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Abstract

Using a respiratory virus epidemiological model we derive equations for the critical levels of mask efficiency (fraction
blocked) and of mask adoption (fraction of population wearing masks) that lower the effective reproduction number
to unity. The model extends a basic epidemiological model and assumes that a specified fraction of a population dons
masks at a given initial number of infections. The model includes a contribution from the ocular (nasolacrimal duct)
route, and does not include contributions from contact (fomite) routes. The model accommodates dose-response
(probability of infection) functions that are linear or non-linear. Our motivation to study near-population-wide mask
wearing arises from the concept that, between two mask wearers, the concentration of particles at inhalation should
be the square of the mask penetration fraction. This combination, or team, of masks can provide a strong dose-
lowering squaring effect, which enables the use of lower-efficiency, lower-cost, lower pressure-drop (easier breathing)
masks.

For an epidemic with basic reproduction number R0 = 2.5 and with a linear dose-response, the critical mask
efficiency is calculated to be 0.5 for a mask adoption level of 0.8 of the population. Importantly, this efficiency is well
below that of a N95 mask, and well above that of some fabric masks. Numerical solutions of the model at near-critical
levels of mask efficiency and mask adoption demonstrate avoidance of epidemics. To be conservative we use mask
efficiencies measured with the most-penetrating viral-particle sizes. The critical mask adoption level for surgical
masks with an efficiency of 0.58 is computed to be 0.73. With surgical masks (or equally efficient substitutes) and
80% and 90% adoption levels, respiratory epidemics with R0 of about 3 and 4, respectively, would be theoretically
extinguished.
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1. Introduction

When a novel respiratory virus epidemic begins exponential growth in a population, its novelty implies that there
is no community (herd) immunity, nor a vaccine. The population can undertake various non-pharmaceutical measures
such as physical distancing, quarantining (based on symptoms, testing, contact-tracing), work and school closures,
travel restrictions, careful hand-hygiene and wearing masks (Ferguson et al., 2006, 2020). While applying all of these
measures simultaneously would be the most effective, the impact on society may become immense. Therefore it is
valuable to gauge the benefit provided by various measures. Herein we use a mathematical epidemiological model to
examine the efficacy of near population-wide adoption of masks.

Our motivation to examine wide adoption of masks arises from the concept that between two mask wearers, the
concentration of particles at inhalation (after exhalation and normalization to unity) should be the square of the
mask penetration (fraction transmitted). (This concept is outlined in Figure 1.) Since squaring can be a much more
powerful effect than a linear effect, some significant gains may remain for less efficient masks and incomplete adoption
by the population. This combination, or team, of masks may provide a strong dose-lowering squaring effect, which
would enable the use of lower-efficiency, lower-cost, lower pressure-drop (easier breathing) masks.

Respiratory virus transmission can occur via droplet, aerosol (including droplet nuclei formed by evaporation
of small droplets ) and contact routes (Atkinson and Wein, 2008; Wei and Li, 2016; Xie et al., 2007). High-speed
photography of visible droplets during sneezing events have shown ranges of roughly 8m (Bourouiba, 2020), but such
events are rare (Atkinson and Wein, 2008; Wein and Atkinson, 2009), especially during a pandemic where generally
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people have a heightened awareness to not cough or sneeze among others. High-speed laser-aided photography of
talking at close-range revealed numerous visible droplets in the range of 20-500 µm (Anfinrud et al., 2020; Stadnytskyi
et al., 2020). Droplets captured at close-range and smaller than 5 µm have been reported to contain about nine-fold
more viral copies than larger particles (Milton et al., 2013). Small droplets can evaporate to form droplet-nuclei
that can remain airborne (Xie et al., 2007; Stadnytskyi et al., 2020). Talking for five minutes can generate the same
number of droplet nuclei as a cough (Xie et al., 2007). The viability of aerosol viral particles has been demonstrated
for SARS-CoV-1 and SARS-CoV-2 for the three hour duration of an experiment (van Doremalen et al., 2020), and for
16 hours in (Fears et al., 2020). Non-symptomatic and pre-symptomatic transmission can be significant (Wei et al.,
2020). An example of this is where 40 of 60 participants at a choir practice became infected with COVID-19, despite
distancing and without coughing or sneezing (Wei et al., 2020). With SARS, community wearing of masks when
going out had a significant protective odds ratio of 0.36 compared with not wearing a mask (Lau et al., 2004). Mask
wearing can reduce exposure especially in situations where physical distancing is difficult. Taiwan, with a population
of 24 million, has only had seven COVID-19 deaths, had significant surgical mask use plus other measures and early
action (Taylor et al., 2020).

While many masks, including home made fabric masks, might be efficient at blocking droplets, we take a more
conservative approach and use mask efficiencies for aerosol sized particles of about 0.02-1 µm. Thus, if such masks
were stored by a population in advance of a novel respiratory virus, their rated filtering would apply to a wide range
of particle sizes and regardless of whether the novel virus is transmitted predominantly by droplets or aerosols.

Various prior works have investigated epidemiological modelling of respiratory viruses with masks, including
(Atkinson and Wein, 2008; Brienen et al., 2010; Cui et al., 2019; Myers et al., 2016; Stilianakis and Drossinos, 2010;
Tracht et al., 2010; Wein and Atkinson, 2009; Yan et al., 2019). In a pair of papers (Atkinson and Wein, 2008; Wein
and Atkinson, 2009) Atkinson and Wein construct detailed concentration-based models of aerosol transmission of
influenza with an epidemic model for households. In (Brienen et al., 2010) a simplified effect from mask usage is
assumed. Tracht et al. (2010) used a detailed SEIR model for H1N1 influenza and demonstrated various degrees
of effect, including extinguishing the epidemic in some cases. Cui et al. (2019) added compartments to include
asymptomatic transmission. Yan et al. (2019) used a detailed concentration-based model for Influenza. Some
recent works provide detailed models for Covid-19, including (Eikenberry et al., 2020; Ngonghala et al., 2020) and
demonstrate the efficacy of masks and other interventions.

Herein we determine closed-form expressions for the critical mask efficiencies and mask adoption levels that
can extinguish a respiratory virus epidemic, including linear or non-linear probability of infection (dose-response)
functions, and including contributions from the ocular (nasolacrimal) route. We use a relatively simple model, which
requires few parameters and is consequently easier to apply to a novel virus. With this simpler model, in some cases
one needs only the fundamental parameter R0 .

2. Methods

2.1. Transmission Routes

Figure 1 gives a rough overview of the various routes of transmission from an infectious person to a susceptible
person.

The lower half of Figure 1 contains a plot that represents the concentration of airborne particles versus distance
(not to scale). It is intended to give a conceptual overview of the normalized concentration of virulent particles along
a line between the infectious’ face and a susceptible’s face. The non-normalized concentration would depend on the
event (e.g. exhalation, speaking) and on the local environment.

The decrease in concentration with distance is shown in Figure 1 as a gain, g(d, t) ≤ 1, being a non-linear function
that typically decreases with distance, and depends on time, and on other factors such as the event, humidity, and
temperature. Here we consider only how masks affect the concentration in a relative manner, without needing to
model the complicated function g(d, t). Note that for low-volume events (e.g. breathing, talking) that the region
of higher concentrations would be less like the cone shown in Figure 1, and a more like a cloud nearer the source
(Stilianakis and Drossinos, 2010).

2.2. Dose Lowering by Masks

In Figure 1 the mask on the infectious person is modelled as a filter with a transmission gain (fraction that
penetrates) during exhalation of 0 < ft,exh ≤ 1. Similarly, the mask on the susceptible person has a filter transmission
during inhalation of 0 < ft,inh ≤ 1. Not wearing a mask corresponds to a filter transmission of unity. The four
combinations of mask wearing, (i.e none, either one, or both) are shown to lead to lower concentrations given by the
product of the mask filter gains.
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Figure 1: Routes of Transmission and Normalized Concentration versus Distance.
The upper half of the diagram represents routes of transmission. The lower half of the diagram represents the concentration of particles
(normalized at the source, and along a straight line between faces). The non-normalized concentration would depend on the event, e.g.
exhalation, speaking, coughing, sneezing. The gain g(d, t) ≤ 1 is a non-linear function of distance, time, the event, and other factors. For
sufficient distance the concentration would decline such that infection becomes unlikely without masks. The mask on the infectious person
is modelled as a filter with a transmission gain (fraction that penetrates) during exhalation of 0 < ft,exh ≤ 1 . Similarly, the mask on the
susceptible person has a filter transmission during inhalation of 0 < ft,inh ≤ 1. Not wearing a mask corresponds to a filter transmission
of 1. The four combinations of mask wearing, (none, either one, both) lead to four lower concentrations given by the respective products
of the mask filter gains. For identical masks with low-flow events (e.g. breathing, speaking) the exhalation and inhalation filter gains
may be modelled as being equal, ft . In that case, with both people wearing masks, the product of the filter gains is the square of their
values. For example, when both people wear a ft = 0.1 mask, then the resultant concentration f2

t = 0.12 = 0.01, which is 100 times
lower than no masks, and 10 times lower than a single mask. While this advantage decreases for weaker filters, the potential strength
of that squaring effect motivates examination of what mask filtering ability and mask adoption level would significantly reduce epidemic
strength.
The ocular route is through the nasolacrimal duct and its significance is discussed in the text. For influenza, it appears to be on the
order of 100 times less significant than inhalation.

The dose input to the respiratory tract may be modelled as an integral over time of the concentration at the
susceptible’s face,

d =

∫ T

0

Csource fexh g(d, t)(finh + focular)v(t)dt (1)

where Csource is the concentration at the source, and v(t) is the volume of air inhaled. (The contribution for the
ocular route is discussed in the next section.)

We take the filter properties to be constants (either during low-flow events like breathing, or use averages for
more dynamic events). Consequently,

d = fexh(finh + focular)

∫ T

0

Csource g(d, t)v(t)dt

= fexh(finh + focular)d0

(2)

so that the filter gain fexh(finh+focular) < 1 reduces the original dose d0 by a set of four constants, where the values
of fexh or finh are set to unity for those not wearing a mask.

2.3. The Ocular Route

The ocular route corresponds to collection of particles by the eye which then pass through the nasolacrimal duct
(Bischoff et al., 2011). The ocular route for viral particles is modelled in Figure 1 as a passage of the incident
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concentration through a filter denoted focular. It is implicit in the dose integral above that focular was measured
during breathing. We estimate focular based on data in Figure 2 of (Bischoff et al., 2011), as follows. The control
group (Group 1) in (Bischoff et al., 2011) had no masks or goggles, and an ocular-exposure-only group (Group 2)
had a half-mask with clean air supply. These groups were equally exposed to a standardized aerosol concentration of
live attenuated influenza vaccine. Afterwards they used nasal washes followed by quantitative reverse transcription
polymerase chain reaction (RT-PCR) to count the resulting number of Influenza RNA copies. The control group
would have had count-contributions from both inhalation, ninh, and from ocular paths, noc, so its count of 504
consists of ninh + noc. The ocular-path-only group count had noc = 5. Assuming linearity of the quantitative
RT-PCR tests, then the ratio noc/ninh = 0.01 is the fraction of viral particles that pass through the ocular route
compared to the inhaled route, which is indeed the parameter focular that we seek. The ocular route transmission is
about 100 times lower than inhaling without a mask, so masks would be the most effective first-approach to lowering
the dose.

Since focular summarizes aerosol reception, but not droplets, direct exposure to droplets from coughs or sneezes
would be sensibly reduced by eye protection (glasses, shields). In (Atkinson and Wein, 2008) the occurrence of cough
and sneezes was modelled to be rare. Moreover, in the context of a pandemic, people have a heightened awareness of
the need not to cough or sneeze in close to others, so the contribution from coughing and sneezing would be reduced.

With more potent viruses or in environments of higher exposure, higher efficiency masks would be used, in which
case their transmission fraction lowers to nearer that of the ocular route, so that the ocular route becomes significant.
In such situations the use of sealed goggles or similar should be considered.

The ocular filter value estimate of 0.01 is low relative to typical mask transmission in our examples. It will be seen
later in the numerical results that the contribution from the ocular route barely affects the critical mask efficiency.

2.4. The Contact Route

The contact route was not included for several reasons. First, it’s been estimated to not be significant compared
to the droplet/aerosol route (Atkinson and Wein, 2008). Second, during an epidemic there is heightened awareness of
not touching one’s face without hand washing. Third, mask wearing among a significant proportion of the population
would decrease viral deposition on fomites. Fourth, mask wearing impedes the ability to touch one’s nose or mouth.
Fifth, the median-effective dose for influenza via the oral route is about 500 times higher than the nasal route
(Atkinson and Wein, 2008). All of these assumptions may not be valid other viruses or for subsets of the population,
such as children. For children, one would hope that children too young to learn the value of hand washing are well
supervised and in clean environments, and that ones that are old enough to learn are well taught.

2.5. Probability of Infection

The effect of mask filtering is to lower the dose, and the effect of that lower dose on probability of infection is
given by a dose-response function, denoted pi = Pi(d).

In common SIR epidemiological models recall that the parameter β is the expected number of contacts per day
that cause infection (Hethcote, 2000). It is the expected number of infections per day from those contacts, or

β = ncpi (3)

where nc is the expected number of contacts per day, and pi is the probability that such a contact results in an
infection.

To consider how lowering the dose affects the probability of infection, let pi0 denote the probability of infection
for the no-mask situation. Since pi0 corresponds to some dose d0, we can find d0 from

d0 = P−1
i (pi0) (4)

where P−1
i (pi0) denotes the inverse of the dose-response function Pi(d).

For a modification of the dose by multiplying it by some value m, then the resulting probability of infection is

pi = Pi(md0)

= Pi
[
mP−1

i (pi0)
] (5)

For cases where the dose response function is linear and pi0 corresponds to a dose in the linear region, then

pi = mPi
[
P−1
i (pi0)

]
= mpi0.

(6)
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Consequently, for mask use with a linear dose-response function and linear no-mask-dose, m = fexh(finh+focular) < 1
then

pi = fexh(finh + focular)pi0 (7)

so that pi is scaled down linearly by the filtering.
For the case where focular is insignificant and the mask transmissions are identical

pi = f2
t pi0 (8)

so the probability of infection is lowered by the square of the filter transmissions. This squaring effect is potentially
stronger for higher efficiency filters.

In addition to the linear dose-response case, we will later consider exponential, and approximate beta Poisson
dose-response functions.

2.6. Mask Efficiency

Before describing the epidemiological model, we discuss some assumptions on mask efficiencies. In a variety of
work on masks, including (Davies et al., 2013; Jung et al., 2014; Lee et al., 2008; Leung et al., 2020; Milton et al., 2013;
Mueller and Fernandez, 2020; Oberg and Brosseau, 2008; Rengasamy et al., 2010; Smith et al., 2016; van der Sande
et al., 2008) there are variations in measured efficiencies arising from various testing procedures, particle sizes, and
fit. Masks are typically much better at blocking larger droplets, therefore it is prudent to measure mask efficiency at
the most-penetrating particle-size (MPS) for infective particles. Viral particles and bacteria range from about 0.02 to
1.26 µm (Lee et al., 2008). (It was noted in (Lee et al., 2008) that the size of the influenza and SARS-CoV-1 viruses
happen to coincide with the most-penetrating particle-size for N95 respirators.) If a population stocked MPS-rated
masks in advance of a novel respiratory virus, then the masks would meet or exceed those worst-case efficiencies over
a wide range of particle sizes.

Herein we do not attempt to compare a wide variety of masks, since our principal aim is the critical mask efficiency
for extinguishing an epidemic. However in some numerical examples we assume a surgical mask. Based on (Lee et al.,
2008) the MPS efficiency of a surgical mask is taken to be 0.58. That efficiency is comparable to that in (Milton
et al., 2013), where the reduction in quantitative RT-PCR viral counts from fine (less than 5 µm) particles, after
exhalation through a surgical mask, was 2.8 fold (which corresponds to an efficiency of 0.64). Over all particle sizes
the effect of the surgical mask was a 3.4 fold reduction (which corresponds to a 0.7 efficiency) (Milton et al., 2013).
Some fabrics are very poor viral filters with efficiencies of roughly 0.1 (Rengasamy et al., 2010).

Later, for some equations we will assume that the exhalation and inhalation filter transmission gains are equal.
Near equal penetration for inhalation and exhalation using surgical masks was reported in (Jung et al., 2014). Note
also that the inhalation mask efficiency of 0.58 in(Lee et al., 2008) was comparable to the exhalation mask efficiency
of 0.64 in (Milton et al., 2013). Equal filtering in either direction may be reasonable for low-flow events like breathing
and talking, and perhaps less reasonable for high-flow, but rare, events like coughing and sneezing, depending on the
mask seal and construction.

A common concern about surgical and other types of masks, including home-made masks, is leakage between the
mask and face. A significant and low cost method to improve fit is an overlay of a nylon stocking (Cooper et al., 1983;
Mueller and Fernandez, 2020). As reported in (Mueller and Fernandez, 2020) the use of a nylon stocking overlay
raised the efficiency of five of ten fabric masks above a benchmark surgical mask.

2.7. SIR Compartment Model

A basic mathematical model of an epidemic is the SIR (Susceptible, Infectious, Recovered) model (Hethcote,
2000). Individuals in those categories are modelled as transitioning from one compartment to the next according to
various rate parameters, with a corresponding set of simultaneous differential equations.

We will use extensions of the SIR model to include mask use and will focus on the number of peak infectious and
the final cumulative infected. All recovered are assumed to have immunity.

The basic SIR model is often augmented with an exposed compartment to form a SEIR model. However, note
that every person accounted for through the I, or the R, compartments do so in both the SIR and in the SEIR models.
Consequently, for identical corresponding parameters, both the SIR and SEIR models will have the same value of
final cumulative infected. The incubation period of the exposed compartment spreads the same flow of infections
over a longer time period. Since herein we are interested in filter conditions for which an epidemic is extinguished,
and since such conditions will be equivalent for the SIR and the SEIR model, then for our purpose it is simpler,
sufficient, and more general to use a SIR model.
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Figure 2: SIR Model of Respiratory Epidemic with Mask Wearing. The upper row of compartments accounts for those with no mask
and the lower row accounts for those wearing a mask. The curved line from sm to im passes near inm to graphically indicate infection
of masked by non-masked. Similarly, the curved line from snm to inm passes near im to graphically indicate potential infection of the
non-masked by the masked.

Figure 2 shows a SIR compartment model for a respiratory viral epidemic where a portion of the population
wear masks. The upper row of compartments accounts for those with no mask and the lower row accounts for those
wearing a mask.

For convenience we define the state variables to be fractions of the population, so that

snm + sm + inm + im + rnm + rm = 1. (9)

(e.g. i = I/N where I is the number of Infectious and N is the population.)
We also express the totals of Susceptible, Infectious, and Removed as s = snm+sm , i = inm+im and r = rnm+rm

respectively.
Initially none of the population is assumed to wear masks. When the beginning of an epidemic is detected by

observing some specified number i0 of infections, then a specified fraction pm of the population dons masks. These
initial conditions are,

i(0) = i0 (10)

inm(0) = (1− pm)i0 (11)

im(0) = pmi0 (12)

snm(0) = 1− pm − inm(0) (13)

sm(0) = pm − inm(0) (14)

rnm(0) = 0 (15)

rm(0) = 0 (16)

The set of differential equations for the model are,

dsnm
dt

= − β0

pi0
snminmPi

[
(1 + foc)P

−1
i (pi0)

]
− β0

pi0
snmimPi

[
fexh(1 + foc)P

−1
i (pi0)

]
(17)

dinm
dt

=
β0

pi0
snminmPi

[
(1 + foc)P

−1
i (pi0)

]
+
β0

pi0
snmimPi

[
fexh(1 + foc)P

−1
i (pi0)

]
− γinm (18)

drnm
dt

= γinm (19)

dsm
dt

= − β0

pi0
smimPi

[
fexh(finh + foc)P

−1
i (pi0)

]
− β0

pi0
sminmPi

[
(finh + foc)P

−1
i (pi0)

]
(20)

dim
dt

=
β0

pi0
smimPi

[
fexh(finh + foc)P

−1
i (pi0)

]
+
β0

pi0
snminmPi

[
(finh + foc)P

−1
i (pi0)

]
− γim (21)

drm
dt

= γim (22)

where;
β0 is the average number of contacts per day that are sufficient to cause infection, where the subscript 0 indicates

no interventions. β0 is related to β (our case with interventions that affect the probability of infection) by

β = nc0pi = nc0
pi0
pi0

Pi
[
mP−1

i (pi0)
]

=
β0

pi0
Pi
[
mP−1

i (pi0)
]

(23)

6

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 21, 2020. ; https://doi.org/10.1101/2020.05.09.20096644doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.09.20096644
http://creativecommons.org/licenses/by/4.0/


where the term Pi
[
mP−1

i (pi0)
]

was discussed in Section 2.5 on the probability of infection, and where m is the
dose-altering fraction. Note that β varies across the quartet of filter values, and importantly becomes a lower force
of infection between contacts that have better filtering.

γ is the rate that the infected become recovered, which is the inverse of the duration of the infectious period .
fexh and finh are the mask transmission gains during exhalation and inhalation, respectively. It is common to

specify a mask by its efficiency, which is the fraction that it blocks, rather than which it transmits, so its efficiency
is fb = 1− ft.

An alternative model would combine the removed compartments in Figure 2, if they have identical rate of entry
from the infected states, but keeping them separate enables separate accounting (for example, to demonstrate that
non-mask wearers are more likely to get infected).

2.8. Basic Reproduction Number

R0 = β0/γ is the basic reproduction number (Hethcote, 2000) in the basic SIR model (i.e. without masks). Below
we briefly summarize some key results using R0 because they are both fundamental and will be used alongside our
mask model.

R0 can be sensibly interpreted as the average number of infections produced by a single infectious person during
their infectious period (Hethcote, 2000). The rate of growth of the infectious compartment is

di

dt
= β0si− γi = (β0s− γ)i (24)

from which we can see that for the growth to be zero or negative, then β0s ≤ γ, or β0/γ = R0 ≤ 1. So, at the start
of an epidemic, where s ≈ 1, there is no initial growth unless R0 > 1.

For community immunity, R0s < 1, or s < 1/R0. For example, for such immunity with R0 = 2.5 the susceptible
fraction of the population must be less than 1/R0 = 1/2.5 = 0.4. Equivalently, the fraction of the population that
has been through the infectious stage and has assumed immunity is 1− 1/R0 = 0.6.

It is also possible to obtain analytical expressions for the peak infectious and the final cumulative infected
(Hethcote, 2000), which are

ipeak = i0 + s0 − [1 + log(R0s0)]/R0 (25)

and s∞ the final value of si, is given by the root of

i0 + s0 − s∞ +
log(s∞/s0)

R0
= 0 (26)

and r∞ = 1− s∞.

3. Results

3.1. Effective Reproduction Number

For multi-compartment models van den Driessche and Watmough (2002) give the determination of the effective
reproduction number R0,e. Of fundamental importance is that R0,e = 1 is again a threshold, or a critical value, below
which the epidemic is theoretically extinguished and above which growth will occur.

In Appendix A, using the methods of (van den Driessche and Watmough, 2002), R0,e is found for the model of
Figure 2 and its accompanying set of equations (10) - (22). The result is (44)

R0,e =
{

(1− pm)Pi
[
(1 + foc)P

−1
i (pi0)

]
+ pmPi

[
fexh(finh + foc)P

−1
i (pi0)

]}
R0/pi0 (27)

which can be simplified for identical mask transmissions, (45)

R0,e =

{
(1− pm)

pi0
Pi
[
(1 + foc)P

−1
i (pi0)

]
+
pm
pi0

Pi
[
ft(ft + foc)P

−1
i (pi0)

]}
R0 (28)

Additionally, if there is no ocular contribution, (46)

R0,e =

{
1− pm +

pm
pi0

Pi
[
f2
t P
−1
i (pi0)

]}
R0. (29)

In Appendix B, we find R0,e for linear, exponential, and approximate beta-Poisson dose response functions. A
linear dose response is sometimes used in low-dose epidemiological models (Brouwer et al., 2017). An exponential
dose-response has been used to model the infection probability of SARS-CoV-1 (Watanabe et al., 2010). Below we
list some of the results from Appendix B.
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3.1.1. Linear Dose Response

From Appendix B equation (50), with a linear dose response, and identical filter transmissions ft,

R0,e = [(1− pm)(1 + foc) + pmft(ft + foc)]R0. (30)

With no ocular contribution, (51)
R0,e = (1− pm + pmf

2
t )R0. (31)

One can easily confirm that in the simple case of no masks, pm = 0, then R0,e = R0. Similarly, in the case of 100%
mask adoption level, pm = 1, then R0,e = f2

t R0. This result corresponds to our fundamental motivation described
for Figure 1, where the result of transmission through two masks is the square of their individual transmissions.

In Figure 3 R0,e given by (31) is plotted normalized (R0,e/R0) and using the mask efficiency fb = 1 − ft. The
linear dependence on pm is clearer in Figure 3a. The non-linear dependence on ft, i.e the expected squaring effect of
mask wearing, is clearer in Figure 3b.
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Figure 3: Normalized Effective R0 vs Mask Efficiency and Adoption. (Two views of the same surface.)

3.1.2. Exponential Dose Response

From Appendix B equation (57), with an exponential dose response, with identical filter transmissions ft, and
with no ocular contribution,

R0,e =

{
(1− pm) +

pm
pi0

[
1− (1− pi0)f

2
t

]}
R0 (32)

The more general cases of non-identical filters and including an ocular contribution can be found in Appendix B.

3.1.3. Approximate Beta-Poisson Dose Response

From Appendix B equation (63), with an approximate beta-Poisson dose response, with identical filter transmis-
sions ft and with no ocular contribution,

R0,e =

{
(1− pm) +

pm
pi0

[
1−

{
1 + f2

t

[
(1− pi0)−1/α − 1

]}−α]}
R0. (33)

The more general cases of non-identical filters and including an ocular contribution can be found in Appendix B.

3.2. Critical Mask Efficiency

Here we find the filter efficiency for which R0,e becomes equal to unity. In this section, we will assume masks
with identical filter transmissions. In Appendix C, we find the critical mask efficiencies for linear, exponential, and
approximate beta-Poisson dose response functions. Below we list some of those results.
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3.2.1. Linear Dose Response

With a linear dose response, from Appendix C (65)

fb,crit = 1−

[√
1/R0 + (pm − 1)(1 + foc)

pm
+
f2
oc

4
− foc

2

]
. (34)

For no ocular contribution this simplifies to (66)

fb,crit = 1−

√
1/R0 + pm − 1

pm
, pm > (1− 1/R0). (35)

Figure 4a is a plot of the critical mask efficiency fb,crit versus the mask adoption level pm, for various values of
R0. Estimates of R0 for influenza is about 1.5 (Coburn et al., 2009), and for COVID-19 it is roughly 2.5 (Ferguson
et al., 2020).

As an example, assume that the mask adoption level is 80%, then from Figure 4a the R0 = 2.5 curve indicates
a mask critical efficiency of 0.5. If the mask adoption rate was 90%, the mask critical efficiency is reduced to about
0.42. Importantly, these efficiencies are well below that of a N95 mask, and well above that of some fabric masks
Rengasamy et al. (2010).

Figure 4b is a plot of the critical mask efficiency fb,crit vs R0, for various values of mask adoption level pm. As
R0 is increased, it can be seen that for a particular adoption level the required efficiency heads towards 100%, so
after that even perfect masks would not suffice to extinguish the epidemic.

In both of Figures 4a and 4b, the upper curves (red) include the effect of the ocular route with focular = 0.01.
The curves with and without the ocular contribution (red and blue curves, respectively) are barely distinguishable.
Accordingly we do not include the effect of the ocular route in examples in the remainder of this paper.
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Figure 4: Mask Critical-Efficiency versus Mask Adoption and R0. Linear dose response.

.

3.2.2. Exponential Dose Response

With an exponential dose response, and neglecting the contribution for the ocular route, from Appendix C (69)

fb,crit = 1−

√√√√ log
[
1−

(
1
R0
− 1 + pm

)
pi0
pm

]
log(1− pi0)

. (36)

Figure 5a is a plot of the mask critical efficiency versus mask adoption for R0 = 1.5, 2.5, 3.5, for linear and
exponential dose response functions. For the exponential case, we’ve shown both pi0 = 0.5 and pi0 = 0.25. Note that
as pi0 is lowered the results are closer to the linear dose-response case. Recall that pi0 is the probability of a contact
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being infected, where this probability is representative of all contacts. Recall also that R0 = nc0pi0/γ, so that for
example, with R0 = 2.5 and given an expected duration of infection 1/γ = 5, then nc0pi0 = R0γ = 2.5/5 = 0.5 and
we can construct Table 1 with pairs that correspond to nc0pi0 = 0.5.

nc0 0.5 1 2 4 5 10
pi0 1 0.5 0.25 0.125 0.1 0.05

Table 1: Example pairs of nc0, pi0 whose product is 0.5.

High values of pi0 imply near-certain transmission for each contact, which corresponds to doses high up the
dose-response curve. In the absence of specific information on pi0 for a particular situation, one might use a median
infective dose pi0 = 0.5 to represent the expected probability of infection. (This may not be correct in high-exposure
situations, such as medical workers working closely with, and for several hours per day with infected patients.) For
a given R0 a higher number of typical contacts implies a lower pi0. In (Watanabe et al., 2010) SARS-CoV-1 was well
modelled by an exponential dose-response, and the estimated doses for residents of an apartment complex where an
outbreak occurred were typically less than one-half of the median-infective dose. In (Mossong et al., 2008) the mean
number of contacts per day was about 13 (although that contact count does not weigh the invectiveness of each
contact, as is implicit in a SIR model).

     0        0.1        0.2        0.3        0.4        0.5        0.6        0.7        0.8        0.9        1   
     0   

     0.1   

     0.2   

     0.3   

     0.4   

     0.5   

     0.6   

     0.7   

     0.8   

     0.9   

     1   

     Mask Adoption   

  
 

M
as

k 
E

ffi
ci

en
cy

  
 

      Mask Critical-Efficiency vs Mask Adoption    

     
R     

0     
=1.5        2.5        3.5   

     
Exponential Dose-Resp. p     

i0     
=0.5   

     
Exponential Dose-Resp.  p     

i0     
=0.25   

     Linear Dose-Resp.    

(a) Exponential Dose Response

     0        0.1        0.2        0.3        0.4        0.5        0.6        0.7        0.8        0.9        1   
     0   

     0.1   

     0.2   

     0.3   

     0.4   

     0.5   

     0.6   

     0.7   

     0.8   

     0.9   

     1   

     Mask Adoption   

  
 

M
as

k 
E

ffi
ci

en
cy

  
 

      Mask Critical-Efficiency vs Mask Adoption    

     
R     

0     
=1.5   

     
Approx Beta-Poisson Dose-Resp. p     

i0     
=0.5   

     
Approx Beta-Poisson Dose-Resp.  p     

i0     
=0.25   

     Linear Dose-Resp.    

(b) Approximate Beta-Poisson Dose Response with α = 0.581 (Influenza
H1N1) The higher curves may be due to this particular dose-response
model being relatively flat, which may arise from a degree of immunity.

Figure 5: Mask Critical-Efficiency versus Mask Adoption, Non-Linear Dose Responses.

3.2.3. Approximate Beta-Poisson Response

With an approximate Beta-Poisson dose response, and neglecting the contribution for the ocular route, from
Appendix C (72)

fb,crit = 1−

√√√√√[1− ( 1
R0
− 1 + pm

)
pi0
pm

]−1/α

− 1

(1− pi0)−1/α − 1
. (37)

Figure 5b is a plot of the mask critical efficiency versus mask adoption for R0 = 1.5 for linear and approximate
beta-Poisson dose response functions. The approximate beta-Poisson curves use the parameter α = 0.581 which
models Influenza H1N1 (Murphy et al., 1984) with R0,e = 1.5 (Coburn et al., 2009). With these parameters and for
pi0 ≤ 0.25 Figure 5(b) shows that the critical mask efficiency is within about 25% of the linear dose-response result.
With this value of α the dose-response curve is comparatively flat, requiring about 100 times the median-infective
dose in order to infect 95% of the population – as if a portion of the population was immune. For the purpose of
predicting the effects of masks in an epidemiological model, it would be preferable to have a dose-response curve
where those with immunity are (somehow) not counted, and instead the immune portion are accounted for in the
initial-value of the recovered.
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3.3. Numerical Solution Examples

All of the examples in this section were produced by numerical solutions of the set of differential equations (10) -
(22) for the model in Figure 2. Unless otherwise stated, all of these examples are for R0 = 2.5, an infectious duration
of 5 days, an initial infected fraction of the population of 10−4, and with surgical masks taken to have an efficiency
of 0.58.

The values used for R0 and for the infectious duration are roughly those for COVID-19 (Ferguson et al., 2020).
Recall from the section describing the model, that for identical R0 and infectious duration, that both our SIR model
or its extension to an SEIR model would have the same value of final cumulative infected.

Mainly we are interested in the overall results for the population, so we plot the totals of susceptible, infectious,
and removed, i.e. s = snm + sm , i = inm + im and r = rnm + rm respectively.
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(a) Various Levels of Mask Adpotion. Note that the lowest perceptible
non-zero red line (infectious) is for mask adoption of 0.6 (not the critical
level of 0.73, which appears as a flat-line)
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Figure 6: Infections vs Time, showing lowering epidemic as mask adoption (a) and mask efficiency (b) are increased towards their critical
values. In each case, the critical levels appear as a flat-line. (In practice, one would aim for higher than critical values.)

Figure 6 shows plots of infections versus time, and shows lower curves as mask adoption and mask efficiency are
increased towards their critical values.

Figure 6a shows lower curves as the mask adoption is increased towards its critical value of 0.73 (obtained from
Figure 4a for a mask efficiency of 0.58 at R0 = 2.5 ). At the critical adoption level of 0.73, both the peak infected and
cumulative infected curves appear to be flat at zero. Note that the lowest perceptible non-zero red line (infectious)
on this plot is for a mask adoption of 0.6 (not the critical level of 0.73, which appears as a flat-line).

Figure 6b shows lower curves as the mask efficiency is increased towards its critical value of 0.5 (obtained from
Figure 4a for a mask adoption of 0.8 at R0 = 2.5 ). At the critical efficiency of 0.5, both the peak infected and
cumulative infected appear to be flat at zero. Note that the lowest perceptible non-zero red line (infectious) on this
plot is for a mask efficiency of 0.4 (not the critical level of 0.5, which appears as a flat-line).

Figure 7 shows plots of log(infections) versus time, for two levels of mask adoption. The first level is at the critical
adoption level and the second level is at a slightly higher-than-critical adoption.

Figure 7a is at the critical mask adoption level of 0.73. At that critical level, the infections are close to flat and
near the initial value of 10−4 of the population. That low level of infections was too small to be visible on the non-log
plot of Figure 6a.

Figure 7b is for a mask adoption level increased to 0.8 (about 10% over the critical value), and shows a clear
extinguishing of the number of infectious.

Figure 8 shows linear and log plots of the peak infections and of the final cumulative infected, versus mask
adoption, as the mask adoption is increased from zero to 100%.

Figure 8a is a linear plot and demonstrates that the number of final cumulative infected has a sharp transition,
or knee, near the critical level of mask adoption of 0.73.

Figure 8b is a log plot which more clearly shows a sharp transition near the critical level of mask adoption.
The number of peak infectious drops to the number of the initial-infected as the critical value of mask adoption is
approached.
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(b) At about 10% higher Critical Levels of Efficiency and Adoption.

Figure 7: Log(Infections) vs Time.
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Figure 8: Infections vs Mask Adoption Level. Both (a) and (b) present the same data, but (b) is a log plot.

4. Discussion

4.1. Summary

Equations were derived that give critical levels of mask efficiency and of mask adoption that lower the effective
reproduction number R0,e of a SIR-based epidemiological model to unity. Those critical levels correspond to a sharp
reduction, or “knee”, towards zero in the final number of cumulative infected, as mask efficiency or mask adoption
are increased. Consequently, rather than have a population wear masks of random or non-standardized efficiencies,
it would be much more effective for the population to adopt masks that exceed the critical mask efficiencies derived
herein.

The model used assumes that a specified fraction of a population dons masks at a given initial number of infections,
and that there is no further influx of infectious people from outside the population.

The model does not include contributions from indirect-contact (fomite) routes, assuming that sufficient hand
hygiene is achieved by the population, and assuming that broad mask adoption would decrease deposition onto
fomites and would also decrease any tendency of mask wearers to touch their nose or mouth.

The model includes the ocular (nasolacrimal duct) route, and excludes direct contact from droplets. In our
examples the effect on the critical mask efficiency from the ocular route was estimated to be insignificant. The ocular
route would become more significant in environments of high exposure, where higher efficiency masks would be more

12

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 21, 2020. ; https://doi.org/10.1101/2020.05.09.20096644doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.09.20096644
http://creativecommons.org/licenses/by/4.0/


suitable. With higher efficiency masks their transmission fraction lowers to nearer that of the ocular route, so that
the ocular route may become significant.

The model accommodates dose-response (probability of infection) functions that are linear or non-linear. In
our R0 = 2.5 example for an exponential dose-response, the increase in the critical mask efficiency was about 12%
(assuming a probability of infection per contact being 0.5 with the number of contacts per day being 1). That
increase drops to the linear case for a higher number of contacts per day.

Various assumptions were made in order to model the efficacy of population-wide mask wearing on its own.
These assumptions include; no vaccinations, no physical distancing, no testing for being infectious (therefore no
quarantining from testing), and symptom-less transmission (therefore no self quarantining). Such assumptions also
enable a very simple and general model with few parameters. Indeed the simplest of the equations derived for the
critical mask efficiency need only the fundamental parameter R0.

With the above model in an epidemic with R0 = 2.5 and with a linear dose-response, the critical mask efficiency
is calculated to be 0.5 for a mask adoption level of 0.8 of the population. Importantly, this efficiency is well below
that of a N95 mask, but well above that of some fabric masks.

To be conservative we use mask efficiencies reported for the most-penetrating particle-sizes. With R0 = 2.5,
surgical masks with an efficiency of 0.58 give a computed critical mask adoption level of 0.73. With surgical masks
(or equally efficient substitutes) and 80% and 90% adoption levels, respiratory epidemics with R0 of about 3, and 4,
respectively, would be theoretically extinguished.

Numerical solutions of the model at near-critical levels of mask efficiency and mask adoption, for a 10−4 initially
infected fraction of the population, demonstrate avoidance of epidemic growth (and so numerically confirm the
equations derived for the critical levels). Example numerical solutions that plot infections versus time demonstrate
a progression from zero effect to complete epidemic avoidance with a sharp drop-off, or knee, as the mask efficiency
and mask adoption levels are increased to their calculated critical levels.

A fundamental reason why population-wide mask wearing should be effective is that, between two mask wearers,
the concentration of particles at inhalation would be the square of the mask penetration fraction. Since squaring
can be a much more powerful effect than a linear effect, some significant gains remain for less efficient masks and
incomplete adoption by the population. The combination, or team, of masks can provide a strong dose-lowering
squaring effect, which enable the use of lower-efficiency, lower-cost, lower pressure-drop (easier breathing) masks.

4.2. Limitations

Deterministic SIR models implicitly assume that the population has homogeneous mixing, with a fixed product
of the number of contacts per day and of the probability of infection per contact. However, in some situations, for
example at home, one would not normally expect people to wear masks. (Such limitations also apply to physical
distancing.)

Since the basic reproduction number R0 is not a constant determined solely by viral characteristics, one might
consider a range of R0 in a population in order to accommodate higher-density higher-contact regions. For example,
regions with busy subways would be expected to have higher R0.

The critical mask efficiency calculated herein may be insufficient in environments with exposure higher than the
average expected in simple SIR modelling. One such environment would be hospitals. Another such environment
would be long-term-care facilities, where the duration and closeness of the contacts between personal care workers
and residents are significant. Additionally, mask wearing by residents would not be practical, so the advantages of
combined mask wearing would not exist. Finally, such residents have a high death rate once infected. Given all of
these factors, higher efficiency masks worn by personal care workers deserves consideration.

Other situations of higher-exposure than average might include those with tight-spacing and/or longer-duration,
including public transportation and air travel.

Many situations may have average exposure, including shoppers in grocery stores and street-front retail shops.

4.3. Some Practical Mask Considerations

In the example of R0 = 2.5 epidemics, while surgical masks already surpass the critical mask efficiency, mask
leakage can be improved by using an overlay of a nylon stocking (Cooper et al., 1983; Mueller and Fernandez, 2020).
As reported in (Mueller and Fernandez, 2020) the use of a nylon stocking overlay raised the efficiency of several fabric
masks above that of a benchmark surgical mask. Mimicking that approach, perhaps by increasing elasticity near
the borders of masks, might significantly improve fit and performance of alternatives to surgical masks. Promising
results using hybrid combinations of common fabrics is reported in (Konda et al., 2020).

Re-use of masks in pandemic situations is a natural consideration (Institute of Medicine, 2006), not just for low
supply but also to lower costs. Some possible approaches include delayed re-use and disinfection. In (Pastorino et al.,
2020) a million-fold inactivation of SARS-CoV-2 on N95 masks was achieved using 15 minutes of dry heat at 92C. In
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(Zulauf et al., 2020) a microwave-oven steam treatment for 3 minutes attained similar results. In (Lin et al., 2017) a
gauze-type surgical mask retained good filtering efficiency of about 0.78, at its most-penetrating particle size, after
decontamination using 3 minutes of dry heat at roughly 155 C.

Appendix A Effective Reproduction Number

Here we determine the effective reproduction number R0,e for the compartmental model of Figure 2 with its
accompanying equations. We use the method of (van den Driessche and Watmough, 2002). Let

X0 = [i0nmi
0
ms

0
nms

0
mr

0
nmr

0
m]t (38)

denote the state vector of our model at a disease free equilibrium (DFE). A DFE is a state in which the population
remains without disease, so it will have i0nm = 0 and i0m = 0. Additionally, we set s0

nm = snm(0) and s0
m = sm(0) in

order to determine conditions for which the initial conditions will progress to being disease free.
Guided by (van den Driessche and Watmough, 2002), the relevant matrices for our set of equations, based on our

set of equations for the model, are;

F =
β0

pi0

[
snminmPi

[
(1 + foc)P

−1
i (pi0)

]
+ snmimPi

[
fexh(1 + foc)P

−1
i (pi0)

]
smimPi

[
fexh(finh + foc)P

−1
i (pi0)

]
+ sminmPi

[
(finh + foc)P

−1
i (pi0)

]] (39)

V =

[
γinm
γim

]
. (40)

Then

F =
β0

pi0

[
s0
nmPi

[
(1 + foc)P

−1
i (pi0)

]
s0
nmPi

[
fexh(1 + foc)P

−1
i (pi0)

]
s0
mPi

[
(finh + foc)P

−1
i (pi0)

]
s0
mPi

[
fexh(finh + foc)P

−1
i (pi0)

]] (41)

and

V =

[
γ 0
0 γ

]
(42)

so that

FV −1 =
β0

γpi0

[
s0
nmPi

[
(1 + foc)P

−1
i (pi0)

]
s0
nmPi

[
fexh(1 + foc)P

−1
i (pi0)

]
s0
mPi

[
(finh + foc)P

−1
i (pi0)

]
s0
mPi

[
fexh(finh + foc)P

−1
i (pi0)

]] . (43)

The largest eigenvalue of FV −1 gives R0,e,

R0,e =
{
s0
nmPi

[
(1 + foc)P

−1
i (pi0)

]
+ s0

mPi
[
fexh(finh + foc)P

−1
i (pi0)

]}
R0/pi0

=
{
snm(0)Pi

[
(1 + foc)P

−1
i (pi0)

]
+ sm(0)Pi

[
fexh(finh + foc)P

−1
i (pi0)

]}
R0/pi0

≤
{

(1− pm)Pi
[
(1 + foc)P

−1
i (pi0)

]
+ pmPi

[
fexh(finh + foc)P

−1
i (pi0)

]}
R0/pi0

(44)

where R0 = β0/γ, and where, since snm(0) = 1 − pm − inm(0) ≤ 1 − pm and sm(0) = pm − im(0) ≤ pm, we have
conservatively neglected the typically very small initial infectious fractions inm(0), im(0).

There are some possible simplifications to (44). If the masks have equal filter transmissions ft then

R0,e =

{
(1− pm)

pi0
Pi
[
(1 + foc)P

−1
i (pi0)

]
+
pm
pi0

Pi
[
ft(ft + foc)P

−1
i (pi0)

]}
R0. (45)

Additionally, if the contribution from the ocular route is not significant, then

R0,e =

{
(1− pm) +

pm
pi0

Pi
[
f2
t P
−1
i (pi0)

]}
R0. (46)

Appendix B Effective R0 for Various Dose Response Functions

Here for each of the linear, exponential, and approximate Beta-Poisson dose-response functions, we use their
inverses to give their response after dose scaling from mask filtering, and then use that result in the general expression
(44) from Appendix A for R0e .

All of the dose-response functions below are setup for normalized doses, i.e. a dose d = 1 is the median-effective
dose for a population, so that Pi(1) = 0.5.
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B.1 Linear Dose Response

The linear dose-response is

Pi(d) =

{
d/2 , 0 ≤ d ≤ 2

1 , d > 2.
(47)

Its inverse is P−1
i (pi) = 2pi, 0 ≤ pi ≤ 1, and the response after scaling a dose corresponding to an initial Pi0 is

pi = mpi0 , 0 ≤ pi ≤ 1. (48)

Using pi in (44) we obtain
R0,e = [(1− pm)(1 + foc) + pmfexh(finh + foc)]R0 (49)

and for identical filter transmission gains ft then

R0,e = [(1− pm)(1 + foc) + pmft(ft + foc)]R0 (50)

and with no ocular contribution,

R0,e = (1− pm + pmf
2
t )R0. (51)

B.2 Exponential Dose Response

The exponential dose-response is
Pi(d) = 1− e−ad , a = ln2. (52)

Its inverse is

P−1
i (pi) = −1

a
log(1− pi) (53)

and the response after scaling a dose corresponding to an initial Pi0 is

pi = Pi
[
mP−1

i (pi0)
]

= 1− (1− pi0)m (54)

Using pi in (44) we obtain

R0,e =

{
(1− pm)

pi0

[
1− (1− pi0)(1+foc)

]
+
pm
pi0

[
1− (1− pi0)fexh(finh+foc)

]}
R0 (55)

With identical filter transmission gains ft then

R0,e =

{
(1− pm)

pi0

[
1− (1− pi0)(1+foc)

]
+
pm
pi0

[
1− (1− pi0)ft(ft+foc)

]}
R0 (56)

and with no ocular contribution,

R0,e =

{
(1− pm) +

pm
pi0

[
1− (1− pi0)f

2
t

]}
R0. (57)

B.3 Approximate Beta-Poisson Dose Response

The approximate beta-Poisson dose-response is

Pi(d) = 1− [1 + ad]
−α

, a = 21/α − 1. (58)

Its inverse is

P−1
i (pi) =

(1− pi)−1/α − 1

a
(59)

and the response after scaling a dose corresponding to an initial Pi0 is

pi = Pi
[
mP−1

i (pi0)
]

= 1−
{

1 +m
[
(1− pi0)−1/α − 1

]}−α
. (60)
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Using pi in (44) we obtain

R0,e =

{
(1− pm)

pi0

[
1−

{
1 + (1 + focular)

[
(1− pi0)−1/α − 1

]}−α]
+
pm
pi0

[
1−

{
1 + fexh(finh + focular)

[
(1− pi0)−1/α − 1

]}−α]}
R0.

(61)

With identical filter transmission gains ft, then

R0,e =

{
(1− pm)

pi0

[
1−

{
1 + (1 + focular)

[
(1− pi0)−1/α − 1

]}−α]
+
pm
pi0

[
1−

{
1 + ft(ft + focular)

[
(1− pi0)−1/α − 1

]}−α]}
R0.

(62)

and with no ocular contribution,

R0,e =

{
(1− pm) +

pm
pi0

[
1−

{
1 + f2

t

[
(1− pi0)−1/α − 1

]}−α]}
R0. (63)

Appendix C Critical Value of Mask Efficiency

Here for each of the linear, exponential, and approximate Beta-Poisson dose-response functions, we use the
corresponding R0,e determined in Appendix B, set it to unity and solve for the critical value of the mask efficiency.
We assume that the masks have identical filter transmission gains ft.

C.1 Linear Dose Response

With a linear dose response, setting R0,e = 1 in (49) gives the condition,

1

R0
= (1− pm)(1 + foc) + pmft(ft + foc), (64)

which can be solved to give the critical value of ft, or the critical mask efficiency fb,crit = 1− ft,crit as,

fb,crit = 1−

[√
1/R0 + (pm − 1)(1 + foc)

pm
+
f2
oc

4
− foc

2

]
. (65)

For no ocular contribution this simplifies to

fb,crit = 1−

√
1/R0 + pm − 1

pm
, pm > (1− 1/R0). (66)

C.2 Exponential Dose Response

With an exponential dose response, and neglecting the contribution from the ocular route, setting R0,e = 1 in
(57) gives the condition,

1

R0
= (1− pm) +

pm
pi0

[
1− (1− pi0)f

2
t

]
(67)

or

(1− pi0)f
2
t = 1−

(
1

R0
− 1 + pm

)
pi0
pm

, (68)

which can be solved to give the critical value of ft or the critical value of mask efficiency fb,crit = 1− ft,crit as,

fb,crit = 1−

√√√√ log
[
1−

(
1
R0
− 1 + pm

)
pi0
pm

]
log(1− pi0)

. (69)
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C.3 Approximate Beta-Poisson Response

With an approximate beta-Poisson dose response, and neglecting the contribution from the ocular route, setting
R0,e = 1 in (63) gives the condition,

1

R0
= (1− pm) +

pm
pi0

[
1−

{
1 + f2

t

[
(1− pi0)−1/α − 1

]}−α]
(70)

or

{1 + f2
t [(1− pi0)−1/α − 1]}−α = 1− (

1

R0
− 1 + pm)

pi0
pm

(71)

which can be solved to give the critical value of ft or the critical value of mask efficiency fb,crit = 1− ft,crit as,

fb,crit = 1−

√√√√√
(

[
1−

(
1
R0
− 1 + pm

)
pi0
pm

]−1/α

− 1

(1− pi0)−1/α − 1
). (72)
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