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Abstract 

 

The COVID-19 pandemic is caused by the coronavirus SARS-CoV-2, which jumped into the 

human population in late 2019 from a currently uncharacterised animal reservoir. Due to this 

extremely recent association with humans, SARS-CoV-2 may not yet be fully adapted to its 

human host. This has led to speculations that some lineages of SARS-CoV-2 may be evolving 

towards higher transmissibility. The most plausible candidate mutations under putative 

natural selection are those which have emerged repeatedly and independently (homoplasies). 

Here, we formally test whether any of the recurrent mutations that have been observed in 

SARS-CoV-2 are significantly associated with increased viral transmission. To do so, we develop 

a phylogenetic index to quantify the relative number of descendants in sister clades with and 

without a specific allele. We apply this index to a carefully curated set of recurrent mutations 

identified within a dataset of 46,723 SARS-CoV-2 genomes isolated from patients worldwide. 

We do not identify a single recurrent mutation in this set convincingly associated with 

increased viral transmission. Instead, recurrent SARS-CoV-2 mutations currently in circulation 

appear to be evolutionary neutral. Recurrent mutations also seem primarily induced by the 

human immune system via host RNA editing, rather than being signatures of adaptation to the 

novel human host. In conclusion, we find no evidence at this stage for the emergence of 

significantly more transmissible lineages of SARS-CoV-2 due to recurrent mutations. 
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Introduction 

 

Severe acute respiratory coronavirus syndrome 2 (SARS-CoV-2), the causative agent of Covid-

19, is a positive single-stranded RNA virus that jumped into the human population towards the 

end of 2019 [1-4] from a yet uncharacterised zoonotic reservoir [5]. Since then, the virus has 

gradually accumulated mutations leading to patterns of genomic diversity. These mutations 

can be used both to track the spread of the pandemic and to identify sites putatively under 

selection as SARS-CoV-2 potentially adapts to its new human host. Large-scale efforts from the 

research community during the ongoing Covid-19 pandemic have resulted in an 

unprecedented number of SARS-CoV-2 genome assemblies available for downstream analysis. 

To date (12 August 2020), the Global Initiative on Sharing All Influenza Data (GISAID) [6, 7] 

repository has over 52,000 complete high-quality genome assemblies available. This is being 

supplemented by increasing raw sequencing data available through the European 

Bioinformatics Institute (EBI) and NCBI Short Read Archive (SRA), together with data released 

by specific genome consortiums including COVID-19 Genomics UK (COG-UK) 

(https://www.cogconsortium.uk/data/). Research groups around the world are continuously 

monitoring the genomic diversity of SARS-CoV-2, with a focus on the distribution and 

characterisation of emerging mutations. 

 

Mutations within coronaviruses, and indeed all RNA viruses, can arrive as a result of three 

processes. First, mutations arise intrinsically as copying errors during viral replication, a 

process which may be reduced in SARS-CoV-2 relative to other RNA viruses, due to the fact 

that coronavirus polymerases include a proof-reading mechanism [8, 9]. Second, genomic 

variability might arise as the result of recombination between two viral lineages co-infecting 

the same host [10]. Third, mutations can be induced by host RNA editing systems, which form 

part of natural host immunity [11-13]. While the majority of mutations are expected to be 

neutral [14], some may be advantageous or deleterious to the virus. Mutations which are 

highly deleterious, such as those preventing virus host invasion, will be rapidly purged from 

the population; mutations that are only slightly deleterious may be retained, if only 

transiently. Conversely, neutral and in particular advantageous mutations can reach higher 

frequencies. 

 

Mutations in SARS-CoV-2 have already been scored as putatively adaptive using a range of 

population genetics methods [1, 15-21], and there have been suggestions that specific 

mutations are associated with increased transmission and/or virulence [15, 18, 21]. Early 

flagging of such adaptive mutations could arguably be useful to control the Covid-19 

pandemic. However, distinguishing neutral mutations (whose frequencies have increased 

through demographic processes) from adaptive mutations (which directly increase the virus’ 

transmission) can be difficult [22]. For this reason, the current most plausible candidate 

mutations under putative natural selection are those that have emerged repeatedly and 

independently within the global viral phylogeny. Such homoplasic sites may arise convergently 

as a result of the virus responding to adaptive pressures. 

 

Previously, we identified and catalogued homoplasic sites across SARS-CoV-2 assemblies, of 

which approximately 200 could be considered as warranting further inspection following 

stringent filtering [1]. A logical next step is to test the potential impact of these and other 

more recently emerged homoplasies on transmission. For a virus, transmission can be 

considered as a proxy for overall fitness [23, 24]. Any difference in transmissibility between 

variants can be estimated using the relative fraction of descendants produced by an ancestral 

genotype. While sampling biases could affect this estimate, we believe such an approach is 

warranted here for two reasons. First, the unprecedented and growing number of SARS-CoV-2 

assemblies calls for the development of computationally fast methods that scale effectively 
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with datasets. Second, and more importantly, the genetic diversity of the SARS-CoV-2 

population lacks strong structure at a global level due to the large number of independent 

introductions of the virus in most densely sampled countries [1]. This leads to the worldwide 

distribution of SARS-CoV-2 genetic diversity being fairly homogenous, thus minimising the risk 

that a homoplasic mutation could be deemed to provide a fitness advantage to its viral carrier 

simply because it is overrepresented, by chance, in regions of the world more conducive to 

transmission. 

 

In this work, we make use of curated alignment comprising 46,723 SARS-CoV-2 assemblies to 

formally test whether any identified recurrent mutation is involved in altering viral fitness. We 

find that none of the recurrent SARS-CoV-2 mutations tested are associated with significantly 

increased viral transmission. Instead, recurrent mutations seem to be primarily induced by 

host immunity through RNA editing mechanisms, and likely tend to be selectively neutral, with 

no or only negligible effects on virus transmissibility. 

 

Results 

 

Global diversity of SARS-CoV-2 

 

The global genetic diversity of 46,723 SARS-CoV-2 genome assemblies is presented as a 

maximum likelihood phylogenetic tree (Figure 1A). No assemblies were found to deviate by 

more than 32 SNPs from the reference genome, Wuhan-Hu-1, which is consistent with the 

relatively recent emergence of SARS-CoV-2 towards the latter portion of 2019 [1-5]. We 

informally estimated the mutation rate over our alignment as 9.8 x 10
-4

 substitutions per site 

per year, which is consistent with previous rates estimated for SARS-CoV-2 [1-4] (Figure S1-S2). 

This rate also falls in line with those observed in other coronaviruses [25, 26], and is fairly 

unremarkable relative to other positive single-stranded RNA viruses, which do not have a viral 

proof-reading mechanism [27, 28]. 

 
Figure 1 Overview of the global genomic diversity across 46,723 SARS-CoV-2 assemblies (sourced 30 July 

2020) coloured as per continental regions. A. Maximum Likelihood phylogeny for complete SARS-CoV-2 

genomes, with D614G haplotype status annotated by the presence/absence coloured columns 

(positions 241, 3037, 14408 and 23403 respectively). B. Viral assemblies available from 99 countries. C. 

Within-continent pairwise genetic distance on a random subsample of 300 assemblies from each 

continental region. Colours in all three panels represent continents where isolates were collected. 

Magenta: Africa; Turquoise: Asia; Blue: Europe; Purple: North America; Yellow: Oceania; Dark Orange: 
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South America according to metadata annotations available on GISAID (https://www.gisaid.org) and 

provided in Table S1. 

 

Genetic diversity in the SARS-CoV-2 population remains moderate with an average pairwise 

SNP difference across isolates of 8.4 (4.7-13.5, 95% CI). This low number of mutations between 

any two viruses currently in circulation means that, to date, we believe SARS-CoV-2 can be 

considered as a single lineage, notwithstanding taxonomic efforts to categorise extant 

diversity into sublineages [29]. Our dataset includes viruses sequenced from 99 countries 

(Figure 1B, Table S1), with a good temporal coverage (Figure S1B). While some countries are 

far more densely sampled than others (Figure 1B), the emerging picture is that fairly limited 

geographic structure is observed in the viruses in circulation in any one region. All major clades 

in the global diversity of SARS-CoV-2 are represented in various regions of the world (Figure 

1A, Figure S3), and the genomic diversity of SARS-CoV-2 in circulation in different continents is 

fairly uniform (Figure 1C, Figure S3). 

 

Distribution of recurrent mutations 

 

Across the alignment we detected 12,706 variable positions, with an observed genomewide 

ratio of non-synonymous to synonymous substitutions of 1.88 (calculated from Table S2). 

Following masking of putatively artefactual sites and phylogeny reconstruction we detected 

over 5,000 homoplasic positions (5,710 and 5,793 respectively using two different masking 

criteria), see Methods and Figures S4-S5, Table S3. However, recurrent mutations may arise as 

a result of sequencing or genome assembly artefacts [30]. In line with our previous work ([1]; 

see Methods) we therefore applied two stringent filtering approaches to delineate sets of well 

supported homoplasic sites which present strong candidates to test for ongoing selection. This 

resulted in 398 and 411 homoplasic sites in the alignments, respectively (Figures S4-S5, Table 

S3). The current distribution of genomic diversity across the alignment, together with 

identified homoplasic positions is available as an open access and interactive web-resource at: 
https://macman123.shinyapps.io/ugi-scov2-alignment-screen/. 

 

As identified by previous studies [31-36], we find evidence of strong mutational biases across 

the SARS-CoV-2 genome, with a remarkably high proportion of C�U changes relative to other 

types of SNPs. This pattern was observed at both non-homoplasic and homoplasic sites 

(Figures S6-S8). Additionally, mutations involving cytosines were almost exclusively C�U 

mutations (98%) and the distributions of k-mers for homoplasic sites appeared markedly 

different compared to that across all variable positions (Figures S9-S10). In particular, we 

observed an enrichment in CCA and TCT 3-mers containing a variable base in their central 

position, which are known targets for the human APOBEC RNA-editing enzyme family [37]. 

 

Signatures of transmission 

 

In order to test for an association between individual homoplasies and transmission, we 

defined a novel phylogenetic index designed to quantify the fraction of descendant progeny 

produced by any ancestral virion having acquired a particular mutation. We term this index the 

Ratio of Homoplasic Offspring (RoHO). In short, the RoHO index computes the ratio of the 

number of descendants in sister clades with and without a specific mutation over all 

independent emergences of a homoplasic allele (shown in red in Figure 2). We confirmed that 

our approach is unbiased (i.e. produced symmetrically distributed RoHO index scores around 

the Log10(RoHO)=0 expectation for recurrent mutations not associated to transmission) both 

by analysing simulated nucleotide alignments and discrete traits randomly assigned onto the 

global SARS-CoV-2 phylogeny (see Methods, Figure S11). 
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We restricted the analysis of the global SARS-CoV-2 phylogeny to homoplasies determined to 

have arisen at least n=3 times independently. We observed 185 and 199 homoplasies passing 

all the RoHO score criteria under the more and less stringent masking procedures, 

respectively, and report in the main text the results obtained with the more stringent masking. 

We ignored all homoplasic events where the parent node led to fewer than two descendant 

tips carying the ancestral allele and two with the derived allele (Figure 2). In order to avoid 

pseudoreplication (i.e. scoring any genome more than once), we also discarded from the RoHO 

index calculations for any homoplasic parent node embedding a secondary homoplasic event 

involving the same site in the alignment (Figure 2). Ignoring embedding homoplasic parent 

nodes led to only a marginal loss of statistical power and inclusion of homoplasies carried on 

embedded nodes yielded similar results (Figure S11b). Results were consistent for the 

alternative, less stringent, masking strategy (Figure S11c, Table S4). 

 

 

Figure 2 Schematic depicting the rationale behind the Ratio of Homoplasic Offspring (RoHO) score index. 

White tips correspond to an isolate carrying the reference allele and red tips correspond to the 

homoplasic allele. This schematic phylogeny comprises three highlighted internal nodes annotated as 

corresponding to an ancestor that acquired a homoplasy. Node 3 is not considered because it fails our 

criterion of having at least two descendant tips carrying either allele. Node 1 is not considered because 

it includes embedded children nodes themselves annotated as carrying a homoplasic mutation. Node 2 

meets our criteria: its RoHO score is 4/2 = 2. In order to consider RoHO score for a homoplasic position, 

at least n=3 nodes have to satisfy the criteria (not illustrated in the figure). 

 

None of the 185 detected recurrent mutations having emerged independently a minimum of 

three times were statistically significantly associated with an increase in viral transmission for 

either tested alignment (paired t-test; Figure 3 and Table S4, Figure S11). We also did not 

identify any recurrent mutations statistically significantly associated with reduced viral 

transmissibility for the more stringently masked alignment. Instead the entire set of 185 

recurrent mutations seem to fit the expectation for neutral evolution with respect to 

transmissibility, with a mean and median overall Log10RoHO score of -0.001 and and -0.02. 

Moreover, the distribution of individual site-specific RoHO scores is symmetrically distributed 

around 0 with 97/185 mean positive values and 88/185 negative ones. To summarise, we 

would expect that recurrent mutations should be the best candidates for putative adaptation 

of SARS-CoV-2 to its novel human host. However, none of the recurrent mutations in 

circulation to date shows evidence of being associated with viral transmissibility. 
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Figure 3. Genome-wide Ratio of Homoplasic Offspring (RoHO) values. Confidence intervals show the 

log10(RoHO) index for homoplasies that arose in at least five filtered nodes in the Maximum Likelihood 

phylogeny of 46,723 SARS-CoV-2 isolates. Black dot: median RoHO value; blue circle: mean RoHO value. 

Associated values including the number of replicates are provided in Table S4 with the distribution for 

sites for which we have three replicates provided in Figure S11a. Top scale provides positions of the 

homoplasies relative to the Wuhan-Hu-1 reference genome and the bottom coloured boxes correspond 

to encoded ORFs. No homoplasy displayed a RoHO index distribution significantly different from zero 

(paired t-test, alpha=0.05). 

 

Discussion 

 

In this work, we analysed a dataset of over 46,700 SARS-CoV-2 assemblies sampled across 99 

different countries and all major continental regions. Current patterns of genomic diversity 

highlight multiple introductions in all continents (Figure 1, Figures S1-S3) since the host-switch 

to humans in late 2019 [1-4]. Although SARS-CoV-2 at present is effectively a single lineage 

with limited diversity within it, the gradual accumulation of mutations in viral genomes in 

circulation may offer early clues to adaptation to its novel human host. Across our dataset we 

identified a total of 12,706 mutations, heavily enriched in C�U transitions, of which we 

identified 398 strongly supported recurrent mutations (Table S3, Figures S4-S5). Employing a 

newly devised index (Ratio of Homoplasic Offspring; RoHO) to test whether any of these 

mutations contribute to a change in transmission, we found no mutation to be convincingly 

associated with a significant increase or decrease in transmissibility (Figures 2-3, Table S4). 

 

Given the importance of monitoring potential changes in virus transmissibility, several other 

studies have investigated whether particular sets of mutations in SARS-CoV-2 are associated 

with changes in transmission and virulence [15, 21, 38]. We strongly caution that efforts to 

determine if any specific mutation contributes to a change in viral phenotype, using solely 

genomic approaches, relies on the ability to distinguish between changes in allele frequency 

due to demographic or epidemiological processes, compared to those driven by selection [22]. 

A convenient and powerful alternative is to focus on sites which have emerged recurrently 

(homoplasies), as we do here. While such a method is obviously restricted to such recurrent 

mutations, it reduces the effect of demographic confounding problems such as founder bias. 
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A much discussed mutation in the context of demographic confounding is D614G (nucleotide 

position 23,403), a nonsynonymous change in the SARS-CoV-2 Spike protein. Korber et al. 

suggested that D614G increases transmissibility but with no measurable effect on patient 

infection outcome [21]. Other studies have suggested associations with increased infectivity in 

vitro [18, 39] and antigenicity [40]. Here, we conversely find that D614G does not associate 

with significantly increased viral transmission (Median log10(RoHO)=0, paired t-test p=0.28; 

Table S4), in line with our results for all other tested recurrent mutations. Though clearly, 

choice of methodology may lead to different conclusions. A recent study on a sample of 

25,000 whole genome sequences exclusively from the UK used different approaches to 

investigate D614G. Not all analyses found a conclusive signal for D614G, and effects on 

transmission, when detected, appeared relatively moderate [38].  

 

These apparently contrasting results for D614G should be considered carefully. What is 

however indisputable is that D614G emerged early in the pandemic and is now found at high 

frequency globally, with 36,347 assemblies in our dataset (77.8%) carrying the derived allele 

(Figure 1a, Table S3). However, D614G is also in linkage disequilibrium with three other 

derived mutations (nucleotide positions 241, 3037 and 14,408) that have experienced highly 

similar expansions, as 98.9% of accessions with D614G also carry these derived alleles 

(35,954/36,347). It should be noted that the D614G mutation displays only five independent 

emergences that qualify for inclusion in our analyses (fewer than the other three sites it is 

associated with). While this limits our power to detect a statistically significant association 

with transmissibility, the low number of independent emergences suggests to us that the 

abundance of D614G is more probably a demographic artefact: D614G went up in frequency as 

the SARS-CoV-2 population expanded, largely due to a founder effect originating from one of 

the deepest branches in the global phylogeny, rather than being a driver of transmission itself.  

 

The RoHO index developed here provides an intuitive metric to quantify the association 

between a given mutation and viral transmission. However, we acknowledge this approach has 

some limitations. We have, for example, relied on admittedly arbitrary choices concerning the 

number of minimal observations and nodes required to conduct statistical testing. While it 

seems unlikely this would change our overall conclusions, which are highly consistent for two 

tested alignments, results for particular mutations should be considered in light of this caveat 

and may change as more genomes become available. Further, our approach necessarily entails 

some loss of information and therefore statistical power. This is because our motivation to test 

independent occurrences means that we do not handle "embedded homoplasies" explicitly: 

we simply discard them (Figure 2), although inclusion of embedded homoplasies does not 

change the overall conclusions (Figure S11b). Finally, while our approach is undoubtedly more 

robust to demographic confounding (such as founder bias), it is impossible to completely 

remove all the sources of bias that come with the use of available public genomes. 

 

In addition, it is of note that the SARS-CoV-2 population has only acquired moderate genetic 

diversity since its jump into the human population and, consequently, most branches in the 

phylogenetic tree are only supported by very few mutations. As a result of the low genetic 

diversity, most nodes in the tree have only low statistical support [41]. This prompted us to 

apply a series of stringent filters and masking strategies to the alignment (see Methods). Also, 

while our method does not account quantitatively for phylogenetic uncertainty, we only 

computed RoHO scores for situations which should be phylogenetically robust (i.e. mutations 

represented in at least three replicate nodes, each with at least two representatives of the 

reference and alternate allele in descendants). 

 

We further acknowledge that the number of SARS-CoV-2 genomes available at this stage of the 

pandemic, whilst extensive, still provides us only with moderate power to detect statistically 
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significant associations with transmissibility for any individual recurrent mutation (Figure S12). 

The statistical power of the RoHO score methodology depends primarily on the number of 

independent homoplasic replicates rather than the strength of selection (Figure S12). The 

number of usable replicates per homoplasic site ranges between 3-14, and 3-67 for the two 

masking strategies we applied (Table S4). While the statistical power at most sites is weak, we 

predict a higher number of replicates at sites under strong positive selection, due to the 

expected recurrent mutations to the beneficial allelic state. We acknowledge that more 

sophisticated methods for phylodynamic modelling of viral fitness do exist [24, 42, 43], 

however, these are not directly portable to SARS-CoV-2 and would be too computationally 

demanding for a dataset of this size. Our approach, which is deliberately simple and makes 

minimal assumptions, is conversely highly scalable as the number of available SARS-CoV-2 

genome sequences continues to rapidly increase. 

 

To date, the fact that none of the 185 recurrent mutations in the SARS-CoV-2 population we 

identified as candidates for putative adaptation to its novel human host are statistically 

significantly associated to transmission suggests that the vast majority of mutations 

segregating at reasonable frequency are largely neutral in the context of transmission and viral 

fitness. This interpretation is supported by the essentially perfect spread of individual RoHO 

index scores around their expectation under neutral evolution (Figure 3). However, it is 

nonetheless interesting to consider the cause of these mutations. Notably, 65% of the 

detected mutations comprise nonsynonymous changes of which 38% derive from C�U 

transitions. This high compositional bias, as also detected in other studies [34-36], as well as in 

other members of the Coronaviridae [31-33], suggests that mutations observed in the SARS-

CoV-2 genome are not solely the result of errors by the viral RNA polymerase during virus 

replication [35, 36]. One possibility is the action of human RNA editing systems which have 

been implicated in innate and adaptive immunity. These include the AID/APOBEC family of 

cytidine deaminases which catalyse deamination of cytidine to uridine in RNA or DNA and the 

ADAR family of adenosine deaminases which catalyse deamination of adenosine to inosine 

(recognized as a guanosine during translation) in RNA [44, 45]. 

 

The exact targets of these host immune RNA editing mechanisms are not fully characterized, 

but comprise viral nucleotide sequence target motifs whose editing may leave characteristic 

biases in the viral genome [37, 46, 47]. For example, detectable depletion of the preferred 

APOBEC3 target dinucleotides sequence TC have been reported in papillomaviruses [48]. In the 

context of SARS-CoV-2, Simmonds [36] and Di Giorgio et al. [35] both highlight the potential of 

APOBEC-mediated cytosine deamination as an underlying biological mechanism driving the 

over-representation of C�U mutations. However, APOBEC3 was shown to result in cytosine 

deamination but not hypermutation of HCoV-NL63 in vitro [49], which may suggest that 

additional biological processes also play a role. 

 

In summary, our results do not point to any candidate recurrent mutation significantly 

increasing transmissibility of SARS-CoV-2 at this stage and confirm that the genomic diversity 

of the global SARS-CoV-2 population is currently still very limited. It is to be expected that 

SARS-CoV-2 will diverge into phenotypically different lineages as it establishes itself as an 

endemic human pathogen. However, there is no a priori reason to believe that this process will 

lead to the emergence of any lineage with increased transmission ability in its human host. 
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Methods 

 

Data acquisition 

 

48,454 SARS-CoV-2 assemblies were downloaded from GISAID on 30/07/2020 selecting only 

those marked as ‘complete’, ‘low coverage exclude’ and ‘high coverage only’. To this dataset, 

all assemblies of total genome length less than 29,700bp were removed, as were any with a 

fraction of ‘N’ nucleotides >5%. In addition, all animal isolate strains were removed, including 

those from bat, pangolin, mink, cat and tiger. All samples flagged by NextStrain as ‘exclude’ 

(https://github.com/nextstrain/ncov/blob/master/config/exclude.txt) as of 30/07/2020 were 

also removed. 21 further accessions were also filtered from our phylogenetic analyses as they 

appeared as major outliers following phylogenetic inference and application of TreeShrink [50] 

despite passing other filtering checks. This left 46,723 assemblies for downstream analysis. A 

full metadata table, list of acknowledgements and exclusions is provided in Table S1. 

 

Multiple sequence alignment and maximum likelihood tree 

 

All 46,723 assemblies were aligned against the Wuhan-Hu-1 reference genome (GenBank 

NC_045512.2, GISAID EPI_ISL_402125) using MAFFT [51] implemented in the rapid 

phylodynamic alignment pipeline provided by Augur (github.com/nextstrain/augur). This 

resulted in a 29,903 nucleotide alignment. As certain sites in the alignment have been flagged 

as putative sequencing errors (http://virological.org/t/issues-with-sars-cov-2-sequencing-

data/473), we followed two separate masking strategies. The first masking strategy is designed 

to test the impact of the inclusion of putative sequencing errors in phylogenetic inference, 

masking several sites within the genome (n=68) together with the first 55 and last 100 sites of 

the alignment (the list of sites flagged as ‘mask’ is available at https://github.com/W-

L/ProblematicSites_SARS-CoV2/blob/master/problematic_sites_sarsCov2.vcf, accessed 

30/07/2020) [30]. We also employed a less stringent approach, following the masking strategy 

employed by NextStrain which masks only positions 18,529, 29,849, 29,851 and 29,853 as well 

as the first 130 and last 50 sites of the alignment. A complete list of masked positions is 

provided in Table S5. This resulted in two masked alignments of 46,723 and 46,745 assemblies 

with 12,706 and 12,807 SNPs respectively. 

 

Subsequently, for both alignments, a maximum likelihood phylogenetic tree was built using IQ-

TREE 2.1.0 Covid release (https://github.com/iqtree/iqtree2/releases/tag/v2.1.0) as the tree-

building method [52]. The resulting phylogenies were viewed and annotated using ggtree [53] 

(Figure 1, Figure S1). Site numbering and genome structure are provided for available 

annotations (non-overlapping open reading frames) using Wuhan-Hu-1 (NC_045512.2) as 

reference. 

 

Phylogenetic dating 

 

We informally estimated the substitution rate and time to the most recent common ancestor 

of both masked alignments by computing the root-to-tip temporal regression implemented in 

BactDating [54]. Both alignments exhibit a significant correlation between the genetic distance 

from the root and the time of sample collection following 10,000 random permutations of 

sampling date (Figure S2). 

 

Homoplasy screen 
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The resulting maximum likelihood trees were used, together with the input alignments, to 

rapidly identify recurrent mutations (homoplasies) using HomoplasyFinder [1, 55]. 

HomoplasyFinder employs the method first described by Fitch [56], providing, for each site, 

the site specific consistency index and the minimum number of changes invoked on the 

phylogenetic tree. All ambiguous sites in the alignment were set to ‘N’. HomoplasyFinder 

identified a total of 5,710 homoplasies, which were distributed over the SARS-CoV-2 genome 

(Figure S4). For the less stringent masking of the alignment, HomoplasyFinder identified a total 

of 5,793 homoplasies (Figure S5). 

 

As previously described, we filtered both sets of identified homoplasies using a set of 

thresholds attempting to circumvent potential assembly/sequencing errors (filtering scripts 

are available at https://github.com/liampshaw/CoV-homoplasy-filtering and see reference 

[1]). Here we only considered homoplasies present in >46 isolates (0.1% of isolates in the 

dataset), where the number of submitting and originating laboratories of isolates with the 

homoplasy was >1 and displaying a third allele frequency <0.2 of that of the second allele 

frequency. This avoids us taking forward homoplasies which have only been identified in a 

single location. This resulted in 398 filtered sites (411 following a less stringent masking 

procedure) of which 397 overlap. A full list of sites is provided for both alignments in Table S3. 

 

In addition, we considered an additional filtering criterion to identify homoplasic sites falling 

close to homopolymer regions, which may be more prone to sequencing error. We defined 

homopolymer regions as positions on the Wuhan-Hu-1 reference with at least four repeated 

nucleotides. While homopolymer regions can arise through meaningful biological mechanisms, 

for example polymerase slippage, such regions have also been implicated in increased error 

rates for both nanopore [57] and Illumina sequencing [58]. As such, homoplasies detected 

near these regions (± 1 nt) could have arisen due to sequencing error rather than solely as a 

result of underlying biological mechanisms. If this were true, we would expect the proportion 

of homoplasic sites near these regions to be greater than that of homopolymeric positions 

across the entire genome. We tested this by identifying homopolymer regions using a custom 

python script (https://github.com/cednotsed/genome_homopolymer_counter) and 

performing a binomial test on the said proportions. A list of homopolymer regions across the 

genome is provided in Table S6. 25 of the 398 (6.3%) filtered homoplasies were within ± 1 nt of 

homopolymer regions and this proportion was significantly lower as compared to that of 

homopolymeric positions across the reference (9.7%; p = 0.009504). As such, we did not 

exclude homopolymer-associated homoplasies and suggest that these sites are likely to be 

biologically meaningful. 

 

To determine if systematic biases were introduced in our filtering steps, we performed a 

principal component analysis (PCA) on the unfiltered list of homoplasies obtained from 

HomoplasyFinder (n = 5,710). The input space of the PCA included 11 variables, of which eight 

were dummy-coded reference/variant nucleotides and a further three corresponded to the 

minimum number of changes on tree, SNP count and consistency index output by 

HomoplasyFinder. Visualisation of PCA projections (Figure S8a) suggested that there was no 

hidden structure introduced by our homoplasy filtering steps. The first two principle 

components accounted for 56% of the variance and were mostly loaded by the variables 

encoding the reference and variant nucleotides (Figure S8b). 

 

Annotation and characterisation of homoplasic sites 

 

All variable sites across the coding regions of the genomes were identified as synonymous or 

non-synonymous. This was done by retrieving the amino acid changes corresponding to all 

SNPs at these positions using a custom Biopython (v.1.76) script 
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(https://github.com/cednotsed/nucleotide_to_AA_parser.git). The ORF coordinates used 

(including the ORF1ab ribosomal frameshift site) were obtained from the associated metadata 

according to Wuhan-Hu-1 (NC_045512.2). 

  

To determine if certain types of SNPs are overrepresented in homoplasic sites, we computed 

the base count ratios and cumulative frequencies of the different types of SNPs across all 

SARS-CoV-2 genomes at homoplasic and/or non-homoplasic sites (Figures S6-S7). In addition, 

we identified the sequence context of all variable positions in the genome (± 1 and ± 2 

neighbouring bases from these positions) and computed the frequencies of the resultant 3-

mers (Figure S9) and 5-mers (Figure S10). 

 

Quantifying pathogen fitness (transmission) 

  

Under random sampling we expect that a mutation that positively affects a pathogen’s 

transmission fitness will be represented in proportionally more descendant nodes. As such, a 

pathogen’s fitness can be expressed simply as the number of descendant nodes from the 

direct ancestor of the strain having acquired the mutation, relative to the number of 

descendants without the mutation (schematic Figure 2). We define this as the Ratio of 

Homoplasic Offspring (RoHO) index (full associated code available at 

https://github.com/DamienFr/RoHO). 

 

HomoplasyFinder [55] flags all nodes of a phylogeny corresponding to an ancestor that 

acquired a homoplasy. We only considered nodes with at least two descending tips carrying 

either allele and with no children node embedded carrying a subsequent mutation at the same 

site (see Figure 2). For each such node in the tree we counted the number of isolates of each 

allele and computed the RoHO index. We finally restricted our analysis to homoplasies having 

at least n=3 individual RoHO indices (i.e. for which three independent lineages acquired the 

mutation). The latter allows us to consider only nodes for which we have multiple supported 

observations within the phylogeny. Paired t-tests were computed for each homoplasy to test 

whether RoHO indices were significantly different from zero. To validate the methodology, this 

analysis was carried out on data analysed using two different masking strategies (Figure 3, 

Figure S11, masked sites available in Table S5). Full metadata associated with each tested site, 

including the number and associated countries of descendant offsprings are provided in Table 

S4. 

 

Assessing RoHO performance 

 

To assess the performance of our RoHO index, we performed a set of simulations designed to 

test the distribution of RoHO values under a neutral model. 

 

We simulated a 10,000 nucleotide alignment comprising 1,000 accessions using the rtree() 

simulator available in Ape v5.3 [59] and genSeq from the R package PhyTools v0.7-2.0 [60] 

using a single rate transition matrix multiplied by a rate of 6x10
-4

 to approximately match that 

estimated in [1]. This generated a 8,236 SNP alignment which was run through the tree-

building and homoplasy detection algorithms described for the true data; identifying 3,097 

homoplasies (pre-filtering). Specifying a minimum of three replicates and at least two 

descendant tips of each allele, we obtained a set of RoHO scores none of which differed 

significantly from zero (Figure S11e). 

 

In parallel we tested for any bias in the RoHO scores when a set of randomly generated 

discrete traits were simulated onto the true maximum likelihood phylogeny. To do so we 

employed the discrete character simulator rTraitDisc() available through Ape [59] specifying an 
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equilibrium frequency of 1 (i.e. neutrality) and a normalised rate of 0.002 (after dividing 

branch lengths by the mean edge length). This rate value was manually chosen to 

approximately reproduce patterns of homoplasies similar to those observed for homoplasies 

of the actual phylogeny. Simulations were repeated for 100 random traits. Considering the 

discrete simulated traits as variant (putative homoplasic) sites, we again evaluated the RoHO 

indices (applying filters mentioned previously) for these 100 neutral traits. Following 

Bonferroni correction, no sites were deemed statistically significant (Figure S11d). 
 

In all cases, to mitigate the introduction of bias we only considered homoplasies with nodes 

with at least two tips carrying either allele, in order to avoid 1/n and n/1 comparisons (see 

node 3 in Figure 2). We further enforced a minimum number of three replicates (Figure 3, 

Figure S11, Table S4). While we discarded homoplasies located on ‘embedded nodes’ to avoid 

pseudoreplication (see node 1 in Figure 2), we note that including such sites has no impact on 

our results (Figure S11b). 

 

In addition we assessed the statistical power to detect significant deviations from neutrality of 

the RoHO index according to (i) the number of independent emergences of a homoplasy in the 

phylogeny and (ii) the imbalance between offspring number for each allele (i.e. fitness 

differential conferred by the carriage of the derived allele). To do so, we generated 1,000 

replicates for each combination of independent emergences (counts) of a homoplasy and 

corresponding fitness differential values using results from both masked alignments. For each 

replicate, we drew values for the number of descended tips from the actual homoplasic parent 

nodes at our 185 candidate mutations sites under putative selection (all 185 pooled). We then 

probabilistically assigned a state to each tip according to an offspring imbalance (e.g. 10%). We 

drew replicates until we obtained 1,000 for each combination comprising at least two alleles of 

each type. The proportion of significant paired t-tests for each combination of independent 

homoplasic parent nodes and fitness differential (10% to 80%) is presented as a heatmap 

(Figure S12).  

 

The statistical power depends primarily on the number of independent emergences (i.e. 

homoplasic parent nodes) rather than the fitness differential (Figure S12, see Discussion). 

Beneficial alleles have a far higher chance to increase their allele frequency upon introduction 

than deleterious ones, which are expected to be readily weeded out from the population. 

Thus, we expect to observe a disproportionally higher number of independent homoplasic 

parents nodes for beneficial alleles. As such, the RoHO score index is inherently better suited 

to identify mutations associated to increased transmissibility relative to deleterious ones. 
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