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Abstract

We present an epidemic model capable of describing key features of the present Covid-19
pandemic. While capturing several qualitative properties of the virus spreading, it allows to
compute the basic reproduction number, the number of deaths due to the virus and various
other statistics. Numerical integrations are used to illustrate the relevance of quarantine
and the role of care houses.
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1 Introduction

Our aim here is to present a model that contains key features of the Covid-19 outbreak. It uses
as starting point the classical SIR class of models, see [19, § 13.5] but is thoroughly adapted to
the present day pandemic. Indeed, its key features are:

• Infected individuals are distinguished between Infective (I) and Hospitalized (H). The
former ones do spread the disease, while the latter ones, hospitalized or in quarantine,
don’t. We thus consider the four populations of Susceptible (S), Infective (I), Hospitalized
(H) and Recovered (R) individuals.

• The four densities S, I, H, R depend on time t ∈ R+, on age a ∈ R+ and on a space
coordinate x ∈ R2. S(t, a, x) (respectively I(t, a, x), H(t, a, x), R(t, a, x)) quantifies the
individuals of type S (respectively I, H, R) that at time t are of age a and are sited at
position x.

• Infection is propagated in space: S individuals can be infected by I individuals of all
ages, provided they are at the same time at a distance less than a given threshold. H
individuals do not infect anyone.

• S, I and R individuals move in the space domain with a time, age and space dependent
velocity. H individuals are not assumed to move. A further distinction of S (respectively
I and R) individuals according to their different destinations is also possible.
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• At a given time, age and space dependent rate, infective individuals (I) are hospitalized or
constrained to quarantine, thus entering the H population. Both infective and hospitalized
individuals recover or die at time, age and space dependent rates.

Before passing to the rigorous description of the model, we recall that different countries re-
acted to Covid-19 in different ways. Nevertheless, the initial stages of the virus spreading are
quantitatively quite similar in the different countries, once they are correctly scaled with respect
to the overall population: their only difference is essentially a time delay, see Figure 1. These

Figure 1: Number of confirmed Covid-19 cases in different European countries, scaled to the Italian population,

as a function of time. Along each horizontal axis, time is measured in days starting January 22nd, 2020, each

country compared to Italy being delayed by the amount indicated in each top left corner. The numbers of cases

are taken from [11], the populations’ data from [22].

striking similarities definitely justify the search for a unique model able to describe the initial
virus spreading.

As is well known, different countries are taking different measures to contrast the pandemic.
Key differences typically concern the strength of lock down, constraining individuals’ movements
and contacts at different levels. In the model presented below, these differences can be covered
through ad hoc choices of a function, namely ρ, that can describe various types of contagion.
We describe below some effects of care houses, that is of places where the virus spreads faster,
in accelerating the infection. As a further example, we show the effects of different quarantine
policies, only from the pandemic evolution point of view. In this connection, we note the possible
interest in extending the model presented below to possibly cover also some of the consequences
of the pandemic at the economic/industrial/financial levels.

Below, we use the model here introduced to describe qualitatively relevant features of the
Covid-19 pandemic. At a quantitative level, the use of the present model relies on the availability
of reliable data, which is not always possible. In this connection, we refer for instance to [3] for
the description of a method able to cope with uncertain data.
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For completeness, we refer to [16] for a different approach to the modeling of the Covid-19
pandemic, also based on integro–differential equations. Differently from the model therein, here
we do not resort to delayed terms, partly using the standard coupling between the different
equations describing the passage between different populations. A related work considering an
epidemic model with age structure and immigration is described in [13].

The next section is devoted to a more rigorous formulation of the model, of its key approx-
imations and of its main properties. Then, by means of numerical integrations, we show key
qualitative properties of the solutions, which agree with well known properties of the Covid-19
pandemic. In these integrations, the various functions entering the model definitions are chosen
in agreement with publicly available data.

2 The Model

A population lives in a region X ⊆ Rn and is subject to an infective disease. Clearly, we
typically set n = 2, but also the case n = 1 can be of use in a simplified framework.

Throughout, S = S(t, a, x) is the number of susceptible individuals at time t ∈ R+, of age
a ∈ R+ at position x ∈ X . When infected, susceptible individuals enter the I population, i.e.,
they first turn into being infected and infective, possibly asymptomatic. These individuals are
then hospitalized or set into quarantine at a rate κ = κ(t, a, x) and, when this happens, we
label them as H = H(t, a, x). Both I, respectively H, individuals may possibly recover at rates
ϑ = ϑ(t, a, x), respectively η = η(t, a, x), entering the population labeled as R = R(t, a, x). We
keep the R population distinct from the S one, assuming that those who recover are immune to
any further infection. A different assumption, namely that those who recover are not immune,
amounts, for instance, to add further terms coupling the last equation to the previous ones
in (2.1).

S (respectively I and R) individuals move in space with the assigned velocity vS = vS(t, a, x)
(respectively vI = vI(t, a, x) and vR = vR(t, a, x)). Depending on the geographical scale at which
the present model is applied, it might be of use the more general dynamics suggested by crowd
dynamics model, see for instance [7]. At a different scale, vS , vI and vR may also describe the
collective movements of relatively large sets of individuals heading towards regions less hit by
the pandemic.

Independently of the movements’ scale, when individuals of the same type, say S, follow
different routes, we distinguish S into different components, say S1, S2, . . ., and we assign them
the different velocities vS1 , vS2 , . . ., following a usual approach in crowd dynamics, see for in-
stance [9]. However, this latter distinction introduces a non trivial formal complexity, with no
relevance at the level of the present initial description and we leave the corresponding technical
details to a later work.

The disease is transmitted by I individuals to S ones that are, at any given time, geograph-
ically near, independently of age.

We are thus lead to the model
∂tS + ∂aS + divx (vS S) + µS S =−(ρ⊗ I)S
∂tI + ∂aI + divx (vI I) + µI I = (ρ⊗ I)S−κ I −ϑ I
∂tH + ∂aH +µH H = +κ I − η H
∂tR + ∂aR + divx (vRR) + µRR = +ϑ I + η H.

(2.1)
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Here, the term κ I describes the speed at which I individuals are hospitalized or put into
quarantine. Similarly, the term ϑ I is the speed at which I individuals recover, while hospitalized
individuals recover with a rate η H. As usual, for A = S, I,H,R, µA is the mortality of the
individuals of type A. All the above parameters, in particular the mortality rates, are time, age
and space dependent.

In (2.1), for merely typographical reasons, we use the abbreviation

(ρ⊗ I)(t, a, x) =

∫
R+

∫
X
ρ(t, a, α, x, ξ) I(t, α, ξ) dξ dα .

This key term is the rate at which susceptible individuals get infected. The function ρ plays a
fundamental role, for it describes the dynamics of the disease transmission. Various properties
of the function ρ have a clear counterpart on the real characteristics of the virus spreading.
Depending on the particular scenario that is under consideration, different choices of ρ are due.
However, the following key property is essential:

Virus Transmission: Assume that δ is the smallest distance satisfying

‖x− ξ‖ > δ =⇒ ρ(t, a, α, x, ξ) = 0 , (2.2)

x and ξ being positions in X . Then, δ represents the maximal distance at which the virus can
be transmitted. Note that the speed of the infection is infinite, within the distance δ.

Remark that suitable choices of ρ may well describe various specific situations. For instance,
the dependence of ρ on the age variables a and α allows to consider situations in which contagion
is restricted – or more/less prominent – among individuals of specific ages, for instance of the
same age.

Model (2.1) needs to be complemented with initial and boundary data, say

(a, x) ∈ R+ ×X (t, x) ∈ R+ ×X (t, a, ξ) ∈ R+ × R+ × ∂X
S(0, a, x) =So(a, x)
I(0, a, x) = Io(a, x)
H(0, a, x) =Ho(a, x)
R(0, a, x) =Ro(a, x)


S(t, 0, x) =Sb(t, x)
I(t, 0, x) = Ib(t, x)
H(t, 0, x) =Hb(t, x)
R(t, 0, x) =Rb(t, x)


S(t, a, ξ) =S∂(t, a, ξ)
I(t, a, ξ) = I∂(t, a, ξ)
H(t, a, ξ) =H∂(t, a, ξ)
R(t, a, ξ) =R∂(t, a, ξ)

(2.3)

which have to be chosen according to the specific situation under study. The only general
constraint to be imposed on these data, besides obvious minimal regularity conditions necessary
from the analytic point of view, is that newborns, corresponding to a = 0, are mostly in the S
population. In other words, while the analytic well posedness is completely independent of this
requirement, we expect that in every realistic application we have

∀ (t, x) ∈ R+ ×X Ib(t, x) = Hb(t, x) = Rb(t, x) = 0 . (2.4)

As it is well known, in the case of general balance laws, assigning and understanding the role
of the boundary condition along the spatial boundary ∂X requires particular care, see [4, 20, 21].
Here, though not strictly necessary form the analytic point of view, we assume the individuals’
velocities to be assigned are time, age and space dependent functions, so that boundary data
are essential whenever the velocities point inward X , while they are neglected when velocities
point outward.
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A relevant time dependent statistics commonly used to quantify the spreading speed of the
disease is the basic reproduction number [18, Section 10.2], typically denoted by Ro:

Ro(t) =
(average infection rate× number of susceptibles at time t)

(average recovery rate at time t)
.

Above “average” refers to both age and space averages. In the present dynamic setting, this
index needs to be time dependent. Moreover, the presence of 2 different populations of ill
individuals, namely the infective (I) and the hospitalized (H) ones, allows for the introduction
of two indexes inspired by Ro. The first one, say Ro, considers only the infective ones while the
latter, say Qo, comprises also the hospitalized ones:

Ro(t) =

∫∫∫∫
ρ(t, a, α, x, ξ) I(t, α, ξ)S(t, a, x) dα dξ da dx∫∫

(κ+ ϑ+ µI)I(t, a, x) da dx
,

Qo(t) =

∫∫∫∫
ρ(t, a, α, x, ξ) I(t, α, ξ)S(t, a, x) dα dξ da dx∫∫(

(ϑ+ µI)I(t, a, x) + (η + µH)H(t, a, x)
)

da dx
,

(2.5)

where we shortened κ = κ(t, a, x), ϑ = ϑ(t, a, x), η = η(t, a, x), µI = µI(t, a, x) and µH =
µH(t, a, x).

The above definitions are justified by the following necessary and sufficient conditions, that
hold provided the inflow/outflow in/from X vanishes and provided no newborn is ill:

Ro(t) ≶ 1 ⇐⇒ d

dt

(∫∫
I(t, a, x) da dx

)
≶ 0 ,

Qo(t) ≶ 1 ⇐⇒ d

dt

(∫∫ (
I(t, a, x) +H(t, a, x)

)
da dx

)
≶ 0 .

The proofs amount to elementary applications of the Divergence Theorem and, hence, are
omitted.

In other words, Ro(t) describes the instantaneous variation of the number of infective (I)
individuals at time t, while Qo(t) describes that of the total number of ill (I +H) individuals.
Thus, R0 measures the danger of being infected, while Q0 measures the overall effect of the
disease spreading, coherently with (2.2).

For completeness, we note that the above definitions can be slightly simplified neglecting
the mortality terms, obtaining

R̃o(t) =

∫∫∫∫
ρ(t, a, α, x, ξ) I(t, α, ξ)S(t, a, x) dα dξ da dx∫∫ (

κ(t, a, x) + ϑ(t, a, x)
)
I(t, a, x) da dx

,

Q̃o(t) =

∫∫∫∫
ρ(t, a, α, x, ξ) I(t, α, ξ)S(t, a, x) dα dξ da dx∫∫(

ϑ(t, a, x) I(t, a, x) + η(t, a, x)H(t, a, x)
)

da dx
.

These latter simplified expressions still give useful information, since

R̃o(t) < 1 =⇒ d

dt

(∫∫
I(t, a, x) da dx

)
< 0 ,

Q̃o(t) < 1 =⇒ d

dt

(∫∫ (
I(t, a, x) +H(t, a, x)

)
da dx

)
< 0 .

We remark that on relatively short time intervals (up to, say, a year or so), the difference
between R0 and R̃0 (or between Q0 and Q̃0) is likely to be negligible.
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As a further remark, note that under assumption (2.4), the instantaneous variation in the
total population in the region X is

d

dt

∫
X

∫
R+

(S + I +H +R) da dx

=

∫
X
Sb dx [newborn]

+

∫
∂X

∫
R+

(vS S + vI I + vRR) · ν da dξ [inflow/outflow]

−
∫
X

∫
R+

(µS S + µI I + µH H + µRR) da dx [deaths]

(2.6)

where ν = ν(ξ) is the inward normal at ξ to ∂X and the boundary data Sb measures newborns,
see (2.3). The equality (2.6) clearly shows the role of the mortality rates µS , µI , µH , µR.

An obvious consequence of (2.1) is that, for the epidemic to arise, it is necessary that infective
individuals are either present or enter the domain X . Indeed, if Io(a, x) ≡ 0 and I∂(t, a, ξ) ≡ 0,
then the whole population remains forever untouched by the virus.

A key structural property of (2.1) is that the first two equations are independent of the
latter two. Once S and I are known, the explicit forms of H and R are available through, for
instance, a mixing of [10, Lemma 4.10] and [6, Lemma 3]. Formally, system (2.1) is a system
of balance laws in several space dimensions. For these kind of partial differential equations,
a general well posedness theory is still missing. However, the different equations are coupled
through the source terms, similarly to the cases considered in [9, 8] where well posedness is
obtained, as well as the stability with respect to the parameters defining the equation, see [17].

Different costs are related to the pandemic. First, the total number of deaths due to the
disease on the time interval [0, T ], say D(T ), is probably the most relevant one:

D(T ) =

∫ T

0

∫
R+

∫
X

(
µI(t, a, x) I(t, a, x) + µH(t, a, x)H(t, a, x)

)
dx da dt .

We do not enter here the issue of assigning the cause of the death to the virus in presence of
other health problems.

On the other hand, we can also consider a more general cost comprising, for instance, also
the expenses that the health system must sustain. Therefore, we refer to the cost functional

C(T ) =

∫ T

0

∫
R+

∫
X
C
(
t, a, x, I(t, a, x), H(t, a, x)

)
dx da dt .

Above, the explicit dependence of C on t, a, x may account for the peculiarities that different
time periods, ages or regions may have.

The many policies or strategies that can be adopted to confine the infection enter ρ and the
various parameters in (2.1). Besides, a quite natural choice is to use as control the function κ,
since it describes the rate at which infective individuals are confined.

Before passing to simplified versions of (2.1), we note that generalizations and extensions
are also possible. First, each population can be split into females and males, for instance. On
long time intervals, the introduction of growth functions, accounting for the different aging of
the different populations, might also be considered.
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Hopefully, a particularly hot topic in the next future will be the strategy to adopt when a
vaccine will be available. From the modeling point of view, this amounts to insert vaccination
in the present model, following the framework in [5].

Finally we recall that, in system (2.1), recovered individuals can not be infected again. The
mostly unfortunate case where this assumption were false would amount to the introduction of
further terms on the right hand sides.

2.1 Simplified Versions

While the model (2.1) looks quite general, in its use on a time scale of, say, a year or less,
the terms ∂aS, ∂aI, ∂aH and ∂aR, typically describing the aging of the population, can be
neglected. Then, (2.1) reduces to the system of partial differential equations

∂tS + divx (vS S) + µS S =−(ρ⊗ I)S
∂tI + divx (vI I) + µI I = (ρ⊗ I)S−κ I −ϑ I
∂tH +µH H = +κ I − η H
∂tR + divx (vRR) + µRR = +ϑ I + η H

(2.7)

where the age variable a plays the role of a parameter. Note that, as in the general case, the
latter two equations can be explicitly solved, as soon as a solution to the system consisting of
the former two equations is available.

If moreover we neglect the spatial velocity, i.e, we set vS = vI = vR = 0, then system (2.7)
becomes 

Ṡ + µS S =−(ρ⊗ I)S

İ + µI I = (ρ⊗ I)S−κ I −ϑ I
Ḣ +µH H = +κ I − η H
Ṙ + µRR = +ϑ I + η H

(2.8)

where the dot symbol stands, as usual, for the time derivative. In the latter system, also the
space variable x plays the role of a parameter.

3 Qualitative Properties

The present work aims at a qualitative description of the model (2.1), mainly in its simplified
form (2.8). Nevertheless, we first partially justify the choice of the key parameters used in the
integrations below. Then, we describe the numerical algorithm used and finally we dive into a
few realistic situations seen through the model (2.8).

3.1 Parameters’ Choices

We detail here the procedures adopted to select the values of the parameters used.
In the integrations below we are inspired by average Italian data, scaled to the square

[−50, 50]× [−50, 50], with a total population of about 2 millions inhabitants, approximating the

average Italian population density of 206
1

Km2 .

As common experience shows, age plays a role in the evolution and consequences of the
Covid-19 infection. Therefore, we distinguish below 4 age classes (in years): [0, 40[, [40, 60[,
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[60, 80[ and [80,+∞[. We recall that the total population is distributed among these age classes,
following [14], with the coefficients:

age class [0, 40[ [40, 60[ [60, 80[ [80,+∞[

density distribution 0.404 0.308 0.218 0.0700

The estimation of all related to the I population is intrinsically quite difficult. These indi-
viduals are infective but not isolated, therefore they may be unknown to any agency, as they
may well be unaware of their status. It is generally believed that their number exceeds the
official number of positive tests, but very little seems to be known about the other parameters
specific to the I population, such as mortality, for instance.

3.1.1 Mortalities

Remark that here our aim is to capture qualitative features or compare different strategies to
cope with the pandemic, rather than obtain quantitatively correct forecasts. Therefore, we
are more interested in the ratios among the different mortalities, rather than in their absolute

values. Dimensionally, mortalities are measured by
1

day
.

Age class [0, 40[ [40, 60[ [60, 80[ [80,+∞[ See

Total Deaths in 2018 7893 38896 182282 404062 [15]
Residents in 2018 24421783 18640004 13215186 4207000 [14]
µS(a) = µR(a) = 8.85e-7 5.72e-6 3.78e-5 2.63e-4 (3.1)

Covid-19 deaths (up to 15.03): 4 55 746 892 [1]
Covid-19 deaths (up to 22.03): 12 209 2309 2488 [2]
Covid-19 cases (up to 15.03): 2953 7729 9561 4636 [1]
Covid-19 cases (up to 22.03): 6891 18547 21743 10514 [2]
µH(a) = µi(a) = 2.90e-4 2.03e-3 1.83e-2 3.87e-2 (3.2)

The mortalities µS and µR are computed, in each age interval, so that

(365 day) µ [individuals in a class] = [deaths in that class in 2018] , (3.1)

while to compute the values of µH we used

(7 day) µ

 infected individuals
in an age class

between 15.03 and 22.03

 =

[
deaths in that age class
between 15.03 and 22.03

]
. (3.2)

In the above computations leading to the estimates of the mortalities, we assumed that all
those who are aware of being infective belong to the H population, meaning that they do not
infect anyone.

Here, we set µI = µH . Indeed, the I population both comprises asymptomatic individuals
that hardly realize being infected, as well as those who are not taken care of. In the average,
we arbitrarily assume that their mortality is as big as that of the isolated individuals.
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3.1.2 Transitions between Populations

The parameter κ = κ(t, a, x) measures the rate at which infective individuals are “blocked”,
i.e., hospitalized or set to quarantine. Due to the above recalled nature of the I population,
we estimate κ as being generally larger than µI . Indeed, we expect that infective individuals
usually become known and, hence, isolated well before their conditions get too bad. Moreover,
we expect that κ is bigger at higher ages, since the presence of infective individuals that are
not aware of their status (and, hence, are not isolated) might be larger at lower ages. Thus, we
choose κ as being only age dependent and, more precisely, we set1

κ(t, a, x) = 0.1χ
[0,40[

(a) + 0.2χ
[40,60[

(a) + 0.4χ
[60,80[

(a) + 0.8χ
[80,+∞[

(a). (3.3)

Recall that κ plays a key role in the control of the epidemic and a paragraph below is devoted
to show its relevance.

The parameter ϑ is the speed at which infective individuals recover. It is realistic to assume
that this happens at a rate faster than the death rate and, what is more relevant, faster for
younger individuals. Thus, neglecting the dependence on time and space, we set

ϑ(t, a, x) = 0.8χ
[0,40[

(a) + 0.4χ
[40,60[

(a) + 0.08χ
[60,80[

(a) + 0.02χ
[80,+∞[

(a).

Finally, η is the speed at which hospitalized individuals recover. We get from [12] the total
number of individuals that recovered on March 23rd, namely 7342 out of a total H population
on that day of 63927, so that we set

η(t, a, x) = 0.115
1

day
.

Note that the parameter η correctly turns out to be an average of the values attained by ϑ.

3.2 The Numerical Algorithm

The numerical integration of (2.8) amounts to the approximate solution of ordinary differential
equations where age (a) and space (x) play the role of parameters. The integral coupling the
first two equations in the right hand side of (2.8) is computed by means of a quadrature formula.
Then, it is added to the other terms in the right hand side of (2.8) and an approximate solution
is obtained using the exact solution to the linear ODE consisting of the left hand sides alone.
This stratagem allows to comply with the global balance (2.6) of all the populations.

For the sake of completeness, we specify that all meshes are fixed and uniform. The age
boundary a = 0 as well as the geographic boundary in the x variable need no specific treatment,
due to the absence of any convective term.

3.3 The Role of Quarantine

We now show that the presented model, though in the simplified form (2.8), does capture
the relevance of the quarantine. We integrate three instances of (2.8) differing exclusively in
the values attained by κ. Recall that this parameter quantifies the speed at which infective
individuals are confined to quarantine.

1As usual, if A ⊆ RN , χ
A

(x) = 1 iff x ∈ A and χ
A

(x) = 0 iff x ∈ RN \A.
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In the first case, we set κ ≡ 0, then we use κ as defined in (3.3), in the third integration we
use 10 times the value of κ in (3.3) and in the latter integration we use 20 times the κ in (3.3).

We detail the choices of the initial datum (2.3):

So(a, x) =
[
3.125χ

[0,40[
(a) + 4.688χ

[40,60[
(a) + 3.125χ

[60,80[
(a)

+1.563χ
[80,+∞[

(a)
]
χ
[−40,40]×[−40,40]

(x) ;

Io(a, x) = 8χ{x : |x1+20|+|x2−20|<0.5}(x) + 32χ{x : |x1−3|+|x2+2|<0.25}(x)

+80χ{x : |x1−38|+|x2−36|<0.4}(x) + 4χ{x : |x1+10|+|x2+20|<0.3}(x)

+28χ{x : |x1−28|+|x2+9|<0.6}(x) ;

Ho(a, x) = 0 ;
Ro(a, x) = 0 .

(3.4)

The dynamics of infection is described by the function ρ which we here select as follows:

ρ(t, a, α, x, ξ) = 0.005χ
{(x,ξ) : ‖x−ξ‖<1.5}

(x, ξ) .

This choice amounts to allow infection to pass from infective to susceptibles only provided that
individuals are less than 1.5 apart. The transmission of the disease takes place independently
of the age and of the absolute positions, the only constraint being the vicinity of infective and
susceptibles. We also choose that the transmission of the disease is independent of time.

The effect of quarantine is well captured even by the simplified model (2.8). When κ is 0,

Figure 2: Total number of isolated individuals as a function of time, according to (2.8), in the four cases,

from left to right: κ = 0, κ as in (3.3), 10κ and 20κ. Remarkably, in the latter case the peak of the map

t→
∫∫

H da dx is lower than on the preceding case. Indeed, a high value of κ reduces the number of infectives

and, as a consequence, may also reduce the total number of individuals in quarantine.

no quarantine occurs and the virus spreads the fastest, see Figure 2. Higher values of κ mean

Figure 3: Total number of susceptible individuals as a function of time, according to (2.8), in the four cases,

from left to right: κ = 0, κ as in (3.3), 10κ and 20κ. The increase in the infectives’ isolation speed slightly

lengthen the time necessary for susceptibles to be infected.

that more individuals are quarantined/hospitalized, slowing down the spreading of the virus.
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Figure 4: Total number of infective individuals as a function of time, according to (2.8), in the four cases, from

left to right: κ = 0, κ as in (3.3), 10κ and 20κ. It is evident that quarantine sharply reduces the amount of

infective individuals.

As κ increases, S individuals take more time to get infected, see Figure 3. Clearly, with lower
values of κ, the disease spreads more rapidly, so that the number of infectives is far higher,
see Figure 4, and less individuals recover, see Figure 5. Moreover the total number of deaths

Figure 5: Total number of recovered individuals as a function of time, according to (2.8), in the four cases,

from left to right: κ = 0, κ as in (3.3), 10κ and 20κ. The increase in the quarantined individuals leads to a

decrease of the infected ones and, hence, also of those that recover.

decreases as κ increases, see Figure 6.

Figure 6: Total number of deaths due to the pandemic as a function of time, according to (2.8), in the four

cases, from left to right: κ = 0, κ as in (3.3), 10κ and 20κ. Here, the effect of quarantine is evident, sharply

reducing the death toll.

Note the counter-intuitive effect according to which the highest value of κ does not corre-
spond the highest peak in the map t→

∫∫
H da dx. Indeed, higher values of κ reduce the total

number of infected people which, as a consequence, may well lead to a reduction in the number
of isolated individuals, see Figure 2.

Note that higher values of κ not only lead to lower values of t→
∫∫

I(t, a, x) da dx, but also
move the peak of this function to the right. From the practical point of view, this is likely to
correspond to a lighter exploitation of intensive care units, a key aspect from the public health
point of view.

This “slowing” effect is evident also in Figure 7: lower values of κ result in a shorter time
interval where R0 exceeds 1. However, the values attained by this index may cause an excessive
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Figure 7: Value of the R0 index, as defined in (2.5), as a function of time, according to (2.8), in the four cases,

from left to right: κ = 0, κ as in (3.3), 10κ and 20κ. The effect of quarantine is evident: increasing values of

κ result in longer periods where R0 exceeds one, but with lower values of the index. This typically results in a

more bearable stress on the health system.

stress on intensive care units. On the contrary, higher values of κ lead to a longer period where
R0 exceeds 1, but with values that suggest a minor stress on the health system.

3.4 Residential Care Homes

A recurrent problem in several countries has been the propagation of Covid-19 in care homes.
Here, we simulate this phenomenon, showing that the presence of a less controlled area, though
containing only one age segment, not only directly suffers from the pandemic, but may well
accelerate the virus propagation in the care homes’ neighborhoods.

To this aim, we now integrate (2.8) with the following initial datum:

So(a, x) =
[
3.13χ

[0,40[
(a) + 4.69χ

[40,60[
(a) + 3.13χ

[60,80[
(a)

+3.13χ
[80,+∞[

(a)
]
χ
[−20,20]×[−20,20]

(x)χ
R2\(C1∪C2)

(x)

+1.56χ
[80,+∞[

(a)

(
χ
C1

(x) + χ
C2

(x)

)
;

Io(a, x) = 20χ
[40,80[

(a)χ
[0,20]×[35,40]

(x) ;

Ho(a, x) = 0 ;
Ro(a, x) = 0 .

(3.5)

where the two care homes C1 and C2 are located at

C1 = [−10, 10]× [10, 20] and C2 = [−35,−25]× [−30,−20] . (3.6)

In these regions, only one age class, namely the oldest one, is present and, mostly, less protective
measures are adopted. We describe this underestimation of the dangers related to the virus
through the function ρ:

ρ(t, a, α, x, ξ) =

(
8× 10−5 + 2.5× 10−3 χ

C1∪C2
(x)

)
χ{(x,ξ) : ‖x−ξ‖<5}(x, ξ). (3.7)

Note that in C1 and C2, ρ is about 30 times larger than outside these regions.
At time t = 0, the S population is (approximately) uniformly distributed in [−40, 40] ×

[−40, 40]. In C1 and in C2 only members of the oldest age group (i.e., a > 80) are present,
see Figure 3.4. Quickly, at time t = 3, the virus reaches the first care home C1, see Figure 9.
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Figure 8: Contour plots of the initial datum for the “Care Homes” integration. Note that the total distribution

of the S population is approximately uniform.

Figure 9: Contour plots of the solution to the “Care Homes” integration at time t = 3. Note the fast spreading

of the disease in C1 as defined in (3.6). From there, the virus spreads even faster.

Figure 10: Contour plots of the solution to the “Care Homes” integration at time t = 7. Note that the care

house C2, as defined in (3.6), is reached by the virus through a very small amount of I individuals, so small that

it is not highlighted with the current scale. Indeed, contrary to the impression suggested by these figures, the

model (2.8) does not allow for any propagation at a distance greater than δ = 5, as specified in (3.7).

As a consequence, the pandemic accelerates and, at time t = 7, also C2 is widely infected, see
Figure 10. This further accelerates the spreading, with C2 clearly acting as a further source of
infection, see Figure 11. At time t = 10, the two fronts of the pandemic propagation are evident:
the first one due to the initial presence of infected individuals, the second one emanating from
C2. Finally the situation at time t = 13 is plotted in Figure 12.

In Figure 13, we see the total amounts of individuals of all ages and over all the domain.
Note, in particular, that the initial trend of the I population is towards a decrease. Nevertheless,
the outbreak of the pandemic in the first care home C1 is able to invert this trend and the total
number of infected individuals starts to grow.

Finally, remark that although the two care homes are rather small with respect to the whole
domain, the spreading of the virus in C1 and in C2 is very clearly caught by the indexed R0

and Q0 defined in (2.5), see Figure 14.
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Figure 11: Contour plots of the solution to the “Care Homes” integration at time t = 10. The front of the

pandemic clearly spreads from the top right towards the bottom left of the domain and now the care house C2,

as defined in (3.6), acts as an epidemic outbreak, opening a second front and accelerating the pandemic in the

lower left part of the domain.

Figure 12: Contour plots of the solution to the “Care Homes” integration at time t = 13. The front of the

pandemic for the I population spreads from the care house C2, as defined in (3.6).

Figure 13: Total amount of individuals of the four populations over all the domain and all age classes, as a

function of time, with reference to the “Care Homes” integration. Remarkably, the initial tendency of the I

population is towards a reduction but, as soon as the virus reaches C1, at about t = 2, this tendency is reverted

and the pandemic accelerates.
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