1 Adaptive advantage of deletion repair in the N-terminal domain of the

2 SARS-CoV-2 spike protein in variants of concern

- 3 Miguel Álvarez-Herrera^a, Paula Ruiz-Rodriguez^a, Beatriz Navarro-
- 4 Domínguez^{ab}, Joao Zulaica^a, Brayan Grau^a, María Alma Bracho^{ac}, Manuel
- 5 Guerreiro^{de}, Cristóbal Aguilar 🗆 Gallardo^e, Fernando González-Candelas^{ac},
- 6 Iñaki Comas^{cf}, Ron Geller^a, Mireia Coscollá^a*
- ^aInstitute for Integrative Systems Biology (I²SysBio, University of Valencia-CSIC),
- 8 FISABIO Joint Research Unit "Infection and Public Health", Paterna, Spain;
- 9 ^bUniversity of Granada, Department of Genetics, Granada, Spain; ^cCIBER in
- 10 Epidemiology and Public Health (CIBERESP), Madrid, Spain; ^dHaematology
- 11 Department, La Fe University and Polytechnic Hospital, Valencia, Spain; ^eLa Fe
- 12 Health Research Institute (IIS-La Fe), Valencia, Spain; ^fInstitute of Biomedicine of
- 13 Valencia (IBV-CSIC), Valencia, Spain
- 14 * Email: mireia.coscolla@csic.es. Address: Institute for Integrative Systems Biology, C/
- 15 Catedrático Agustín Escardino 9, Building 4, 46980 Paterna, Spain

16 Keywords

- 17 SARS-CoV-2, COVID-19, spike, transmission, deletion, fusogenicity, antibody
- 18 neutralization, thermal stability

19 Abstract

20	Mutations within the N-terminal domain (NTD) of the spike (S) protein play a pivotal
21	role in the emergence of successful SARS-CoV-2 viral lineages. This study investigates
22	the influence on viral success of novel combinations of NTD lineage-defining mutations
23	found in the Alpha, Delta, and Omicron variants. We performed comparative genomics
24	of more than 10 million public SARS-CoV-2 samples to decipher the transmission
25	success of different combinations of NTD markers. Additionally, we characterized the
26	viral phenotype of such markers in a surrogate in vitro system. Alpha viruses bearing
27	repaired deletions S: Δ H69/V70 and S: Δ Y144 in Alpha background were associated
28	with increased transmission relative to other combinations of NTD markers. After the
29	emergence of the Omicron BA.1 lineage, Alpha viruses harbouring both repaired
30	deletions still showed increased transmission compared to their BA.1 analogues.
31	Moreover, repaired deletions were more frequently observed among older individuals
32	infected with Alpha, but not with BA.1. In vitro biological characterization of Omicron
33	BA.1 spike deletion repair patterns also revealed substantial differences with Alpha. In
34	BA.1, S: Δ V143/Y145 repair enhanced fusogenicity and susceptibility to neutralization
35	by vaccinated individuals' sera. In contrast, the S: Δ H69/V70 repair did not significantly
36	alter these traits but reduced viral infectivity. Simultaneous repair of both deletions led
37	to lower fusogenicity. These findings highlight the intricate genotype-phenotype
38	landscape of the spike NTD in SARS-CoV-2, which impacts viral biology, transmission
39	efficiency, and susceptibility to neutralization. Overall, this study advances our
40	understanding of SARS-CoV-2 evolution, carrying implications for public health and
41	future research.

42

43 Introduction

44	As we navigate the constantly shifting landscape of the COVID-19 pandemic, the
45	remarkable potential of SARS-CoV-2 for genetic adaptation has taken centre stage.
46	Global turnover of SARS-CoV-2 lineages happened several times, with three variants of
47	concern (VOCs) displacing the previous predominant lineages just in 2021: first, Alpha
48	(B.1.1.7 and Q sublineages), then Delta (B.1.617.2 and AY sublineages), and lastly,
49	Omicron (B.1.1.529 and BA sublineages, among others) [1]. This successive
50	replacement of lineages across the pandemic suggests that the newer lineages had a
51	higher adaptive value than the previous ones [2,3], and thus, these three lineages are
52	supposed to carry mutations associated with higher transmissibility and/or immune
53	evasion.
54	The spike (S) protein —a type I transmembrane N-linked glycosylated protein of
55	150-200 kDa— is a hotspot for mutations with high adaptive value. Spike proteins are
56	located on the surface of SARS-CoV-2, and their main role is to mediate viral cell entry
57	[4]. The spike protein forms a homotrimer, which is cleaved post-transcriptionally into
58	two subunits: S1 and S2. The S1 consists of the amino or N-terminal domain (NTD) and
59	the receptor-binding domain (RBD), and it is responsible for binding to the host cell-
60	surface receptor, ACE2. The S2 subunit includes the trimeric core of the protein and is
61	responsible for membrane fusion [5,6]. Therefore, some amino acid changes in the S
62	protein may confer an advantage for transmission, considering its role in mediating viral
63	cell entry. Additionally, most antibodies target sites either in the NTD or RBD, and
64	therefore, mutations in these regions may enhance immune escape.
65	In Alpha lineages, deletions in the NTD (S: Δ H69/V70 and S: Δ Y144) are
66	associated with antibody escape [7,8] and increased infectivity [9]. Acquisition of
67	deletions in the NTD of the spike glycoprotein during long-term infections of

68	immunocompromised patients has been reported and identified as an evolutionary
69	pattern defined by recurrent deletions that alter defined antibody epitopes [10,11].
70	Additionally, deletions may play a decisive role in SARS-CoV-2 adaptive evolution,
71	particularly on deletion-tolerant genome regions such as the S gene, as they can hardly
72	be corrected by the proofreading activity of its RNA-dependent RNA polymerase
73	(RdRP) [12–14]. Indeed, the NTD has been extensively impacted by deletions, which
74	have arisen multiple times in different variants, including Alpha, Delta, and Omicron.
75	For example, different deletions are observed in Delta (S: Δ E156/F157-R158G), Alpha
76	(S: Δ Y144) and BA.1 (S: Δ V143/Y145) variants, all mapping to the same surface
77	indicating a convergent function [15,16]. All these mutations are within the NTD site
78	targeted by most anti-NTD neutralizing antibodies [8]. Despite not being found in BA.2,
79	its descendant lineage BJ.1 seems to have independently acquired S: Δ Y144 (see cov-
80	lineages/pango-designation issues #915 and #922 on GitHub). Then, it was passed on to
81	XBB viruses through recombination with a BA.2-descended lineage, where it is
82	associated with increased immune escape regardless of the vaccination status or
83	infection history [17–19]. Subsequently, in January 2023, the newly emerging XBB.1.5
84	lineage was shown to display an increased receptor-binding affinity and infectivity with
85	respect to its parental lineage [20,21].
86	During the takeover of the Alpha variant by the Delta variant, we became
87	intrigued by the lack of overlap in NTD mutations between them. If mutations in the
88	NTD increased immune escape without compromising binding to ACE2, one might
89	expect that mutations in NTD have a cumulative ("the more the better") effect.
90	However, that would not be the case if epistatic interactions between sites prevent the
91	fixation of particular mutations in different genomic and genetic backgrounds. Our
92	primary objective in this study is to investigate the effect of NTD deletion repair in

variants of concern. We focus on examining the differences in success between variants
of concern as a function of different mutational patterns in the NTD, including recurrent
deletion repair events occurring in distinct independent lineages. Our findings suggest a
non-linear effect of specific deletion repairs on viral phenotype, highlighting the
importance of examining the genomic context of SARS-CoV-2 mutations.

98 Materials and Methods

99 Data retrieval and preprocessing

100 Screening Alpha and Delta combinations of NTD markers included 7,133,237 101 available SARS-CoV-2 sequences fetched from the GISAID [22] EpiCoV database on 102 January 16, 2022. The GISAID EPI SET is available at DOI: 10.55876/gis8.230802fh. 103 We ran Nextalign CLI v1.9.0 [23] with default scoring settings to obtain aligned 104 genomes and peptides corresponding to each gene. Genomes from non-human hosts 105 were discarded. Then, we filtered out genomes containing more than 5% ambiguous 106 bases and 1,000 gaps, or at least one indeterminate position among the lineage-defining 107 sites of the spike protein. 6,589,393 genomes passed these filters. An additional filtering 108 step implemented in Nextclade CLI v1.7.0 [24] was used to flag and remove false 109 positive mixtures possibly caused by sample contamination or coinfections, considering 110 that we were exploring combinatorial variation during the time of co-existence of highly 111 successful variants. The same dataset was used to screen for patterns of deletion repair 112 in the Alpha variant, omitting the Nextclade filtering step as it was not deemed critical 113 when not searching for variant mixtures. We performed an analogous search of 114 deletion-missing sequences assigned to lineage BA.1 out of 11,334,504 samples 115 (10,353,158 after quality-filtering), fetched on June 15, 2022. The GISAID EPI_SET is 116 available at DOI: 10.55876/gis8.230801ex.

Figure 1. Combinatorial standpoint of the study. (A) Defining mutations of the B.1.1.7 (Alpha), B.1.617.2 (Delta) and BA.1 (Omicron) SARS-CoV-2 lineages on the spike protein. (B) Spike protein lineage-defining sites of the fourteen Alpha-Delta combinatorial haplotypes (I-XIV) and two variants of concern. (C) Haplotype network of the most abundant combinatorial haplotypes (see Table 1) and the B.1.1.7 and B.1.617.2 lineages, based on the haplotype group-level consensus of the S gene. Solid edges depict the minimum spanning tree of the graph. Each stroke on the edges stands for one nucleotide site that changes between the connected nodes. Node size represents the number of 136 137 observations in log-scale. (D) Spike protein lineage-defining sites of samples that repair NTD deletions in common on Alpha and Omicron BA.1 background. Sites in grey are unaltered with respect to each lineage ancestral sequence.

Haplotype	Description	Observations	Transmission clusters	Minimum independent emergences
IV	Alpha + repaired S:ΔH69/V70 & S:ΔY144	736	72 78†	576 598†
v	Delta + S:R19T reversion & repaired S:∆E156/F157-R158G	117	6	104
VII	Delta + S:R19T reversion	1,666	146	1,121
XI	Delta + S:ΔH69/V70 & S:ΔY144	304	19	267
XIII	Delta + repaired S:∆E156/F157- R158G	4,781	431	2,880

Analogously, the survey of NTD deletion repair haplotypes in Alpha and

138Table 1. Description of five Alpha-Delta combinatorial haplotypes with at least 100 observations. Values marked139with † were obtained with the dataset reduction strategy with CD-HIT.

141 Omicron BA.1 backgrounds tracked the presence or absence of specific deletions in 142 sequences assigned to lineages B.1.1.7 (Alpha; deletions S:H69/V70 and S: Δ Y144) and 143 BA.1 (Omicron; deletions S:H69/V70 and S: Δ V143/Y145), or any of their sublineages. 144 For more in-depth considerations about S: $\Delta V143/Y145$ repair in lineage BA.1, see 145 Supplemental Note 2. 146 After data cleaning and homogenization of the retrieved sample metadata, we 147 were able to obtain the host age for approximately 50% of the analyzed samples of both 148 datasets. We used R v4.1.2 [26] along with tidyverse v1.3.1 [27] to conduct, manage 149 and visualize these analyses. Lollipop plots were generated using *trackViewer* v1.30.0 150 [28]. Haplotype networks with abundance weights of the S gene consensus sequences of 151 the combinatorial haplotypes were built using the randomized minimum spanning tree 152 (RMST) algorithm [29] implemented in pegas v1.1 [30]. We considered insertion or 153 deletion blocks as a single mutational event. Synthetic sequences were built to account 154 for unsampled haplotypes.

155 Number of emergences and transmissions

140

156 To infer the success of each combinatorial haplotype, we assessed the number of

157	minimum emergence events and whether these originated subsequent transmission
158	events. To overcome the challenging computational demands of working with global-
159	scale sequence datasets and, we devised a double approach, based on two distinct
160	optimality criteria. First, we placed genomes matching combinatorial haplotypes (I-
161	XIV) on a comprehensive phylogeny of public sequences up to the date of each survey
162	[31] under a maximum parsimony criterion, using UShER v0.5.3 [32]. Second, we used
163	an additional phylogenetic inference method that considered an evolutionary process
164	model while keeping the phylogenetic context of our datasets, to enhance the reliability
165	of our results. S gene clustering based on short word filtering was performed with CD-
166	HIT-EST, bundled in the CD-HIT suite v4.8.1 [33], with a word size of 8 and a
167	minimum sequence identity threshold equivalent to 5 amino acid changes in the spike
168	protein. For any given haplotype, sequences within clusters that included at least one of
169	the haplotype-assigned samples were selected as members of the reduced dataset for the
170	corresponding haplotype. Then, we inferred a whole-genome phylogeny with maximum
171	likelihood under a GTR model, with the Wuhan-Hu-1 sequence (NCBI RefSeq
172	accession no. NC_045512.2) as the outgroup, using IQ-TREE v2.1.2 COVID-edition
173	[34]. This approach was applied to haplotype IV (see Table 1), resulting in a reduced
174	phylogeny with 30,314 tips.
175	Quantification of transmission of Alpha and Delta mixtures was conducted
176	through an exhaustive breadth-first search, selecting clusters with at least 2 members
177	and at least 90% target samples, utilizing the implementation by Ruiz-Rodriguez et al.
178	[35]. The composition requirement was reduced from 100% to account for potential

179 sequencing errors and ambiguous sample placements on the phylogenetic tree. Due to

179 sequencing errors and ambiguous sample placements on the phylogenetic tree. Due to

180 the increased dataset size and complexity, we quantified transmission of deletion repair

181 Alpha and BA.1 viruses using a reimplementation of the algorithm that leverages

182	polytomies in a global-scale phylogeny for parallelization in an HPC environment,
183	based on <i>phylobase</i> v0.8.10 (https://github.com/fmichonneau/phylobase). The complete
184	pipeline is available as a Snakemake workflow at https://github.com/PathoGenOmics-
185	Lab/transcluster (v1.0.0). The minimum number of independent emergences for each
186	combinatorial haplotype was derived from the phylogenies by adding up the number of
187	transmission clusters to the number of emergences that were not transmitted. We
188	studied the location and time span of the transmission clusters as well (see
189	Supplemental Figures 1 and 2). Host age comparisons between transmitted and non-
190	transmitted samples included clusters with more than 2 members. We also conducted a
191	detailed analysis of the age distribution of transmission clusters associated with
192	combinatorial haplotype IV to exclude the influence of potential confounding factors
193	(see Supplemental Figure 3).
194	To adequately compare the relative transmission success of the most prevalent
195	haplotypes, we developed a method to estimate their transmission fitness for each
196	cluster. This estimation involved calculating the ratio between the cluster's size and the
197	number of sequences in GISAID that were collected between the first and last cases of
198	the transmission cluster, with 7 days as padding at both sides of these windows to
199	mitigate the effect of missing data and short cluster time spans. For clusters exhibiting
200	cross-border transmission (involving samples from different geographic locations), we
201	further divided the cluster time window into country-specific sub-windows. The
202	denominator of the transmission fitness estimate was then calculated as the sum of the
203	number of sequences in GISAID for each country-specific time window. This approach
204	allowed us to account for variations in sampling efforts and prevalence across different
205	time periods and geographic regions. Conducting the analyses without the 1-week
206	padding or without differentiating country-specific sub-windows yielded significantly

different estimates, but the overall differences between haplotypes did not change (see
Supplemental Figure 4). Differences in the distribution of the estimated transmission
fitness between haplotypes were evaluated using Wilcoxon rank-sum tests. Statistical
analyses were performed and visualized using R v4.1.2 [26] along with *tidyverse* v1.3.1
[27] and *ggpubr* v0.4.0 [36].

212 Biological characterization of BA.1 deletion repair

213 Combinations of deletion repairs of $S:\Delta H69/V70$ and $S:\Delta V143/\Delta Y145$ were introduced

214 into a pCG1 plasmid encoding a codon-optimized BA.1 spike protein [37] by site-

215 directed mutagenesis. All the constructs were verified by Sanger sequencing.

216 Pseudotyped vesicular stomatitis virus (VSV) encoding a GFP reporter gene and

217 carrying the different spike proteins was produced as previously reported [38]. To

- assess the effects on virus production, pseudotyped VSV carrying each construct were
- 219 produced independently three times. The resulting viruses were then titrated by

220 infecting Vero E6 cells (kindly provided by Dr. Luis Enjuanes; CNB, Spain) or Vero

221 E6-TMPRSS2 cells (JCRB Cell bank catalogue code: JCRB1819) for 16 hours,

222 followed by quantification of GFP-expressing infected cells using a live cell microscope

- 223 (Incucyte SX5; Sartorius) to obtain the number of focus forming units (FFU) per
- 224 millilitre. To assess thermal stability, 500 FFU of these pseudotyped viruses were
- incubated for 15 min at a range of temperature in a thermal cycler (30.4, 31.4, 33.0,

226 35.2, 38.2, 44.8, 47.0, 48.6 and 49.6°C; Biometra T one Gradient, Analytik Jena) and

the surviving virus was used to infect VeroE6-TMPRSS2 cells for 16 h. The GFP signal

- in each well was then determined using a live-cell microscope (Incucyte SX5,
- 229 Sartorius). The average GFP signal observed in mock-infected wells was subtracted
- from all infected wells, followed by standardization of the GFP signal to the average
- 231 GFP signal from wells incubated at 30.4 °C. Finally, we fitted a three-parameter log-

232	logistic function to the data using the drc v3.0-1 R package (LL.3 function) and
233	calculated the temperature resulting in 50% reduction in virus infection (ED function).
234	To assess the effects on neutralization by polyclonal sera, we used six sera from
235	convalescent patients from the first COVID-19 wave in Spain and six sera from
236	individuals that had been administered two doses of the BioNTech-Pfizer Comirnaty
237	COVID-19 vaccine. The neutralization capacity of the sera was obtained as previously
238	described on VeroE6-TMPRSS2 cells [37]. We used a previously described flow
239	cytometry assay based on the use of polyclonal sera to examine surface expression [39].
240	Briefly, HEK293T cells were transfected with the different S mutants using the calcium
241	chloride method. 24 h later, cells were detached using PBS with 1 mM EDTA, washed,
242	and incubated on ice with different polyclonal sera (three from convalescent patients
243	from the 1st COVID-19 wave in Spain and one from individuals that had been
244	administered two doses of the BioNTech-Pfizer Comirnaty COVID-19 vaccine) at a
245	1:300 dilution in PBS containing 0.5 % BSA and 2 mM EDTA for 30 min. Next, cells
246	were washed three times with PBS, stained with anti-IgG Alexa Fluor 647 (Thermo
247	Fisher Scientific) at a 1:400 dilution, and analyzed by flow cytometry similarly treated
248	un-transfected controls to set the threshold for positive cells. For cell-cell fusion assays
249	we used a split Venus fluorescent protein system [40]. Briefly, HEK293T cells were
250	grown overnight in 24 well plates (1.5 x 105 cells/well) using DMEM supplemented
251	with 10 % FBS. After 24 hours, cells were transfected using Lipofectamine 2000
252	(Invitrogen) with 0.5 μ g of either a 1:1 mixture of the S plasmids and a Jun-Nt Venus
253	fragment (Addgene 22012) plasmid or a mixture of hACE2 plasmid (kindly provided by
254	Dr. Markus Hoffman, German Primate Center, Goettingen/Germany) [41] and the Fos-
255	Ct Venus fragment (Addgene 22013). After 24 h, cells were counted, and the S-
256	transfected cells were mixed at a 1:1 ratio with ACE2-transfected cells and seeded in 96

257	well plates (3 x 104 cells/well) in 100 μ L of media. Cells transfected with the Wuhan-
258	Hu-1 served as a positive control, while cells transfected with hACE2 and Jun-Nt Venus
259	were used as negative control. We obtained the GFP Integrated Intensity
260	(GCU· μ m ² /image) in each condition using a live-cell imaging platform (Incucyte SX5,
261	Sartorius) at 24 hours post mixing and standardized to the signal obtained from the
262	positive control (Wuhan-Hu-1 spike protein). All experiments were performed at least
263	three times in triplicates.
264	Statistical analyses were performed and visualized using R v4.1.2 [26] along
265	with <i>tidyverse</i> v1.3.1 [27] and <i>ggpubr</i> v0.4.0 [36] to facilitate the analysis and enhance
266	the visualization of the results. Comparisons were conducted utilizing t-tests (unpaired
267	for all assays and paired for neutralization and surface expression, as we used the same
268	sets of polyclonal sera in each experiment) after verifying that the data met the
269	assumptions of normality using a Shapiro-Wilk test. To determine fold-change values,
270	the ratio of group average values was calculated.

271 **Results**

Favoured and forbidden mixtures of NTD marker combinations in the Alpha and Delta variants

274 In the first part of this work, we focused on examining the differences in success

between the Alpha and Delta variants in the NTD of the spike protein. This domain is

276 characterized by recurrent deletions occurring in distinct independent lineages

277 [8,14,15,17,42,43]. We identified 7,706 samples that carry a mixture of Alpha and

- 278 Delta-defining mutations in this region, out of the 7.13 million sequences submitted to
- the GISAID's EpiCoV repository as of January 2022 (Supplemental Table 1). By
- 280 comparing these two variants, we aimed to gain insights into potential variations in their

281	adaptive characteristics	and overall	performance	in this s	specific r	egion.	In total,	14
							,	

- 282 combinatorial haplotypes were surveyed (termed I-XIV, Figure 1B). Differences in the
- number of observations were apparent, with the noticeable absence (n = 0) of
- haplotypes I, X, XII and XIV, and low prevalence (n < 100) of haplotypes II, III, VI,
- 285 VIII, and IX. These haplotypes were omitted from further analysis, as they were not
- 286 considered to be epidemiologically relevant. On the contrary, haplotypes IV, V, VII, XI,
- and XIII were continuously sampled throughout the time window of the variant
- takeover (Figure 1C and Figure 2A), with a remarkably high prevalence compared to
- the rest (Table 1). The haplotype network showed two well-separated haplotype groups
- around the two main variants of concern connected by the reference genome resembling
- a distance-based unrooted phylogeny with added alternative connections, i.e. mutational
- 292 jumps (Figure 1C). Interestingly, three out of five of these combinatorial haplotypes
- 293 (IV, V and XIII) bore repaired NTD deletions (Figure 1B).

S:144.				
Haplotype Description		Observations	Transmission clusters	Minimum independent emergences
Alpha Rep∆69/70	Alpha + repaired S:ΔH69/V70	722	0	722
Alpha Rep∆144	Alpha + repaired S: Δ Y144	4,571	332	2,823
Alpha RepBoth	Alpha + repaired S:ΔH69/V70 & S:ΔY144	1,297	119	982
BA.1 Rep∆69/70	Omicron BA.1 + repaired S:ΔH69/V70	5,166	198	3,969
BA.1 RepΔ143/145	Omicron BA.1 + repaired S:ΔV143/Y145	637	27	537
BA.1 RepBoth	Omicron BA.1 + repaired S:ΔH69/V70 & S:ΔV143/Y145	737	63	453

294 295	Table 2. Descriptio S:144.	n of six Alpha and	Omicron BA.1	haplotypes with	ith repaired NTD	deletions in sites	S:69/70 and

Figure 2. Sample collection timelines broken down by sampling location. The nine countries with the highest number of observations in each dataset are displayed for each panel. Each point represents a different sample assigned to the corresponding haplotype. (A) Observations of each Alpha and Delta NTD combinatorial haplotype with more than one hundred observations. (B) Observations of each deletion repair variant on Alpha and BA.1 (Omicron) background (see Table 2).

302 Nevertheless, estimates of prevalence can be distorted by several factors,

303 including the geographical location and temporal specificity associated with both

304 sequencing efforts and the distribution of lineages throughout the pandemic.

305 Transmission, on the other hand, is usually considered as a proxy of viral fitness,

306 because it is related to its basic reproductive number, reflecting the ability of the virus

307 to replicate, persist and spread within hosts and in the population [44–47]. Therefore,

308 we estimated the transmission of each haplotype by interrogating worldwide SARS-

309 CoV-2 sequence data. This enabled the group-wise quantification of the minimum

310 number of emergence events. We observed limited cross-border transmission, as 89 %

311 of all transmission clusters were contained in a single country. The average within-

312 cluster collection date window was 30 ± 44 days (Supplemental Figure 1). We found

313 vast differences in the number of clusters among haplotypes (see Table 1). In fact, we 314 observed that this indicator, as well as the number of emergences, tended to increase linearly with the number of observations (both $R^2 = 1.0$, with $p = 2.2 \cdot 10^{-16}$ and p =315 $4.7 \cdot 10^{-16}$, respectively). To mitigate this effect and better evaluate differences in 316 317 transmission of the most frequent haplotypes, we estimated their transmission fitness by 318 adjusting their cluster sizes to account for variation in sampling effort and prevalence 319 across different time periods and geographic regions. We found that the two haplotypes 320 with the highest median estimated transmission fitness bore repaired deletions, both on 321 Delta (haplotype XIII) and Alpha (haplotype IV) genomic backgrounds (Figure 3A).

Figure 3. Differences in the estimated transmission fitness (A, B) and host age (C, D) between five Alpha and Delta combinatorial haplotype groups (A, C), and all six Alpha and Omicron BA.1 deletion repair haplotypes (B, D). Colour gradients indicate the variant representing each haplotype background. The differences between and within haplotypes were assessed using Wilcoxon rank-sum tests (ns: p > 0.05; *: $p \le 0.05$; *:: $p \le 0.01$; ***: $p \le 0.001$; ****: $p \le 0.0001$). Only significant differences in panels A and B are displayed for clarity. Note that the haplotype corresponding to the Alpha variant with repaired S: Δ H69/V70 is missing from panel B due to its lack of transmission.

We sought to identify possible adaptive drivers among the clinical variables

331 associated with these samples. We did not detect any significant differences related to

330

332	host sex. However, we found an association of host age with deletion repair in Alpha
333	background: viruses assigned to haplotype IV infected older hosts (average 43 ± 21
334	years old) compared to the rest of NTD combinations (average difference of 6 ± 1 years;
335	all p < 0.005, Wilcoxon rank-sum test), except V (p = 0.085, Wilcoxon rank-sum test).
336	These differences are presented in Supplemental Figure 3A. We then assessed whether
337	our results could be biased by the epidemiology and demography of the Alpha and
338	Delta variants, which led to distinct spread patterns among different population groups.
339	We confirmed that host age in haplotype IV was also higher when compared to samples
340	that were collected in the same time window but not assigned to haplotype IV, or any of
341	the remaining combinatorial haplotypes (both $p = 1.6 \cdot 10^{-6}$, Wilcoxon rank-sum test;
342	Supplemental Figure 3B). Thus, sampling bias is unlikely to be the primary driver of the
343	observed age differences between combinatorial haplotypes. Additionally, the
344	associated host age was higher in samples that were involved in transmission events
345	(Figure 3B). This points to the non-essentiality of S: Δ H69/V70 and S: Δ Y144 for the
346	infection of older individuals —who are often immunocompromised— in the Alpha
347	background. However, it could be argued that certain outbreaks could skew the age
348	distribution —for instance, if several large outbreaks occurred in elderly care facilities.
349	To control for this factor, we analysed the within-location cluster size distribution at a
350	regional level and found that hosts were generally older, but there were no dominant
351	transmission events (Supplemental Figure 3C and 3D). Based on these findings, we find
352	no evidence to suggest that age effects were driven by a few specific outbreaks.
353	To summarize, haplotypes featuring repaired deletions in the NTD exhibit an
354	increased number of observations and transmission capabilities among all combinatorial
355	possibilities, except for the established variants of concern. Furthermore, our findings
356	show a pronounced difference in distribution and fitness between combinatorial

- 357 variation of Alpha and Delta, emphasizing the significance of genetic context in the
- 358 evaluation of genotype-phenotype relationships.

359 Common patterns of NTD deletion repair confer different degrees of viral

360 success on Alpha and Omicron BA.1 backgrounds

- 361 The Omicron BA.1 lineage emerged after November 2021 and rapidly outcompeted the
- 362 Delta variant. The BA.1 lineage is defined by deletions S:ΔH69/V70 and
- 363 S: Δ V143/Y145, which map to Alpha-defining deletions (see Figure 1A) and are known
- to also confer adaptive advantages in Alpha viruses [14,42]. Building upon our prior
- 365 findings about the simultaneous repair of these two deletions in the Alpha variant
- 366 (haplotype IV), we interrogated the possibility of similar repairs occurring in the
- 367 Omicron BA.1 genetic background by investigating different patterns of deletion repair
- 368 of epidemiological significance and the drivers behind their emergence. We performed
- 369 an analogous global survey followed by a phylogenetic estimation of viral success of
- 370 individual and dual deletion repairs in Alpha and Omicron BA.1 backgrounds. Due to
- the increased number of BA.1-defining markers compared to previous hegemonic
- 372 variants of concern (see Figure 1A), we based the survey solely on the presence or
- 373 absence (i.e. presence of the ancestral state) of the specific deletions of interest (Figure
- 1D). We identified 13,130 samples that carried repaired NTD deletions in Alpha or
- 375 Omicron BA.1 backgrounds as of June 2022 (Supplemental Table 2).
- In terms of the number of observations, there was a clear disparity in repairpatterns between Alpha and Omicron BA.1 samples. The most frequently observed
- 378 group consisted of samples exhibiting the repaired $S:\Delta H69/V70$ in BA.1 background,
- followed by S: Δ Y144 repair in Alpha, while the remaining repair patterns were
- 380 significantly less frequently observed (Table 2). The overall number of observations of
- 381 Omicron BA.1 viruses with double repair was predictably lower than that of the

382	predominant parental lineage, as the sampling window was nearly two-thirds narrower
383	compared to that of other groups (Figure 2), but similar to that of combinatorial
384	haplotypes in our previous analysis. We measured an average within-cluster collection
385	date window of 25 ± 31 days, with 87 % of clusters showing within-border transmission
386	(Supplemental Figure 2). The BA.1 haplotype bearing the S: Δ H69/V70 single repair
387	had the highest median transmission fitness, while Alpha with the S: Δ H69/V70 single
388	repair was not transmitted at all (Figure 3C). Incidentally, repair of S: Δ H69/V70 had no
389	significant impact on transmission fitness when co-occurring with repaired S: Δ Y144 in
390	Alpha background. In turn, BA.1 with both repairs had a lower median transmission
391	fitness than Alpha with both repairs. This was also the case of BA.1 with the
392	S: Δ V143/Y145 single repair compared with the analogous Alpha with the S: Δ Y144
393	single repair.
394	We further investigated the potential role of host age as an adaptive determinant
395	of NTD deletion repair in Alpha and BA.1 background. We observed a significant
396	difference in host age for the Alpha haplotype with both repairs, with transmitted
397	samples exhibiting an elevated age compared to non-transmitted samples. This finding
398	paralleled our previous observations for haplotype IV, which is genetically analogous
399	(see Figures 1A and 1D for reference). However, this pattern did not hold for the
400	Omicron BA.1 haplotype with both deletion repairs. In contrast, the single repair of
401	S: Δ H69/V70 in BA.1 did show such an association (Figure 3D). In short, we observed a
402	lack of correspondence in the population effect of NTD deletion repairs in both
403	backgrounds. This fact, combined with the well-described effect of deletions in Alpha
404	background (reviewed later in the Discussion section), suggested that the genetic
405	background in which these deletions emerge is likely to have a differential functional
406	impact.

407 NTD deletion repair in Omicron BA.1 background has a non-accumulative

408 effect on viral phenotype

- 409 To investigate whether certain viral characteristics exist that act as drivers of deletion
- 410 repair in Omicron, we analysed the effect of deletion repair patterns in the Omicron
- 411 BA.1 using pseudotyped VSV bearing BA.1 spike proteins with repaired $S:\Delta H69/V70$,
- 412 $S:\Delta V143/Y145$, or both. Specifically, we examined the efficiency of virus production,
- 413 thermal stability, surface expression, susceptibility to antibody neutralization, and
- 414 fusogenicity. To assess virus production, VSV was pseudotyped with all spike
- 415 constructs under identical conditions at the same time, and the amount of virus
- produced titrated on Vero E6 cells (Figure 4A). 416

417 418 419 420 421 422 423 Figure 4. Experimental assessment of the effect of repairing NTD deletions in Omicron BA.1 background. (A) Comparison of viral titres obtained for each spike variant using pseudotyped VSV on the indicated cell line. (B) Comparison of the temperature resulting in 50% inactivation of pseudotyped VSV carrying the indicated S protein. (C) Surface expression of the spike protein in transfected HEK293T cells quantified using flow cytometry. (D) Reciprocal 50% neutralization titres (NT50) of sera from convalescent and vaccinated individuals. (E) Relative ability of each spike variant to drive cell-cell fusion relative to the Wuhan-Hu-1 spike. (F) Summary of the log2- $4\bar{2}4$ transformed fold change for each spike variant relative to that of BA.1 in terms of virus production, fusogenicity, 425 NT50, surface expression and 50% inactivating temperature. Subfigures A-E represent the median and interquartile 426 427 range of at least three replicates. Differences were assessed using Wilcoxon rank-sum tests (ns: p > 0.05; *: $p \le 0.05$; **: $p \le 0.01$; ***: $p \le 0.001$).

428	Virus production in Vero E6 cells was not affected by S: Δ V143/Y145 repair (0.85-fold;
429	$p = 0.06$) but was significantly reduced upon repairing S: Δ H69/V70 (0.26-fold; $p =$
430	$6.6 \cdot 10^{-4}$) and the repair of both deletions (0.30-fold; p = $1.6 \cdot 10^{-4}$). A similar effect was
431	observed when the titre of the virus was evaluated in cells expressing the TMPRSS2 co-
432	receptor, indicating a substantial negative effect of S: Δ H69/V70 repair by itself on virus
433	production. We assessed whether this was the result of reduced thermal stability of the
434	spike proteins by obtaining the temperature resulting in a 50% reduction of virus titre
435	(i.e. 50% inactivation temperature; Figure 4B). No significant differences were
436	observed, suggesting stability was not the driver of these differences.
437	Next, we examined whether the effects on virus production in Vero E6 cells stemmed
438	from altered cell expression of the different constructs by flow cytometry, using
439	polyclonal sera from four individuals (Figure 4C). We did not detect differences in the
440	median cell surface expression of the spike protein between the canonical BA.1 protein
441	and any deletion repair haplotype. However, the repair of S: Δ V143/Y145 resulted in
442	higher expression than S: Δ H69/V70 (2.2-fold; p = 0.0030), and than the double repair
443	(2.1-fold; $p = 0.032$), resembling the effect observed with virus production.
444	Then, we questioned whether deletion repair affected neutralization by polyclonal sera
445	from convalescent donors from the first epidemic wave in Spain and those dually
446	vaccinated with the Comirnaty mRNA vaccine ($n = 6$ each; Figure 4D). Significant
447	increases in susceptibility to neutralization in sera from vaccinated individuals against
448	viruses with repaired S: Δ V143/Y145 (2.1-fold; p = 0.011) or both S: Δ H69/V70 and
449	S: Δ V143/Y145 repaired (1.5-fold; p = 0.020) were observed. A similar trend was

- 450 observed with convalescent sera, but statistical significance was not reached (p = 0.19
- 451 and p = 0.42, respectively) due to higher intra sample variability. Thus, these results
- 452 indicate that increased neutralization is driven by the repair of $S:\Delta V143/Y145$ in BA.1

453 background.

454	Finally, as cell to cell spread via fusion of the plasma membrane could potentially
455	reduce exposure to neutralizing antibodies, we examined whether deletion repair could
456	alter the ability of the spike protein to fuse cells (Figure 4E). Interestingly, the repair of
457	S: Δ V143/Y145 increased cell fusion relative to the BA.1 spike protein (1.5-fold; p =
458	0.026), while the repair of both S: Δ H69/V70 and S: Δ V143/Y145 led to a decrease of
459	more than 50% in the average fusogenicity (0.42-fold; $p = 0.021$). The presence of
460	S: Δ H69/V70 by itself did not seem to play a role in cell-cell fusion in a BA.1
461	background.

462 **Discussion**

463 Deletions in the SARS-CoV-2 genome have a significant impact on viral adaptation and
464 fitness, often surpassing the effects of single nucleotide variants (SNVs)

465 [9,14,16,42,48]. In fact, deletions in the NTD region of the spike protein are fixed in

466 prominent viral variants. Thus, our understanding of the repair patterns of deletion is

467 crucial for elucidating the genetic and phenotypic characteristics of the variants of

468 concern. In this work, we demonstrate that repairing these deletions can alter viral

469 characteristics and potentially influence the success of specific viral haplotypes. Our

470 findings provide valuable insights into the genetic and phenotypic characteristics of

471 these variants, shedding light on the factors driving their emergence and transmission

472 dynamics.

We first examined the global distribution of SARS-CoV-2 samples carrying
different combinatorial patterns of spike NTD marker segments in the Alpha and Delta
variants. Upon examination of the genetic variations among the most prevalent
combinatorial haplotypes, it became apparent that only a single haplotype is assigned to

477	the Alpha variant: the one bearing repaired S: Δ H69/V70 and S: Δ Y144 (IV, n = 736).
478	The fact that only one combinatorial haplotype was derived from the Alpha lineage —
479	compared to all the rest derived from Delta-could imply that Alpha viruses were more
480	constrained regarding NTD mutation interactions, although the difference in prevalence
481	and time frames between variants may have also played a role. Indeed, Alpha bearing
482	S: Δ E156/F157-R158G (X) and Delta bearing S: Δ H69/V70 and S: Δ Y144 (XI) share an
483	NTD that contains all Alpha and Delta lineage-defining changes. However, the former
484	has never been detected $(n = 0)$, while the latter is the fourth most abundant
485	combinatorial haplotype (n = 304). The fact that an Alpha spike with S: Δ E156/F157-
486	R158G has never been recorded might be suggestive of an epistatic incompatibility with
487	infection success. It might also be related to these sites mapping to the same b-hairpin in
488	the NTD supersite as S:144 [49], which is typically deleted in Alpha. This also ties to
489	previous suggestions of host and variant-specific structural restrictions being imposed
490	strictly by the length of NTD loops [9] and emphasizes the significance of genetic
491	context in genotype-phenotype relationships.
492	Furthermore, we investigated clinical variables associated with these samples,
493	and found an association between host age and deletion repair in the Alpha background,
494	with Alpha viruses with repaired S: Δ H69/V70 and S: Δ Y144 being more prevalent
495	among older individuals. This suggests a non-essential role of certain deletions in
496	elderly hosts. The association between deletion repair and age was further supported by
497	the higher age in samples involved in transmission events. Besides, the association was
498	not driven by just a few outbreaks. Focusing on these deletions, both S: Δ H69/V70 and
499	S: Δ Y144 map to the NTD antigenic supersite [8,49] and have been recurrently
500	identified in immunocompromised individuals with chronic infections before
501	widespread vaccination against COVID-19 [7,10,11,14]. Earlier in the pandemic, Meng

502	et al. [42] reported the independent emergence of S: Δ H69/V70 after the occurrence of
503	infectivity-impairing amino acid changes that, in turn, could promote immune escape or
504	stronger receptor-binding affinity. Interestingly, this study also showed that
505	S: Δ H69/V70 compensated for the deleterious effect of these mutations in a surrogate
506	system by increasing viral infectivity and cell-cell fusogenicity in Alpha background.
507	Previous research has pointed out that variation in the NTD can act as a fine-tuning
508	vehicle for accommodating diverse pressures [9]. During the initial emergence of
509	S: Δ H69/V70 itself, the lack of vaccination limited selective pressures [50]. In this
510	perspective, repair of S: Δ H69/V70 and S: Δ Y144 might be able to stay as a permissive
511	mutation in immunocompromised patients with a minimally constrained adaptive
512	landscape. This, in turn, could facilitate the further acquisition of otherwise deleterious
513	mutations.
514	In the second part of our study, we focused on the emergence of repaired
515	deletions in the Omicron BA.1 lineage compared to the Alpha variant, finding striking
516	differences. We detected a higher number of cases with repaired deletions in lineage
517	BA.1 than in Alpha. Interestingly, BA.1 with repaired S: Δ H69/V70 exhibited the
518	highest transmission fitness, while Alpha with the same repair did not transmit to any
519	extent. Additionally, we did not detect any age association with repaired deletion in
520	Omicron background like we detected in Alpha. This could be due to several factors,
521	such as the influence of viral genetic context or the different immune status of the
522	population when Alpha and Omicron BA.1 were circulating.
523	Survey efforts are expected to be biased by geographic and temporal differences
524	in sequencing efforts and lineage prevalence, and thus the phylogenetic analysis of
525	transmission and emergence may not capture all transmission events or account for
526	other epidemiological factors that affect viral success. However, phylogenetic

527 estimation of transmission and emergence rates effectively enabled us to overcome 528 these biases and better understand viral spread dynamics. The consistency between our 529 two methodologies for estimating transmission (operating under maximum likelihood 530 and maximum parsimony) reassures our inferences about the genetic relationships and 531 evolutionary dynamics within our dataset. In summary, our exhaustive approach 532 revealed a wide variation in the number of observations of these haplotypes, 533 highlighting their differences in their success and persistence over time. Overall, these 534 results demonstrate the distinct effect on viral success of common NTD markers 535 depending on their genomic background and lineage, highlighting once more the critical 536 importance of the genetic context when describing the genotype-phenotype relationship 537 of mutations. 538 To gain further insights into the viral characteristics driving deletion repair in 539 Omicron BA.1 background, we conducted an array of *in vitro* experiments using spike 540 proteins bearing different deletion repair patterns. We assessed virus production, 541 thermal stability, surface expression, susceptibility to neutralization, and fusogenicity of 542 each spike haplotype. The similarity in cell surface expression of the engineered spike 543 protein compared to the canonical spike rejected the possibility of other viral 544 phenotypes in our surrogate system being dependent solely on this factor. Our results 545 show that deletion repair patterns have an impact on virus production and infectivity, 546 with repair of $S:\Delta H69/V70$ leading to reduced virus titres by itself. This viral phenotype 547 parallels that of the Alpha spike protein, with earlier studies reporting that repair of 548 S: Δ H69/V70 in this background results in a decrease in infectivity and spike 549 incorporation into virions [42]. We did not observe differences in thermal stability with 550 the BA.1 protein, suggesting that the effect of S: Δ H69/V70 and S: Δ V143/Y145 repair 551 does not affect full-protein stability.

552	However, deletion repair did affect sera neutralization. In our BA.1 background,
553	repaired S: Δ V143/Y145 resulted in an increase in sensitivity to neutralization by
554	polyclonal sera obtained from vaccinated individuals, in line with previous findings of
555	$S:\Delta Y144$ facilitating escape from NTD neutralizing antibodies in the Alpha background
556	[51]. The same was not observed for sera from convalescent, "first-wave" patients. In
557	turn, repair of S: Δ H69/V70 did not affect neutralization. This paralleled prior research
558	on Alpha and other earlier variants showing that neither S: Δ H69/V70 nor its repair
559	influenced the spike sensitivity to NTD neutralizing antibodies [9,42,51]. These results
560	point to the variant-independent influence of NTD variability on immune effects.
561	Incidentally, the association of higher host age with viral transmission of S: Δ H69/V70
562	repair in BA.1 background may be attributed to a lack immune selection at the S:69/70
563	sites following vaccination efforts. This is coherent with deletion repair being able to
564	emerge in elderly patients with reduced adaptive constraints, potentially facilitating
565	functional adaptation during prolonged infections.
566	Research has shown that cell-cell fusion and subsequent formation of syncytia
567	can be mediated by viral membrane glycoproteins [52,53] such as the spike protein
568	found in SARS-CoV-2. In fact, this is a key feature of SARS-CoV-2 infection
569	[41,54,55]. In line with prior research, our results point to a lower fusogenicity of the
570	unaltered BA.1 spike protein compared with Wuhan-Hu-1, which has been attributed to
571	its inefficient spike cleavage and unfavoured TMPRSS2-mediated cell entry [42].
572	Interestingly, we found that deletion repair patterns exerted a non-accumulative
573	influence on the fusogenicity of the BA.1 spike protein. Proteins with repaired
574	S: Δ V143/Y145 alone promoted higher fusogenicity, while S: Δ H69/V70 alone did not
575	have a significant impact. However, repair of both deletions led to a significant decrease
576	in fusogenicity. In contrast, the spike protein of the Alpha variant has been shown to

577	exhibit an increased potential for cell-to-cell fusion. Nevertheless, upon S: Δ H69/V70
578	repair, the fusogenicity is reduced to levels comparable to the Wuhan-Hu-1 spike [42].
579	Regardless, our surrogate system might not fully reflect the complex interactions
580	of the spike protein with host cells and the immune system in vivo, and other regions of
581	the spike protein or the viral genome might also contribute to SARS-CoV-2 fitness and
582	adaptation. Besides, despite our attempts to account for demographic differences
583	between variants, our analysis could be affected by the non-random nature of the
584	sequences available in GISAID. The GISAID SARS-CoV-2 database is a remarkable
585	initiative and tool for monitoring, which has greatly advanced the knowledge of the
586	pandemic. Still, it also has significant limitations in terms of the origin and distribution
587	of the sequences that are submitted, and it cannot be assumed to reflect unbiased
588	genome surveillance. We also acknowledge that our suggestion of epistatic
589	incompatibility and genetic constraints is not conclusive, since we have limited our
590	analysis to a specific region of the S gene to narrow the number of possible
591	combinatorial haplotypes. A more comprehensive analysis could consider the whole
592	gene, or even the entire genome, thus requiring more computational and experimental
593	resources and the availability of sufficiently curated sequence data.
594	Our study highlights the importance of deletion repair in the spike protein NTD
595	in SARS-CoV-2 and its impact on viral fitness, transmission, and clinical characteristics
596	depending on the genetic context. We have provided novel insights into NTD marker
597	combinations in the Alpha and Delta variants, the repair patterns of NTD deletions in
598	the Alpha and Omicron BA.1 backgrounds, and the phenotypic consequences of NTD
599	deletion repair in the Omicron BA.1 background. There have been efforts to
600	characterize the variability of the S protein NTD through full swap assays, comparing
601	the ancestral (Wuhan-Hu-1) spike with that of Alpha and Omicron BA.1 [9], Delta and

602	Omicron BA.1 and BA.2 [42] and even with more distant virus like SARS-CoV [56].
603	However, to our best knowledge, no previous study has performed an exhaustive
604	combinatorial approach to characterize each separate marker in each genomic context.
605	By comparing the outcomes of deletion repair in different variants, we aim to gain
606	insights into the specific adaptive characteristics and genomic context that influence the
607	genotype-phenotype relationships. Our findings reveal that repair of specific deletions
608	in different genetic backgrounds can be driven by distinct phenotypic traits, such as
609	enhanced viral transmission, altered host age distribution, and changes in viral
610	characteristics, including fusogenicity, infectivity and susceptibility to neutralization.
611	Understanding these genotype-phenotype relationships can provide valuable insights
612	into the evolutionary dynamics and adaptation of SARS-CoV-2 variants, aiding in the
613	development of effective control strategies and therapeutic interventions. Future studies
614	building upon these findings will contribute to the development of effective strategies to
615	monitor and mitigate the impact of NTD deletions in emerging SARS-CoV-2 variants.

616 Acknowledgements

617 We thank Dr. Óscar González Recio (INIA-CSIC, Spain) for providing sequencing data

- from a representative BA.1 sample with S:142G and repaired NTD deletions (GISAID
- 619 accession code: EPI_ISL_9805648), Dr. Luis Enjuanes (CNB, Spain) for providing
- 620 Vero E6 cells, and Dr. Markus Hoffman (German Primate Center,
- 621 Goettingen/Germany) for providing the hACE2 plasmid. We also thank Francisco José
- 622 Martínez (IBV-CSIC, Spain) for comments on phylogeny visualization and
- analysis of transmission clusters. The computations were performed on the HPC cluster
- 624 Garnatxa at the Institute for Integrative Systems Biology (I²SysBio). The I²SysBio is a
- 625 is a joint collaborative research institute involving the University of Valencia (UV) and
- 626 the Spanish National Research Council (CSIC). We gratefully acknowledge all data

- 627 contributors, i.e., the Authors and their Originating laboratories responsible for
- 628 obtaining the specimens, and their Submitting laboratories for generating the genetic
- 629 sequence and metadata and sharing via the GISAID Initiative, on which this research is
- 630 based.

631 Funding details

- 632 This research work was funded by the European Commission NextGenerationEU
- 633 (Regulation EU 2020/2094), through CSIC's Global Health Platform (PTI+ Salud
- Global) to MC, RG, IC and FGC. MAH is supported by the Generalitat Valenciana and
- 635 the European Social Fund "ESF Investing in your future" through grant
- 636 CIACIF/2022/333. This work was also a part of projects CNS2022-135116 (MC) and
- 637 CNS2022-135100 (RG) funded by MCIN/AEI/10.13039/501100011033 and the
- 638 European Union NextGenerationEU/PRTR.

639 Ethics statement

- 640 Sera samples for the biological characterization of BA.1 deletion repair were obtained
- from the La Fe University and Polytechnic Hospital of Valencia and were collected
- after informed written consent had been obtained, with approval by the ethical
- 643 committee and institutional review board (registration number 2020-123-1).

644 Contributions

- 645 MAH, BND, PRR and MC conceived the theoretical framework. MAH and BND
- 646 devised the initial idea. MAH and MC conceived the second part of the study. MAH
- 647 implemented and performed the data retrieval, data curation and computations. JZ, BG,
- and RG designed the experiments. JZ and BG performed the experiments. MAH carried
- out the statistical analyses. MG and CAG contributed biological samples. MAB did
- 650 project management. MAH drafted the manuscript with support from BDN, PRR, RG

- and MC. FGC aided in interpreting the results. MAH, PRR, BND, RG, FGC, IC and
- 652 MC discussed the results and commented on the manuscript. MC supervised the project.

653 **Declaration of interest statement**

The authors report there are no competing interests to declare.

655 **References**

- 656 [1] Rambaut A, Holmes EC, O'Toole Á, et al. A dynamic nomenclature proposal
 657 for SARS-CoV-2 lineages to assist genomic epidemiology. Nat Microbiol.
 658 2020;5:1403–1407.
- 659 [2] Chen Z, Chong KC, Wong MCS, et al. A global analysis of replacement of
 660 genetic variants of SARS-CoV-2 in association with containment capacity and
 661 changes in disease severity. Clin Microbiol Infect. 2021;27:750–757.
- 662 [3] da Silva Francisco Junior R, Lamarca AP, de Almeida LGP, et al. Turnover of
 663 SARS-CoV-2 Lineages Shaped the Pandemic and Enabled the Emergence of
 664 New Variants in the State of Rio de Janeiro, Brazil. Viruses. 2021;13:2013.
- 665 [4] Letko M, Marzi A, Munster V. Functional assessment of cell entry and receptor
 666 usage for SARS-CoV-2 and other lineage B betacoronaviruses. Nat Microbiol.
 667 2020;5:562–569.
- Harvey WT, Carabelli AM, Jackson B, et al. SARS-CoV-2 variants, spike
 mutations and immune escape. Nat Rev Microbiol. 2021;19:409–424.
- 670 [6] V'kovski P, Kratzel A, Steiner S, et al. Coronavirus biology and replication:
 671 implications for SARS-CoV-2. Nat Rev Microbiol. 2021;19:155–170.
- 672 [7] Kemp SA, Collier DA, Datir RP, et al. SARS-CoV-2 evolution during treatment
 673 of chronic infection. Nature. 2021;592:277–282.
- 674 [8] McCallum M, De Marco A, Lempp FA, et al. N-terminal domain antigenic
 675 mapping reveals a site of vulnerability for SARS-CoV-2. Cell. 2021;184:2332676 2347.e16.
- 677 [9] Cantoni D, Murray MJ, Kalemera MD, et al. Evolutionary remodelling of N678 terminal domain loops fine-tunes SARS-CoV-2 spike. EMBO Rep.
- 679 2022;n/a:e54322.

680	[10]	Avanzato VA, Matson MJ, Seifert SN, et al. Case Study: Prolonged Infectious
681		SARS-CoV-2 Shedding from an Asymptomatic Immunocompromised
682		Individual with Cancer. Cell. 2020;183:1901-1912.e9.
683	[11]	Choi B, Choudhary MC, Regan J, et al. Persistence and Evolution of SARS-
684		CoV-2 in an Immunocompromised Host. N Engl J Med. 2020;383:2291–2293.
685	[12]	Minskaia E, Hertzig T, Gorbalenya AE, et al. Discovery of an RNA virus 3'->5'
686		exoribonuclease that is critically involved in coronavirus RNA synthesis. Proc
687		Natl Acad Sci U S A. 2006;103:5108–5113.
688	[13]	Denison MR, Graham RL, Donaldson EF, et al. Coronaviruses: an RNA
689		proofreading machine regulates replication fidelity and diversity. RNA Biol.
690		2011;8:270–279.
691	[14]	McCarthy KR, Rennick LJ, Nambulli S, et al. Recurrent deletions in the SARS-
692		CoV-2 spike glycoprotein drive antibody escape. Science. 2021;371:1139–1142.
693	[15]	Planas D, Veyer D, Baidaliuk A, et al. Reduced sensitivity of SARS-CoV-2
694		variant Delta to antibody neutralization. Nature. 2021;596:276-280.
695	[16]	Mishra T, Dalavi R, Joshi G, et al. SARS-CoV-2 spike E156G/Δ157-158
696		mutations contribute to increased infectivity and immune escape. Life Sci
697		Alliance. 2022;5:e202201415.
698	[17]	Tamura T, Ito J, Uriu K, et al. Virological characteristics of the SARS-CoV-2
699		XBB variant derived from recombination of two Omicron subvariants. Nat
700		Commun. 2023;14:2800.
701	[18]	Zhang X, Chen L-L, Ip JD, et al. Omicron sublineage recombinant XBB evades
702		neutralising antibodies in recipients of BNT162b2 or CoronaVac vaccines.
703		Lancet Microbe. 2022;0.
704	[19]	Mykytyn AZ, Rosu ME, Kok A, et al. Antigenic mapping of emerging SARS-
705		CoV-2 omicron variants BM.1.1.1, BQ.1.1, and XBB.1. Lancet Microbe.
706		2023;0.
707	[20]	Uriu K, Ito J, Zahradnik J, et al. Enhanced transmissibility, infectivity, and
708		immune resistance of the SARS-CoV-2 omicron XBB.1.5 variant. Lancet Infect
709		Dis. 2023;23:280–281.
710	[21]	Yue C, Song W, Wang L, et al. ACE2 binding and antibody evasion in enhanced
711		transmissibility of XBB.1.5. Lancet Infect Dis. 2023;23:278-280.
712	[22]	Khare S, Gurry C, Freitas L, et al. GISAID's Role in Pandemic Response. China
713		CDC Wkly. 2021;3:1049–1051.

714	[23]	Hadfield J, Megill C, Bell SM, et al. Nextstrain: real-time tracking of pathogen
715		evolution. Bioinformatics. 2018;34:4121-4123.
716	[24]	Aksamentov I, Roemer C, Hodcroft EB, et al. Nextclade: clade assignment,
717		mutation calling and quality control for viral genomes. J Open Source Softw.
718		2021;6:3773.
719	[25]	Sanderson T, Barrett JC. Variation at Spike position 142 in SARS-CoV-2 Delta
720		genomes is a technical artifact caused by dropout of a sequencing amplicon.
721		Wellcome Open Res. 2021;6:305.
722	[26]	R Core Team. R: A Language and Environment for Statistical Computing
723		[Internet]. Vienna, Austria: R Foundation for Statistical Computing; 2021.
724		Available from: https://www.R-project.org/.
725	[27]	Wickham H, Averick M, Bryan J, et al. Welcome to the tidyverse. J Open
726		Source Softw. 2019;4:1686.
727	[28]	Ou J, Zhu LJ. trackViewer: a Bioconductor package for interactive and
728		integrative visualization of multi-omics data. Nat Methods. 2019;16:453-454.
729	[29]	Paradis E. Analysis of haplotype networks: The randomized minimum spanning
730		tree method. Methods Ecol Evol. 2018;9:1308–1317.
731	[30]	Paradis E. pegas: an R package for population genetics with an integrated-
732		modular approach. Bioinformatics. 2010;26:419-420.
733	[31]	McBroome J, Thornlow B, Hinrichs AS, et al. A Daily-Updated Database and
734		Tools for Comprehensive SARS-CoV-2 Mutation-Annotated Trees. Mol Biol
735		Evol. 2021;38:5819–5824.
736	[32]	Turakhia Y, Thornlow B, Hinrichs AS, et al. Ultrafast Sample placement on
737		Existing tRees (UShER) enables real-time phylogenetics for the SARS-CoV-2
738		pandemic. Nat Genet. 2021;53:809-816.
739	[33]	Fu L, Niu B, Zhu Z, et al. CD-HIT: accelerated for clustering the next-
740		generation sequencing data. Bioinformatics. 2012;28:3150-3152.
741	[34]	Minh BQ, Schmidt HA, Chernomor O, et al. IQ-TREE 2: New Models and
742		Efficient Methods for Phylogenetic Inference in the Genomic Era. Teeling E,
743		editor. Mol Biol Evol. 2020;37:1530–1534.
744	[35]	Ruiz-Rodriguez P, Francés-Gómez C, Chiner-Oms Á, et al. Evolutionary and
745		Phenotypic Characterization of Two Spike Mutations in European Lineage 20E
746		of SARS-CoV-2. mBio. 2021;12:e02315-21.

747	[36]	Kassambara A. ggpubr: "ggplot2" Based Publication Ready Plots. 2023.
748		Available from: https://rpkgs.datanovia.com/ggpubr/.
749	[37]	Giménez E, Albert E, Zulaica J, et al. Severe Acute Respiratory Syndrome
750		Coronavirus 2 Adaptive Immunity in Nursing Home Residents Following a
751		Third Dose of the Comirnaty Coronavirus Disease 2019 Vaccine. Clin Infect
752		Dis. 2022;75:e865–e868.
753	[38]	Gozalbo-Rovira R, Gimenez E, Latorre V, et al. SARS-CoV-2 antibodies, serum
754		inflammatory biomarkers and clinical severity of hospitalized COVID-19
755		patients. J Clin Virol. 2020;131:104611.
756	[39]	Grzelak L, Temmam S, Planchais C, et al. A comparison of four serological
757		assays for detecting anti-SARS-CoV-2 antibodies in human serum samples from
758		different populations. Sci Transl Med. 2020;12:eabc3103.
759	[40]	García-Murria MJ, Expósito-Domínguez N, Duart G, et al. A Bimolecular
760		Multicellular Complementation System for the Detection of Syncytium
761		Formation: A New Methodology for the Identification of Nipah Virus Entry
762		Inhibitors. Viruses. 2019;11:229.
763	[41]	Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 Cell Entry
764		Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven
765		Protease Inhibitor. Cell. 2020;181:271-280.e8.
766	[42]	Meng B, Kemp SA, Papa G, et al. Recurrent emergence of SARS-CoV-2 spike
767		deletion H69/V70 and its role in the Alpha variant B.1.1.7. Cell Rep.
768		2021;35:109292.
769	[43]	McCallum M, Walls AC, Sprouse KR, et al. Molecular basis of immune evasion
770		by the Delta and Kappa SARS-CoV-2 variants. Science. 2021;374:1621–1626.
771	[44]	Domingo E. Chapter 7 - Long-Term Virus Evolution in Nature. In: Domingo E,
772		editor. Virus Popul. Boston: Academic Press; 2016. p. 227-262.
773	[45]	Achaiah NC, Subbarajasetty SB, Shetty RM. R0 and Re of COVID-19: Can We
774		Predict When the Pandemic Outbreak will be Contained? Indian J Crit Care Med
775		Peer-Rev Off Publ Indian Soc Crit Care Med. 2020;24:1125–1127.
776	[46]	Zhao L, Wymant C, Blanquart F, et al. Phylogenetic estimation of the viral
777		fitness landscape of HIV-1 set-point viral load. Virus Evol. 2022;8:veac022.
778	[47]	Chaudhry MRA. Chapter 5 - Coronavirus infection outbreak: comparison with
779		other viral infection outbreak. In: Qureshi AI, Saeed O, Syed U, editors.
780		Coronavirus Dis. Academic Press; 2022. p. 47–57.

781	[48]	Venkatakrishnan AJ, Anand P, Lenehan PJ, et al. Expanding repertoire of
782		SARS-CoV-2 deletion mutations contributes to evolution of highly transmissible
783		variants. Sci Rep. 2023;13:257.
784	[49]	Cerutti G, Guo Y, Zhou T, et al. Potent SARS-CoV-2 neutralizing antibodies
785		directed against spike N-terminal domain target a single supersite. Cell Host
786		Microbe. 2021;29:819-833.e7.
787	[50]	MacLean OA, Lytras S, Weaver S, et al. Natural selection in the evolution of
788		SARS-CoV-2 in bats created a generalist virus and highly capable human
789		pathogen. PLoS Biol. 2021;19:e3001115.
790	[51]	Graham C, Seow J, Huettner I, et al. Neutralization potency of monoclonal
791		antibodies recognizing dominant and subdominant epitopes on SARS-CoV-2
792		Spike is impacted by the B.1.1.7 variant. Immunity. 2021;54:1276-1289.e6.
793	[52]	Li W, Moore MJ, Vasilieva N, et al. Angiotensin-converting enzyme 2 is a
794		functional receptor for the SARS coronavirus. Nature. 2003;426:450-454.
795	[53]	Tseng C-TK, Tseng J, Perrone L, et al. Apical Entry and Release of Severe
796		Acute Respiratory Syndrome-Associated Coronavirus in Polarized Calu-3 Lung
797		Epithelial Cells. J Virol. 2005;79:9470–9479.
798	[54]	Buchrieser J, Dufloo J, Hubert M, et al. Syncytia formation by SARS-CoV-2-
799		infected cells. EMBO J. 2020;39:e106267.
800	[55]	Bussani R, Schneider E, Zentilin L, et al. Persistence of viral RNA, pneumocyte
801		syncytia and thrombosis are hallmarks of advanced COVID-19 pathology.
802		EBioMedicine. 2020;61:103104.
803	[56]	Qing E, Kicmal T, Kumar B, et al. Dynamics of SARS-CoV-2 Spike Proteins in
804		Cell Entry: Control Elements in the Amino-Terminal Domains. mBio.
805		2021;12:10.1128/mbio.01590-21.