, for the spread of epidemic,

a simple theory predicts exponential growth [6]. Even
for such a growth a finite-size (type) scaling equation
can be constructed. Note that in the literature of
coarsening also growths other than power-laws are dis-
cussed [55, 56]. For an epidemic, the size of a system
should be N , the volume of the population that is
infected when the spread stopped, i.e., the epidemic
died. This number should not necessarily be propor-
tional to the total population of a country. This state-
ment is justifiable if the spread of COVID-19 is care-
fully followed [5] (see Fig. 1). It is clearly recogniz-
able that the rate of infection is different in different
countries. Thus, the final numbers may not have con-
nection with the total population.
If the rates of infection are different, one may, of

course, raise question on the validity or usefulness of
the approach. However, despite the differences in rate,
there may still be uniqueness in the overall functional
form, perhaps differing only in certain metric factors
from one country to the other. The growth in Eq. (1),
with differences in m, is one such example.
For the form in Eq. (1) one may need to adjust

the constant m, if different for different countries, to
obtain collapse of data. Here the scaling ansatz is

Y (y) = ln
( n

N

)

, (2)

the scaling variable being

y =
ln (N/n0)

mt
. (3)

In the limit y → ∞, Y should behave as

Y ∼ y−1, (4)

and it must approach a constant when y → 0.
In case an analysis is being performed prior to the

death of an epidemic, the value of N cannot be known.
It is also not expected that the finite-size behavior,
i.e., the growth in the presence of PD, after the knowl-
edge of the disease has adequately spread, will be same
for all the countries. This non-unique feature will lead
to lack of data collapse. However, both uniqueness
and non-uniqueness in this context can provide useful
information. The issues on the choice of N in the case
of analysis prior to the death and non-universality in
m will be discussed later. One can, of course, in-
troduce an exponent, to check for the stretched or
stressed character in the exponential function. How-
ever, we will not travel this path.

III. RESULTS

We have worked with data for more than 15 coun-
tries. However, for the sake of brevity, we present
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results for a few most populous countries. These are
United States of America (USA), Russia (RUS) and
India (IND). The data sets contain the numbers till
April 30, 2020. The first confirmed cases in these
countries were reported on the following dates: USA
– 21 January; RUS – January 31; and IND – January
30; all in the year 2020, of course [5].
In Fig. 1 (a) we show n versus t plots for the con-

sidered countries, the unit for the latter being a day.
The times in these plots are counted from the dates
on which the first confirmed cases were reported [5].
These plots are shown on a semi-log scale. It is clearly
appreciable that n and its rate of change vary drasti-
cally from country to country [26]. Even though bend-
ing is visible, for some early period the spread may be
exponential. However, confirmation of this from fit-
ting exercise is ambiguous, particularly because of the
lack of confidence in the choice of regimes, in the pres-
ence of PD effects at late times.
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FIG. 1. (a) Plots of n, the total numbers of infections, in
three countries, versus time, on a semi-log scale. For each
of the countries the time has been counted from the day
the first infection was reported. The box at the bottom is
placed to highlight the onsets of instability. (b) Similar to
(a) but here the times have been counted from the days
the instabilities occurred in respective countries (see text
for further details). Furthermore, the ordinate, for each
of the countries, has been scaled by n0, the number of
infections on the day of instability.

From the plots in Fig. 1 (a), it is also clear that
in none of the countries the “instability” has set in,
i.e., infections within the countries have truly started,
until beyond t=30. Please see the parts put inside
the box. Up to certain times, from t = 0, the growths
that are visible occurred essentially due to arrivals of
patients from abroad. It took time for the confirma-
tions of the infections spread by these patients. This
says that it is appropriate to start counting time from
the day the infections from “within” a country have
started getting reported. For the rest of paper, these
appropriately chosen onset times (USA: 38; RUS: 38;
IND: 37) have been subtracted from those used in Fig.

1 (a). In the following we have also normalized n
by n0, the number at the onset. That way, for each
country the depicted growth implies spread by start-
ing from a single patient. This puts all the countries
on fair footing at the beginning. These transformed
data sets are shown on a semi-log scale in Fig. 1 (b).
The results in Fig. 1 (b) convey the message that

the rate of spread of the disease in each of the coun-
tries is very different from the others. If the behavior
is really exponential, the factor m can significantly
differ among the countries. The deviations from the
exponential-like behavior, at n/n0 = nd, after cer-
tain times, are primarily because of PD, that includes
the effects of lockdown, and this fact is analogous to
the appearance of the finite-size effects [15, 38]. In a
standard phase transition problem, the characteristic
length at the departure of a quantity from the thermo-
dynamic limit behavior, i.e., the length at the onset
of finite-size effects, is proportional to the system size
[38, 42, 43]. Thus, instead of the actual size N/n0 of
the system, here one can work with nd, value of which
is country specific. Since the death of COVID-19 has
not arrived yet, this is the only option we have.
In Fig. 2 we have presented results from our scal-

ing model. Here we have shown Y as a function of
y, by including data from all the considered countries.
The collapse of data appears good. The corresponding
coordinates of (best) parameters, (nd, m), for USA,
RUS and IND are (2000, 0.330), (800, 0.205) and (200,
0.155), respectively. In the inset we have shown the
same results on a double-log scale. Here also the col-
lapse looks nice. The solid line in the inset is a power-
law with exponent −1. A simple exponential growth
will imply consistency of the data with this exponent
in the large y limit. However, there is deviation by
about 5%. While this can be due to statistical error,
we do not discard the possibility of an exponential
behavior with a slightly nonlinear argument.
For the late time behavior, it is not expected that

the data sets from all the countries will overlap with
each other. This is because, the success of PD de-
pends upon several factors, including economic pros-
perity and population density. Even if good overlap
is not observed in this regime, a fair idea about rel-
ative country-wise deficiency in the effectiveness of
lockdown-like social measures [5] can be obtained.
This is because of the fact that the analysis has the
potential of getting data from all the countries over-
lapped at the very least till the appearance of the
effects of PD, if the natural growth in different coun-
tries are described by a unique function, apart from
non-universal [39, 40] metric factors, which is ‘m’ for
Eq. (1). Such a collapse cannot be obtained via a
simple scaling by the metric factors and thus, the rel-
ative knowledge of the effectiveness of PD in different
countries will remain largely unexplored.
For the presented countries, of course, we obtain
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FIG. 2. Finite-size scaling analysis, i.e., Y versus y plots,
to understand the spread of COVID-19. Data from all
the considered countries have been included. See text for
the values of m and nd that were used to obtain the data
collapse. The main frame and the inset show the same
plots on linear and log scales. The solid line in the inset is a
power-law. The value of the exponent has been mentioned
next to it.

very good collapse of data over the whole range. The
disparities in the economic and similar parameters
among these countries are well known. Nevertheless,
similarity or universality in a robust way, as implied
by the collapse throughout, is quite interesting, even
if within a limited set of countries. In fact more coun-
tries should belong to this class. An interesting point
to notice here is the following. The value of m for
each of these countries is different from the others. A
near perfect overall collapse of data, nevertheless, im-
plies that in the post-PD regimes also these countries
are consistently maintaining same discrepancy from
each other as the pre-PD regimes. These are inter-
esting facts and understanding needs attention. We
have identified classes other than this. In one of those
belong South Korea, Australia and few other coun-
tries. Another class is formed by most of the large
West European countries.

The correctness of the numbers quoted above for
nd and m, obtained via the optimum collapse of data
from different countries, can be judged from Fig. 3
(a). There we have re-plotted the data sets of Fig. 1
(b) and compared them with the exponential form of
Eq. (1) after inserting the scaling numbers form. Val-
ues of nd for each of the countries can be read out from
the departure points of the exponential functions from
the data sets represented by symbols and compared
with the above quoted numbers. The agreement is
rather good. This further justifies the scaling method
and the functional form for the “natural” spread of

the disease. We performed the following exercise for
further confirmation of the latter.
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FIG. 3. (a) Symbols represent same data sets as in Fig.
1 (b). Here we have added the exponential function of
Eq. (1) (see the solid lines) by inserting the best values of
m that were obtained from the scaling analysis. See text
for these numbers. (b) The instantaneous exponent, βi, is
plotted versus t, for IND. The solid line represents Eq. (6)
with m equaling the scaling value for this country.

We have calculated βi, defined as [38, 42, 57–59]

βi =
dln (n/n0)

dlnt
, (5)

the logarithmic time derivative of the growth data in
Fig. 1 (b). From Eq. (5) it is appreciable that the
purpose of the quantity is to provide information on
power-law [57, 58], and so, βi is referred to as the
instantaneous exponent. Nevertheless, this quantity is
helpful in identifying other possibilities as well [42, 59].

In Fig. 3 (b) we have presented a plot for βi, for
IND, as a function of t. The PD affected region has
been carefully removed. For the behavior in Eq. (1),

βi = mt. (6)

The presented data set is consistent with this lin-
ear expectation, with the scaling value of ‘m’ being
a near perfect number for the slope. A nonlinear fit
(βi ∼ tc) provides a value of the exponent close to
unity, viz., c ≃ 1.08. The deviation from the linear-
ity perhaps again suggests that the actual growth is
slightly shifted towards a case where the argument in-
side the exponential is marginally nonlinear.

IV. CONCLUSION

Finally, our study is suggestive of “prolonged” ex-
ponential growth, in all practical sense, in the natural
spread of the epidemic [3, 4]. Despite differences in
population density and economic parameters, it seems
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there is universality in the growths and the effects
of physical distancing practices. Even if there ex-
ist multiple universality classes, the proposed scaling
model is useful. In addition to identifying the pre-
PD growth, the relative deficiencies in the measures
related to PD can be well captured in the outcome.
Very late time outcomes of lockdown cannot be tested
by our model now. Such second order effects can be
included in future.

Exponential growth is commonly related to an ideal
picture of spread of rumours, where, say, every knowl-
edgeable person spreads a hoax to one more individual
every next day. But in the case of an infectious dis-
ease, various factors can resist such a spread, even be-
fore any strict social measures have been implemented.
E.g., beyond a certain time either the patients get
cured or they die, thereby leave the gang of spread-
ers. Thus, even the natural spread can be slower. If
the above picture is true, from the duration of expo-

nential growth it appears that the patients remain ill
over long period. This is consistent with the medical
observation. Nevertheless, we do not discard possi-
bilities other than the above mentioned ideal picture.
Continuing with the above reasoning, one should note
that the patients are put under surveillance immedi-
ately after being tested positive beyond which they
typically do not infect others. We expect the time
gap between being infected and being tested positive
to be less than the duration of exponential spread, the
latter being significantly larger than 20 days in many
countries. In that case, there may as well be further
reasons behind this fast growth.
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