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Abstract

Beginning in March 2020, the United States emerged as the global epicenter for
COVID-19 cases. In the ensuing weeks, American jurisdictions attempted to manage
disease spread on a regional basis using non-pharmaceutical interventions (i.e., social
distancing), as uneven disease burden across the expansive geography of the United
States exerted different implications for policy management in different regions. While
Arizona policymakers relied initially on state-by-state national modeling projections
from different groups outside of the state, we sought to create a state-specific model
using a mathematical framework that ties disease surveillance with the future burden on
Arizona’s healthcare system. Our framework uses a compartmental system dynamics
model using a SEIRD framework that accounts for multiple types of disease
manifestations for the COVID-19 infection, as well as the observed time delay in
epidemiological findings following public policy enactments. We use a bin initialization
logic coupled with a fitting technique to construct projections for key metrics to guide
public health policy, including exposures, infections, hospitalizations, and deaths under
a variety of social reopening scenarios.

Introduction 1

Since its documented onset in December 2019 and formal identification in January 2020 2

in Wuhan, China, COVID-19 (SARS-CoV-2) has spread around the globe, infecting 3

more than 7.5 million people globally by mid June 2020 [5]. In an atmosphere of intense 4

uncertainty around many of the epidemiological parameters for modeling including true 5

case counts as a result of low testing availability, the Modeling Emerging Threats for 6

Arizona (METAz) Workgroup of Arizona State University has developed and refined 7

models for predicting the burden of disease in order to inform policy related to 8

nonpharmaceutical interventions (i.e., social distancing). Because the burden of disease 9

and transmission dynamics differ by location due to a variety of factors including 10

geography, population, and environmental conditions, METAz chose to focus on 11
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state-level modeling to inform public health response efforts with greater precision. The 12

modeling approaches we describe can be applied to any region or state where 13

region-specific data are available. Here, we focus on the state of Arizona in the 14

American Southwest (population of around 7.3 million, 113,990 sq. miles, majority 15

population concentrated in centrally-located Maricopa County) as a proof of concept. 16

Arizona’s governor declared a state of emergency on March 11, and municipal 17

governments began to enact limits on in-person gatherings and some business closures 18

on March 16-17. From March 30 to May 15, Arizona was under a stay-at-home order 19

issued by the governor. As of June 10, Arizona has reported 29,852 cases across the 20

state, with the majority of cases in centrally-located Maricopa County, which includes 21

60 percent of the state’s population. Twenty-seven percent of the total cases were 22

recorded in the first ten days of June. As of June 10, Arizona’s healthcare system has 23

not experienced an overwhelming surge of COVID-19 cases exceeding systemwide 24

capacity to care for critically ill patients. Hospital admissions appeared to have slowed 25

and plateaued in April and May, indicating that social distancing motivated by state 26

and municipal policies enacted beginning in mid-March had reduced transmission and 27

may have been flattening the curve effectively in order to allow time to prepare 28

operations for future management of the disease in Arizona and avoid overwhelming 29

hospital systems as other states experienced. 30

However, as of early June, Arizona is experiencing increasing widespread community 31

transmission of SARS-CoV-2. Due to a relatively low rate of testing statewide, there is 32

ongoing debate and uncertainty about whether Arizona’s case prevalence data provides 33

an accurate portrait of the true public health risk burden and whether we have passed 34

an (initial) peak of infections and hospitalizations statewide and in individual counties. 35

Projections from a variety of modeling groups (i.e., IHME, UA, ASU) had indicated 36

that the peak number of cases will be reached in Arizona in mid-April to mid-May. 37

However, it is important to note that modeling projections are inherently uncertain, and 38

accurate assessment of case peaks will be possible only once the peak has passed. In 39

light of the transmission dynamics and laboratory reporting delays for the SARS-CoV-2 40

outbreak, peak determination will be possible approximately two to four weeks following 41

peak occurrence. It is also important to note that there is still significant uncertainty 42

about the transmission dynamics of the virus, including the degree of asymptomatic 43

infection and transmission and the results do not capture the full range of uncertainty. 44

We demonstrate this observation through our modeling below. 45

On April 16, the United States Government released Guidelines for Opening Up 46

America Again, proposing a phased approach to reopening the country. In order to 47

progress into and through three sequential phases of opening businesses and other 48

public and private services, states are expected to meet a set of gating criteria outcome 49

metrics along with a set of capacity responsibilities for carrying out core public health 50

and management functions. In order to move to Phase 1 with limited reopening of 51

businesses and other services, states must demonstrate flattening the case rates, and in 52

order to move to Phase 2 with expanded reopening of businesses and services, states 53

must demonstrate no rebound in case counts from the limited reopening in Phase 1. 54

On May 15, Arizona’s stay-at-home order expired, with targeted business openings 55

occurring on May 8 and May 11. At the time of reopening, Arizona had not met the 56

CDC gating criteria to move to Phase 1, nor had the state developed a comprehensive 57

plan that incorporated the full testing capabilities within the state (both molecular and 58

serological) with a program linked to non-pharmaceutical interventions (NPI) including 59

stay-at-home and other social distancing and infection mitigation policies and 60

procedures. In order to reopen Arizona safely, a phased approach needs to be 61

data-driven and focused on avoiding a rapid surge in cases through appropriate and 62

effective policy for non-pharmaceutical interventions. 63
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Rising case counts and hospitalizations in late May and early June reflect that the 64

move to lift policies restricting in-person interactions and the lack of statewide policies 65

to enforce NPIs including physical distancing, masking, and hand hygiene resulted in 66

markedly increased community transmission. As of June 10, there is not a statewide 67

plan articulated to guide resumption of NPIs despite strong evidence of increased 68

community transmission. 69

This paper proposes a mathematical framework that ties disease surveillance with 70

the future burden on Arizona’s hospital system and hospital resources. The 71

mathematical model links together policy interventions with estimated outcomes for 72

infections, hospitalizations, and deaths in an epidemiological analysis. One of the key 73

features of our modeling methodology is the time-delay of new infections on confirmed 74

case counts and the impact on the healthcare system. We propose methods to evaluate 75

the likely outcomes for a range of policy decisions intended to keep Arizona safe while 76

reopening in a responsible and defensible sequence. 77

1 Methods 78

1.1 Data Sources 79

We use two publicly available data sources to initialize and fit our model: cumulative 80

case counts and deaths in the State of Arizona between the dates of March 4 and June 81

7. Figures 1 and 2 depict the data that are used to obtain the results presented below. 82

Both of these are publicly available and daily announced at the Arizona Department of 83

Health Services’ (ADHS) data dashboard at 84

https://www.azdhs.gov/preparedness/epidemiology-disease-control/infectious-disease- 85

epidemiology/covid-19/dashboards/index.php. 86
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Cumulative COVID-19 Cases in Arizona

Fig 1. Cumulative confirmed COVID-19 cases in Arizona, between March 4 to June 7,
2020

1.2 Structure of the Model 87

We make use of a compartmental system dynamics model using a SEIRD framework 88

that includes multiple compartments for infected individuals. This model structure 89

allows us to estimate the number of patients in the hospital and assess model fit with 90

respect to two sources of data: daily new cases obtained from the daily cumulative 91

confirmed cases and daily cumulative reported deaths given in Figures 1 and 2. In 92

essence, the population of interest, in this case, the population of the State of Arizona 93

June 14, 2020 3/20

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 15, 2020. ; https://doi.org/10.1101/2020.05.13.20099838doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.13.20099838
http://creativecommons.org/licenses/by-nc-nd/4.0/


3/16 3/30 4/13 4/27 5/11 5/25 6/08
0

200

400

600

800

1000

Cumulative COVID-19 Related Deaths in Arizona

Fig 2. Cumulative COVID-19 related deaths in Arizona, between March 4 to June 7,
2020

(assumed to be 7,278,717 in this study) is divided into states of Susceptible (S), 94

Exposed but not yet infectious (E), Asymptomatic infected (Ia), infectious and 95

presymptomatic (Ip), Symptomatic with a mild infection (Is), symptomatic with a 96

severe infection and hospitalized (H), symptomatic with a critical infection and in the 97

ICU (C), undergoing additional recovery in ICU (B), Recovered and immune (R) and 98

Dead (D), as shown in Figure 3. 99
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Fig 3. Depiction of the compartmentalized system dynamics model used to represent
transmission and disease progression for State of Arizona projections

Our model defines separate bins for asymptomatic and presymptomatic individuals 100

to explicitly account for differing rates of transmission and differing durations of viral 101

shedding. Individuals who are exposed to the virus generally go through an incubation 102

period (modeled by a rate of ζ) during which they are exposed but not yet infectious. 103

This duration is modeled as 3 days in our study, to support an ensemble estimate of 5 104

days for time from exposure to symptoms and an estimate of 6 days serial time obtained 105

from the literature [1, 6, 10, 13, 14, 23]. After the preinfectious period, individuals 106

become infectious, either as an asymptomatic or a presymptomatic patient. The 107

presymptomatic duration (modeled with rate δ) is assumed to be 2 days [20, 24]. 108

Asymptomatic patients recover at a rate of γ = 1/6, corresponding to an average 109

recovery duration of 6 days after the preinfectious period. We modeled a number of 110

observed variations on how symptomatic individuals experience COVID-19. After the 111

presymptomatic period of 2 days, a large fraction, 81% (denoted by ρ in the model) 112

estimated by [22, 25], of individuals go through a 6-day period of relatively mild 113

symptoms and recover similarly to the asymptomatic patients [21]. The remaining 19% 114
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of symptomatic patients develop a severe or critical infection and seek care at a hospital. 115

According to the growing body of peer-reviewed literature, a large portion of the 116

patients admitted to the hospital have a severe, but not critical, infection and recover 117

after an average duration of 7 days in a regular hospital bed. An average of 20% of 118

these patients, however, progress to a critical infection, requiring ICU care and possibly 119

intubation. In addition to patients that progress to the ICU from a regular hospital bed, 120

a small fraction of patients that present to the hospital with critical respiratory distress 121

are directly admitted to the ICU. We have conferred with local clinicians in the Phoenix 122

metropolitan area and Tucson who confirm these patterns of patient progression 123

through the hospital system. Hence, in our model, there are two modes of admission to 124

the ICU; one directly from the emergency room and the other one from a regular ward, 125

after the patient’s infection progresses to a critical condition. The parameters for these 126

splits are set to ensure that (i) the fraction of symptomatic patients with mild infection 127

is 81% [22, 25], (ii) the total fraction of symptomatic patients that develop a critical 128

infection that requires ICU care is 5% [22] and (iii) 20% of patients in a regular bed 129

progress to a critical infection [16]. 130

Studies in the literature cite a diverse range of outcomes for patients in the ICU, but 131

most agree that the ICU duration for patients that eventually recover is generally longer. 132

For example, one study [19] cites point estimates for the duration of onset-of-symptoms 133

to death to be 17.8 days and from onset-of-symptoms to hospital discharge to be 22.6 134

days. The additional time to discharge is due partly to various steps that caregivers 135

have to take to arrange for care after the ICU period since generally patients that 136

underwent intubation and other invasive procedures require subsequent care in other 137

post-acute facilities. The additional post-acute recovery time is represented as another 138

bin, with a duration of 4 days (modeled with rate α). The reported average ICU stays 139

in the literature are generally very diverse; we adopted a conservative point estimate of 140

8 days to align with the symptom onset to recovery/death estimates [19] as well as 141

other more detailed studies that tracked patients’ progress through the hospital [25]. 142

One of the important parameters in the model is ω, which represents the fraction of 143

asymptomatic patients. Several studies point to the importance of modeling 144

transmissions by asymptomatic individuals, who may never be aware that they were 145

transmitting the virus. However, point estimates on the fraction of individuals that 146

experience asymptomatic infection vary greatly from context to context. 147

In our models we adopted an asymptomatic rate of 40% based on point estimates 148

observed in multiple peer-reviewed manuscripts from different COVID-19 populations 149

around the world [3, 17]. This assumption allows us to obtain worst-case estimates on 150

the prevalence of infections in the general population given that, in the absence of 151

widespread testing of asymptomatic individuals, the asymptomatic patients are 152

generally undetected. 153

In our modeling and analysis, we explicitly consider the possibility that only a small 154

fraction of the true incidence of infections are detected as COVID-19 cases and reflected 155

in the reported case counts and deaths. One such example that points to a large 156

undetected fraction of cases is [11], indicating that 86% of the early infections in China 157

were undocumented, or in other words the “actual” cases in a population may be more 158

than 7 times the detected cases. The same study also offers a rate of transmissions by 159

asymptomatic individuals at 55% of the transmission rate by symptomatic individuals, 160

which we reflect in the force of infection, λ(t) shown in Figure 3. Subsequently several 161

other papers have offered additional understanding on the role of asymptomatic 162

infections in transmission and its prevalence in different contexts [2, 3, 8, 9, 15, 17]. We 163

use these papers along with the actual data on new cases and deaths in Arizona to 164

obtain point estimates for model parameters. We also devise an initialization algorithm 165

to identify initial values of the compartments in the model. 166
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The ordinary differential equations (ODE) that define the system dynamics are 167

given by Eqns (1) thru (10). 168

S ′(t) = −βt λ(t)S(t) (1)

E ′(t) = βt λ(t)S(t)− ζ E(t) (2)

I ′a(t) = ζ ω E(t)− γ Ia(t) (3)

I ′p(t) = ζ (1− ω) E(t)− δ Ip(t) (4)

I ′s(t) = δ Ip(t)− γ Is(t) (5)

H′(t) = γ ψ Is(t)− µH(t) (6)

C′(t) = γ (1− ρ− ψ) Is(t)− ν C(t) + µφH(t) (7)

B′(t) = ν (1− υ) C(t)− αB(t) (8)

R′(t) = γ Ia(t) + γ ρ Is(t) + µ (1− φ)H(t) + αB(t) (9)

D′(t) = ν υ C(t) (10)

The time dependent force of infection, λ(t) is modeled as 169

λ(t) =
0.55Ia(t) + Ip(t) + Is(t) + 0.05[H(t) + C(t) +B(t)]

N −D(t)
. (11)

This expression is motivated by the fact that asymptomatic individuals transmit the 170

disease at a reduced rate as discussed above, and patients under care in the hospital are 171

relatively well isolated via institutional infection control measures so they only transmit 172

at a rate that is equal to 5% of the presymptomatic or symptomatic patients. Studies 173

that point to the high infectiousness of presymptomatic patients [4] imply that infections 174

are mostly driven by patients in these compartments. We model a time-dependent 175

transmission rate, βt, denoted by the subscript t to represent the time dependency. 176

Together with the force of infection and the current pool of susceptible individuals, the 177

transmission rate βt yields the rate at which susceptible individuals get exposed to the 178

infection. The force of infection term can be thought of as the probability that an 179

arbitrary individual is infectious at a rate equivalent to that of a symptomatic patient. 180

The transmission rate, βt represents the average rate of contact between susceptible 181

and (symptomatic-equivalent) infectious people multiplied by the probability of 182

transmission given contact. Hence, given the above force of infection and the number of 183

individuals in the susceptible compartment, the rate at which individuals become 184

exposed to the virus at time t is strongly driven by the term, βt. A good way of 185

thinking about the impact of non-pharmaceutical interventions such as social distancing, 186

stay-at-home orders, school closures, wearing masks, etc. is through the term βt, and 187

how the different interventions impact either (i) the average number of infectious 188

individuals that susceptible individuals contact, or (ii) the probability of transmission 189

given contact. 190

Note that an increase in either of these two values would lead to an increase in the 191

effective transmission rate at a given time, which will then increase the rate at which 192

susceptible individuals get exposed to the virus. We find Figure 4 to be informative to 193

understand the effect of these two variables to understand the impact of social 194

distancing and other NPI interventions. Staying on the same β curve of 0.20 while 195

increasing the average number of contacts for a susceptible individual from 10 to, say, 196

20 requires that the probability of transmission given contact be reduced from 0.02 to 197

0.013 through measures that reduce the probability of transmission given contact with 198

an infectious individual. Such measures may involve hand washing practices, wearing 199

masks, keeping 6+ ft apart, etc. As the interactions between individuals are expected to 200

increase after the stay-at-home orders are lifted, the importance of such measures 201

should be more rigorously emphasized. It is also useful to note that a modest 15% 202
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Fig 4. Transmission rate, β represented as a product of the average number of contacts
and the probability of transmission given contact with an infectious individual

increase in both values would result in a 32.25% increase in β, which would have dire 203

consequences for the transmission dynamics. 204

The model parameters and point estimates for them obtained from the literature are 205

provided in Table 1. Our approach of initializing the compartments and fitting the 206

transmission rate βt and the mortality rate at the ICU, υ, uses publicly available data 207

on case counts and COVID-19 related deaths in Arizona. In our fitting procedure, we 208

allow for the transmission rate, βt to change in response to significant events or policy 209

changes, such as non-pharmaceutical interventions being enacted or lifted in Arizona, as 210

we explain below. 211

1.3 Initialization of Compartments 212

We first present a methodology to initialize the model in a manner that is independent 213

of the transmission rate, β. In particular, we consider the data on the cumulative 214

number of confirmed cases in Arizona, where the first reported cases of community 215

transmission were on March 4, as shown in Figure 1. We use these data to obtain the 216

number of new cases on each day. The average reporting delay on COVID-19 tests is 217

about 6 days in Arizona. Given that our model indicates an incubation period of 5 days 218

and average time to seek testing (when it is available) is about 3 days after 219

symptom-onset, we obtain presumed exposure dates for the reported new cases on each 220

day (i.e., 14 days before a case is confirmed). A visual that shows this logic is shown 221

with the blue bars (reported new cases over time) and the orange bars (numbers 222

eventually detected, shown on the presumed exposure dates) in Figure 5. Note that the 223

orange bars show the number of individuals exposed to the virus on the given day, who 224

are then eventually detected by testing. 225

As discussed above, a large portion of the individuals exposed to the virus on a given 226

day are never detected due to the fact that (i) a significant portion of these individuals 227

never develop symptoms; and (ii) some symptomatic individuals are never tested, their 228

infections are attributed to another influenza-like illness, or their case is missed due to 229
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Description Parameter Value Sources

Time to infectiousness ζ−1 3 days [1, 7, 10, 12,
13, 18, 23]

Presymptomatic duration δ−1 2 days [20, 24]
Asymptomatic infectious period γ−1 6 days [21, 22]
Mild infection recovery time γ−1 6 days [22]
Severe infection recovery time µ−1 7 days [6, 22]
Critical infection to death ν−1 8 days [19, 25]
Additional days to recover after ICU α−1 4 days [19]
Fraction of asymptomatic infections ω 40% [3, 17]
Fraction of mild symptomatic infections ρ 81% [22]
Fraction hospitalized on regular bed ψ 17.5% [22]
Fraction of hospitalized progressing to ICU φ 20% [16]
Mortality among ICU patients υ 50-60% data fit

Table 1. Point estimates used for model parameters and sources
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Fig 5. Reported new cases and presumed exposure dates

false negative results in COVID-19 tests. To account for the large rate of undetected 230

infections, we have devised a novel approach using an X-factor initialization scheme 231

where we multiply the number of eventually detected-exposed individuals by the 232

X-factor to obtain the underlying overall exposures on a given presumed exposure day. 233

The X-factor determination in this scheme is highly correlated to the degree to which 234

the testing procedures are able to detect the infections in the system. Given our 235

assumption that 40% of all infections are asymptomatic, the minimum X-factor that is 236

aligned with our modeling assumptions is 1.67, since these individuals are almost never 237

tested and confirmed due to the fact that they do not exhibit symptoms to prompt 238

testing. At the upper end, our model indicates that about 12% of infections have severe 239

or critical infections, requiring them to seek healthcare. This implies that the maximum 240

X-factor that would be aligned with our model is about 8, since nearly all individuals 241

seeking care in Arizona for COVID-like symptoms are tested for COVID-19. In 242

Figure 5, the grey points depict exposures in a scenario using X-factor of 4. 243

The X-factored exposures on presumed exposure days are then fed into our SEIRD 244

model, keeping the transmission rate to zero. We obtain an approximate continuous 245

time function by interpolating over these presumed exposures, called W (s). Figure 6 246

shows the approximated rate of exposures over time in X-factor of 4 scenario between 247

March 4 and March 29 in Arizona; the black dots are the daily presumed exposures also 248

shown in Figure 5. 249
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Fig 6. The W (s) function for the X-factor of 4 scenario, obtained by inflating the daily
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Fig 7. fH+C+B(t) under assumed parameters

We then numerically evaluate the convolution 250

E[Ni(t)|W (s), 0 ≤ s ≤ t] =
∫ t

0

W (s)fi(t− s)ds (12)

to obtain the expected number in compartment i ∈ {Ia, Ip, Is,H, C,B,R,D} at time t, 251

where fi(τ) denotes the probability that an individual would be in Bin i τ time units 252

after exposure to the virus. The fi(·) functions for each bin in the model can be 253

obtained by simulating the above stated model with one exposed individual and 254

transmission rate of zero. As an example, Figure 7 shows the fraction at the hospital, 255

fH+C+B(·) versus time. 256

The solution to the ODEs is unique given a set of initial values for the number in 257

each bin at time zero. Using the above initialization logic, we calculate the number that 258

we expect to see in each bin on a chosen presumed exposure day, using all of the data 259

on new cases reported on the presumed exposure days prior to this point, and using the 260

number of presumed exposures on that day to initialize the E compartment. We are 261

then -almost- ready to simulate the model starting from that day and observe the 262

number in each compartment to obtain projections. 263
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1.4 Fitting Transmission Rate and Mortality 264

In our study, we initialize the bins on March 30 (i.e., this calendar day is our t = 0) and 265

use the actual data on presumed exposures (under any assumed X-factor scenario) 266

starting from March 31 until May 24 to fit the transmission rate, βt. Note that the 267

presumed exposure date of May 24 corresponds to the actual reporting date of June 7, 268

which is the last data point that we use in our results in this manuscript. We tried a 269

number of different initialization dates, and the results on the transmission rate fit were 270

comparable. We divided the time between March 31 and May 24 for which we have 271

presumed exposures data into three periods correlating to dates of significant changes in 272

Arizona public policy and activities related to NPIs including business closures and 273

stay-at-home orders. We fitted three possibly different β values to each period, resulting 274

in a piece-wise constant transmission rate structure. In particular, we assumed constant 275

β values between March 31 to April 15 (which we refer to as β̂1, representing early 276

adjustment to the stay-at-home order enacted on March 30), April 16 to May 10 (which 277

we refer to as β̂2, representing stabilization of public response to the stay-at-home order) 278

and May 11 through May 24 (which we refer to as β̂3, representing reopening of some 279

businesses and activities including personal care services on May 8, dine-in restaurants 280

on May 11, and the expiration of the stay-at-home order on May 15). We assume that 281

β̂3 is the best available transmission rate estimate explaining the exposures beyond May 282

24 (since at the writing of this manuscript no changes in the non-pharmaceurical 283

interventions have been announced) and use that value to generate the projections 284

below for exposure dates later than May 24. 285

We use Wolfram Mathematica 12 to obtain a numerical solution to the ODEs and 286

obtain a parametric function that describes the number of susceptibles in the system 287

given the initial population of 7,278,717 (population of Arizona) and the assumed 288

loading scenario. We then use the X-factored presumed exposures to obtain the number 289

of susceptibles indicated by the data, and use a least-squares based nonlinear model fit 290

procedure to estimate β̂1, β̂2 and β̂3. As an example, Figure 8 shows the model fit along 291

with the 95% prediction intervals under a 4X scenario. In addition, we plot the model 292

predicted and 4X presumed exposures in Figure 9. 293

4/14 4/28 5/12

7.18×106

7.20×106

7.22×106

7.24×106

7.26×106

Susceptibles for 4X-4X-4X Scenario

with fitted β1=0.227259, β2=0.183285, β3=0.25824

Fig 8. 95% prediction bands for susceptibles; red dots show presumed susceptibles
under 4X scenario

In addition to fitting the transmission rate, β, we use the cumulative number of 294

COVID-19 related deaths in Arizona to fit the mortality rate among the ICU patients. 295

Note that in our model, we assume that all patients who die will do so in the ICU, 296

which ignores the deaths that occur outside the hospital. At the time of the writing of 297
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X-factored Data

4/7 4/14 4/21 4/28 5/5 5/12 5/19
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Predicted Exposures for 4X-4X-4X Scenario

with fitted β1=0.227259, β2=0.183285, β3=0.25824

Fig 9. 4X presumed exposures from data, and predicted exposures with the fitted β
values under 4X

this manuscript, Arizona’s healthcare capacity, beds, and ICU have been sufficient to 298

care for COVID-19 patients. Therefore, to our knowledge, Arizona has not experienced 299

significant reported deaths outside the hospitals due to an inability for patients to 300

access critical care services. There is, however, ongoing debate about whether 301

COVID-19 related deaths are under-reported in Arizona and nationwide. 302

Given our assumption for this modeling exercise that deaths are primarily occurring 303

in the ICU, for this analysis we assumed that the information on the reported deaths is 304

relatively accurate; hence, we do not amplify the reported deaths when fitting the death 305

rate υ. Figure 10 shows the cumulative number of deaths that the model predicts under 306

a 4X loading scenario. Note that under the 1.67X loading scenario, the ICU death rate 307

produced by the model fit procedure was on the order of 1.24. That is, the assumption 308

of 88% detection rate was not aligned with the point estimates we used in the model to 309

predict the reported death rates. Given that there is widespread belief that COVID-19 310

deaths are underreported, we understand this finding to be in support of the idea that 311

only a fraction of the infections are detected, and thus reported in the official case 312

counts. In the next section, we present projections for 1.67X, 4X, and 6X loading 313

scenarios to provide a range of future projections for cases, hospitalizations, and deaths. 314

4/14 4/28 5/12 5/26

200

400

600

800

1000

Deaths for 4X-4X-4X Scenario

with fitted β1=0.227259, β2=0.183285, β3=0.25824, υ=0.502542

Fig 10. Model predicted cumulative number of deaths between 3/31 and 6/7 with 95%
prediction intervals; red dots are the reported COVID-19 deaths for the period in
Arizona.
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2 Results 315

We provide projections on the number of deaths, number of people hospitalized, and 316

total infections for a number of cases that differ in X-factor and the transmission rate 317

over time. We first start with the benchmark cases of 1.67X, 4X and 6X loading 318

scenarios simulated under the assumption that the transmission rate stays at the fitted 319

β̂3 for exposure dates beyond May 24. It is useful to observe the dynamics for a 320

relatively long horizon of 500 days, as given in Figure 11. 321

Day 1 in this simulation is March 31, where we initialize our model and run it with 322

the β and υ values that we fitted using the X-factored data on new cases and deaths 323

after this point (i.e., 55 points of backcasted presumed exposures and 69 days of data on 324

deaths). We define herd immunity as the point at which wide community spread is 325

suppressed due to the large proportion of individuals in the population with immunity. 326

Given the large initial susceptible population that we use for the model (i.e., 7,278,717) 327

herd immunity is reached around late October at the currently fitted transmission rate. 328

This figure demonstrates that policies that were initially enacted in March to limit close 329

person-to-person contacts were effective in reducing transmission during April and early 330

May, but also preserved a high pool of susceptibles in the general public to fuel future 331

outbreaks under conditions where NPIs are not effectively implemented. 332

3/30 6/08 8/17 10/26 1/04
0

1×106

2×106

3×106

4×106

5×106

6×106

7×106

4X: β1=0.227259, β2=0.183285, β3=0.25824, υ=0.502542

Susceptible

Infected

Recovered

Fig 11. Susceptible, infected and recovered, 4X loading with fitted β and υ

While visualization of the epi curves is useful to gain insights into the long-term 333

behavior and other concerns such as peaks and herd immunity, it is more informative to 334

focus on shorter-term projections since it is hard to imagine a real-life scenario under 335

which β stays constant over a very long period of time due to fluctuations with regard 336

to NPI measures taken by individuals and public health officials. 337

The baseline plots given in Figures 12 through 15 show the total infected and 338

hospitalizations as well as exposures and deaths under the 1.67X, 4X and 6X loading 339

scenarios with fitted β and υ. The fitted values in each scenario are shown in the plot 340

legends. Recall that to fit the mortality rate in each scenario, we kept the data on 341

reported deaths intact and fitted the value of υ to the data. Note that the fitted υ value 342

of 0.50 for the 4X case results in a mortality rate of 2.5% among symptomatic 343

individuals. For the 1.67X scenario, this resulted in a fitted υ value of 1.23, meaning 344

that the 1.67X scenario did not generate sufficient number of patients in the ICU to 345

explain the reported deaths in Arizona. Hence, we used an υ value of 0.99 for the 1.67X 346

runs. On the other hand, the fitted upsilon for the 6X scenario was 0.33 since this 347

scenario assumed a higher undetected rate and loaded more patients at the ICU. An 348

alternative approach would have been to inflate the death numbers to account for the 349

observation that deaths related to COVID-19 may be underreported. We do not use 350
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this approach in our projections in order to maintain an evidence-based conservative set 351

of estimates on the death toll of the epidemic. 352

Figure 15 shows the projected hospitalizations (the sum of the numbers in bins H, C, 353

and B) along with the available hospital data between April 9 and June 7. Again, these 354

data are obtained from the ADHS data dashboard, where the census of inpatient, ICU, 355

and emergency department (ED) bed usage are provided separately. Note that in our 356

model, we do not have a separate ED bin, so we plotted the hospital data from the 357

ADHS website in two ways: one without the numbers from the ED and one with the 358

numbers from the ED. We note that a significant portion of the patients in the ED on 359

each day may be discharged and sent home to recover rather than being admitted to an 360

inpatient bed. As shown in Figure 15 the projected hospitalizations fall within the 361

1.67X and 4X scenarios in both of our treatments of ED data. 362

3/30 4/13 4/27 5/11 5/25 6/08 6/22
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Projected exposures under 1.67X, 4X and 6X

1.67X: β1=0.226931, β2=0.182606, β3=0.256557, υ=0.99

4X: β1=0.227259, β2=0.183285, β3=0.25824, υ=0.502542

6X: β1=0.227523, β2=0.183874, β3=0.259702, υ=0.326503

1.67X presumed exposures from AZ data

Fig 12. 1.67X exposures inferred from actual data (red dots) and projected by the
model
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Projected Cumulative Deaths under 1.67X, 4X and 6X

1.67X: β1=0.226931, β2=0.182606, β3=0.256557, υ=0.99

4X: β1=0.227259, β2=0.183285, β3=0.25824, υ=0.502542

6X: β1=0.227523, β2=0.183874, β3=0.259702, υ=0.326503

cumulative deaths from AZ data

Fig 13. Cumulative number of deaths; actual data (red dots) and projected by the
model
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1.67X: β1=0.226931, β2=0.182606, β3=0.256557, υ=0.99

4X: β1=0.227259, β2=0.183285, β3=0.25824, υ=0.502542

6X: β1=0.227523, β2=0.183874, β3=0.259702, υ=0.326503

Fig 14. Total infected projected by the model with fitted β and υ
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1.67X: β1=0.226931, β2=0.182606, β3=0.256557, υ=0.99

4X: β1=0.227259, β2=0.183285, β3=0.25824, υ=0.502542
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inpatient+ICU+ED from AZ data

Fig 15. Hospitalized patients projected by the model with fitted β and υ

The model projections show that it is reasonable to expect a slowly increasing 363

number of patients in the hospital in the short term (i.e. late May to mid June) with 364

subsequent rapid growth of hospitalization rates with increased community transmission 365

as NPI policies were lifted on May 15. This increase in cases is due to the large number 366

of susceptible individuals in the population resulting, in part, to the effectiveness of NPI 367

policies in place from March 30 to May 15. 368

2.1 Projections under a Favorable Summer Effect 369

There is currently debate about the impact of higher summer temperatures in large 370

regions of Arizona on the transmission rate of COVID-19. A so-called summer effect 371

would include a potentially suppressive effect on virus survivability in the extremely 372

elevated temperatures and UV radiation of the desert Southwest. Simultaneously, we 373

consider that the extreme summer heat in Arizona’s population centers also creates a 374

behavioral effect, changing patterns of indoor and outdoor activity in Arizona’s desert 375

environment. In essence, Arizona’s summer effect behaviorally mimics the winter effect 376

in more temperate regions, as people seek heat relief in indoor environments. Given the 377

uncertainty about a potential summer effect, particularly on virus survivability, we have 378

found it to be a useful context to demonstrate the sensitivity of outbreak dynamics to 379

the transmission rate β. 380

3/30 5/04 6/08 7/13 8/17
0
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12000
Projected Hospitalizations under Favorable Summer Effect

1.67X, no summer effect

1.67X, 25% decrease on 5/29

1.67X, 25% decrease on 6/12

1.67X, 50% decrease on 6/12

Fig 16. Hospitalization projections under favorable summer effect scenarios for 1.67X

In Figure 16, we plotted the projected 1.67X hospitalizations under four different 381

scenarios with respect to the summer effect. We plotted the projected hospitalizations 382

for a longer horizon to show the impact of a favorable summer effect on transmission 383

rates. We chose to use the 1.67X scenario for this purpose since the current 384

hospitalization data seems to be closer to the 1.67X projections. The plot shows the 385

tradeoff between an early summer effect versus a later but more significant summer 386
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effect. The figure also demonstrates the impact of a 25% to 50% reduction in the 387

transmission rate as well as the impact of the timing of the summer effect in further 388

flattening the curve. 389

2.2 Initiating Non-pharmaceutical Interventions 390

The current estimation procedure applied to the current epidemiological data as of June 391

7 results in a significant increase in the transmission rate starting from May 11, which 392

we use as the transmission rate estimate to obtain baseline projections as shown in 393

Figure 12. Of note, May 11 was the date on which restaurants were allowed to resume 394

dine-in operations statewide. This baseline reflects the observed data from the state 395

health department reporting system at the present time during the response. We note 396

that there are frequent data reporting corrections and so the current estimation targets 397

could potentially change. The model includes multiple changes in transmission rates 398

correlating with policy implementations. When NPIs were initiated, including bar 399

closures and restaurant restrictions in the urban centers on March 17 and the statewide 400

stay-at-home order on March 30, transmission rates were reduced. When NPI policies 401

were lifted, including the resumption of dine-in restaurant service on May 11 and the 402

end of the stay-at-home order on May 15, transmission rates increased. 403

It is worthwhile to consider the impact of initiating NPIs once more in an effort to 404

return to the transmission rate estimated by our model during Arizona’s stay-at-home 405

order. We analyze the reduction in the number of infections and the number of 406

hospitalized patients that may result from the reinitiation of NPIs at different points in 407

time, starting from June 8. Recall that the latest data point we used in this analysis is 408

June 7 data on cumulative confirmed COVID-19 cases and deaths, so June 8 represents 409

the earliest point in time that the NPIs could be reinitiated. We do not specify any 410

specific NPIs to achieve this reduction in transmission. Rather, we use the prior 411

estimates in transmission parameter β as a measure of lowered transmission under 412

heightened policy implementation. 413

To represent the patient care load imposed on Arizona’s hospitals, we consider the 414

area under the total infections and hospitalizations curves, in a manner similar to the 415

calculation of “illness inventory” or utilization in the system over time. We consider five 416

dates that NPIs can be initiated: June 8, June 15, June 22, June 29, and July 6 and 417

obtain the following improvement metric in comparison to the baseline case of no NPIs, 418

which assumes that the transmission rate stays constant at the β̂3. The results are 419

qualitatively similar, so to provide some conservative estimates, we use 1.67X for this 420

analysis. Hence, we use β̂1 = 0.226931, β̂2 = 0.182606, β̂3 = 0.256557, υ̂ = 0.99. At the 421

indicated NPI initiation times, we revert the transition rate to the lowest under NPI, 422

which is β̂2 = 0.182606. 423

First, it is useful to observe the total infections (including asymptomatic individuals, 424

presymptomatic individuals, symptomatic individuals and hospitalized patients) under 425

the baseline and the five intervention time options over the next several months under 426

these assumptions to compare the behavior under these different scenarios. We note 427

that we are not presenting this figure to provide projections, but rather provide a visual 428

reference to explain the difference in long-run behavior that NPIs, through the 429

reductions in transmission rate implies. In Figure 17 we see that the NPIs result in 430

significantly different infection patterns as a result of the reduction in transmission 431

rates. While this simulation represents a highly optimistic scenario with respect to the 432

impact of NPI reinitiation on the viral transmission rate, this analysis clearly shows 433

that initiation of NPIs can provide significant relief on the healthcare resource demands 434

that the pandemic presents, even in the setting of elevated baseline infection rates with 435

a large susceptible population. 436

We have indicated that this analysis presents an optimistic scenario with respect to 437
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Fig 17. Total infections under the baseline and five NPI initiation date options for
1.67X

the impact of the re-initiation of NPIs on the transmission rate due to several reasons. 438

First, individual behavior with regard to NPIs including masking and physical 439

distancing varies due to individual beliefs and adherence to recommended actions. 440

Second, some population segments experience systemic inequity including inadequate 441

access to supply chain and economic resources to acquire protective equipment (e.g. 442

face masks) and hygiene resources (e.g. hand sanitizer) to afford measures of protection. 443

Third, individuals experiencing systemic resource inequities are least able to avoid public 444

contact and practice physical distancing due to fragile employment status in front-line 445

jobs. Fourth, the high asymptomatic rate and presymptomatic transmission patterns 446

coupled with low viral testing rates and extremely limited contact tracing capacity 447

statewide has limited the ability of the public health system to contain outbreaks even 448

in the setting of optimal NPI adherence by individuals in the community. 449

To quantify the improvement that can be expected from the re-initiation of NPIs on 450

a given date, we consider the following percent reduction metric, which compares the 451

areas under each curve over time. That is, 452

ρkm(τ) = 1 −
∫ τ
0
Nk
m(t)dt∫ τ

0
Nm(t)dt

, (13)

where the superscript k denotes the NPI initiation date options and superscript m can 453

be total infections, hospitalized patients or deaths. We calculate the reduction metrics 454

for 1.67X however, the results are similar qualitatively under 4X and 6X. 455

Percent reduction in total infections with NPI initiations
by date NPI on 6/8 NPI on 6/15 NPI on 6/22 NPI on 6/29 NPI on 7/6

7/1/20 24% 13% 4% 0% 0%
8/1/20 65% 57% 48% 38% 27%
9/1/20 82% 77% 72% 65% 58%
10/1/20 84% 80% 76% 71% 65%
11/1/20 82% 78% 74% 69% 64%
12/1/20 78% 74% 70% 66% 61%

Table 2. Percent reductions observed in the total infections by the indicated dates for
each NPI initiation date option

Table 2, which provides the percent reductions in total infections, shows that 456

initiating NPIs results in significant reductions in total infections. For example, 457

initiating NPIs on June 22 would imply a reduction of 72% in the total infections in 458
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Percent reduction in hospitalizations with NPI initiations
by date NPI on 6/8 NPI on 6/15 NPI on 6/22 NPI on 6/29 NPI on 7/6

7/1/20 14% 5% 1% 0% 0%
8/1/20 58% 49% 39% 28% 17%
9/1/20 79% 74% 68% 61% 52%
10/1/20 84% 80% 75% 70% 64%
11/1/20 83% 79% 74% 70% 64%
12/1/20 79% 75% 71% 67% 62%

Table 3. Percent reductions observed in the hospitalizations by the indicated dates for
each NPI initiation date option

Arizona by the beginning of September. A similar observation can be made from 459

Table 3; initiation of NPIs on June 22 would also imply 68% reduction in 460

hospitalizations. 461

Another important insight we gain from the results is the impact that timing of the 462

NPIs makes. In both tables, we see that the reductions by July 1 for the initiation dates 463

of June 29 and July 6 are 0%, since those cases have the same behavior as the baseline 464

1.67X case. In general, supposing that June 8 would be the earliest that one would 465

trigger an NPI, delaying the initiation of NPIs by one week results in about a 5% 466

change in the reductions that we observe in the total infections, hospitalizations and 467

deaths. This assessment model may provide an estimate for the public health burden of 468

each week of delaying policy enactment or individual practice of NPIs. 469

Another percent reduction metric that one could look at is the maximum number of 470

patients hospitalized under each case. Since the start of the epidemic, the peak hospital 471

resources required to care for COVID-19 patients has been an important concern among 472

public officials indicating the need to flatten the curve. Initiating NPIs on June 8, June 473

15, June 22, June 29 and July 6 result in respectively 88%, 86%, 84%, 81% and 77% 474

reductions in the maximum number of patients hospitalized (i.e. the peak of each 475

curve). Considering the limitations in the hospital and particularly ICU resources, 476

including expert healthcare personnel, to provide safe and effective care for seriously ill 477

COVID-19 patients as well as patients with critical conditions unrelated to COVID-19, 478

we note that these resource utilization reductions resulting from NPI policy enactment 479

may make a significant difference in population health outcomes. 480

Percent reduction in deaths with NPI initiations
by date NPI on 6/8 NPI on 6/15 NPI on 6/22 NPI on 6/29 NPI on 7/6

7/1/20 10% 4% 0% 0% 0%
8/1/20 54% 44% 34% 23% 14%
9/1/20 78% 72% 66% 58% 49%
10/1/20 84% 80% 75% 69% 63%
11/1/20 83% 79% 75% 70% 65%
12/1/20 80% 76% 72% 67% 62%

Table 4. Percent reductions in deaths by the indicated dates for each NPI initiation
date option

In addition to the percent reductions in the areas under the total infections and 481

hospitalized curves, we present in Table 4 the percent reductions in the number of 482

deaths by the dates indicated in the first column. Even without considering any 483

negative effects of exceeding hospital care capacity (which is likely to happen without 484

the initiation and widespread adoption of NPIs) on patient health outcomes, we see that 485

reductions in deaths resulting from the initiation of NPIs is on the order of 70%. Again, 486
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our model demonstrates that one week’s delay in the initiation of NPIs corresponds to a 487

4% to 10% difference in the reductions in deaths. 488

3 Discussion 489

In this paper we have proposed a methodology for modelling and projecting the spread 490

of the COVID-19 epidemic in Arizona by considering publicly available data from 491

March 4 (first date with a confirmed COVID-19 case with community spread in 492

Arizona) to June 7. This work is focused on understanding features of infection and 493

disease transmission, as well as exploring the impacts of possible scenarios for 494

implementing control measures through public policy. We note that this model iteration 495

was initially constructed beginning in April at the time of a statewide stay-at-home 496

order, and refined after the stay-at-home order was lifted. This timeframe of the model 497

iteration process allowed for clear observation of the dynamic transmission rates in 498

response to public policy implementation and individual adoption of NPI behaviors. 499

There are several limitations to our analysis. It is important to note that our SEIRD 500

modeling approach did not take into account many factors that play an important role 501

in the dynamics of disease such as heterogeneous contact transmission network, the 502

characteristics of the population (e.g. age, comorbid health conditions, racial and ethnic 503

disparities in access to testing and treatment), the possibility of partial immunity or no 504

immunity from SARS-CoV-2 infection and the availability of testing and contact tracing. 505

At the time of this report, Arizona maintained one of the lowest per capita testing and 506

contact tracing rates of any state in the country. Therefore, it is likely that significant 507

underdetection and thus underreporting of mild and asymptomatic cases may impact 508

calculations of hospitalization and death rates. In order to accommodate this limitation, 509

we used biologically plausible parameters for SARS-CoV-2 based on current evidence. 510

As the evidence related to SARS-CoV-2 and COVID-19 continues to develop, these 511

values are likely to be updated as more comprehensive data become available. 512

In future work, we look forward to testing this model more broadly against data 513

from other states beyond Arizona in an effort to validate this approach for other public 514

health policy making jurisdictions. In addition, we plan to test this modeling approach 515

more narrowly by applying it to county-specific data in Arizona in order to assess the 516

retrospective accuracy given a more homogeneous population sample of a single county 517

as opposed to the highly heterogeneous population sample represented by the full state 518

of Arizona. We anticipate that this type of comparative work may inform best practices 519

for projection modeling in future epidemic conditions. Establishing best practices for 520

projection modeling can, in turn, provide improved inputs for policymakers with more 521

clear expectations and understanding about the scope and limitations of models in 522

highly uncertain conditions like the current COVID-19 pandemic. 523

Our work illustrates how a locally contextualized system dynamics model can be 524

very useful for making inferences about how the pandemic impacts may change in 525

response to policy and individual behavior decisions about implementation of different 526

disease mitigation measures. 527
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