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  29 
 30 

Summary 31 

Background 32 

With confirmed cases of COVID-19 declining in many countries, lockdown measures are 33 

gradually being lifted. However, even if most social distancing measures are continued, 34 

other public health measures will be needed to control the epidemic. Contact tracing via 35 

conventional methods or mobile app technology is central to control strategies during de-36 

escalation of social distancing. We aimed to identify key factors for a contact tracing 37 

strategy (CTS) to be successful.  38 

  39 

Methods 40 

We evaluated the impact of timeliness and completeness in various steps of a CTS using a 41 

stochastic mathematical model with explicit time delays between time of infection and 42 

symptom onset, and between symptom onset, diagnosis by testing, and isolation (testing 43 

delay). The model also includes tracing of close contacts (e.g. household members) and 44 

casual contacts, followed by testing regardless of symptoms and isolation if positive, with 45 

different delays (tracing delay) and coverages (tracing coverage). We computed effective 46 

reproduction numbers of a CTS (Rcts) for a population with social distancing measures and 47 

various scenarios for isolation of index cases and tracing and quarantine of its contacts.   48 

  49 

Findings 50 

For the best-case scenario (testing and tracing delays of 0 days and tracing coverage of 51 

80%), and assuming that around 40% of transmission occur before symptom onset, the 52 
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 3 

model predicts that the effective reproduction number of 1.2 (with social distancing only) 53 

will be reduced to 0.8 by adding contact tracing. A testing delay of 2 days requires tracing 54 

delay to be at most 1 day, or tracing coverage to be at least 80% to keep Rcts below 1. With a 55 

testing/isolation delay of 3 days, even the most efficient CTS cannot reach Rcts values below 56 

1. The effect of minimizing tracing delay (e.g., with app-based technology) declines with 57 

decreasing coverage of app use, but app-based tracing alone remains more effective than 58 

conventional tracing alone even with 20% coverage. The proportion of transmissions per 59 

index case that can be prevented depends on testing and tracing delays, and ranges from up 60 

to 80% in the best-case scenario (testing and tracing delays of 0 days) to 42% with a 3-day 61 

testing delay and 18% with a 5-day testing delay.  62 

  63 

Interpretation 64 

In our model, minimizing testing delay had the largest impact on reducing onward 65 

transmissions. Optimizing testing and tracing coverage and minimizing tracing delays, for 66 

instance with app-based technology, further enhanced CTS effectiveness, with a potential to 67 

prevent up to 80% of all transmissions. Access to testing should therefore be optimized, and 68 

mobile app technology may reduce delays in the CTS process and optimize contact tracing 69 

coverage. 70 

 71 

 72 

Funding: ZonMw projects 91216062 and 10430022010001,  Fundação para a Ciência e a Tecnologia project 73 
reference 131_596787873, and EU H2020 grant RECOVER (H2020-101003589).  74 
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Research in context 75 

Evidence before this study 76 

We searched PubMed, bioRxiv, and medRxiv for articles published in English from January 1, 77 

2020, to June 20, 2020, with the following keywords: (“2019-nCoV” OR “novel coronavirus” 78 

OR “COVID-19” OR “SARS-CoV-2”) AND “contact tracing” AND “model*”. Population-level 79 

modelling studies of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have 80 

suggested that isolation and tracing alone might not be sufficient to control outbreaks and 81 

additional measures might be required. However, few studies have focused on the effects of 82 

lifting individual measures once the first wave of the epidemic has been controlled. Lifting 83 

measures must be accompanied by effective contact tracing strategies (CTS) in order to 84 

keep the effective reproduction number below 1. A detailed analysis, with special emphasis 85 

on the effects of time delays in testing of index patients and tracing of contacts, has not 86 

been done.  87 

 88 

Added value of this study 89 

We performed a systematic analysis of the various steps required in the process of testing 90 

and diagnosing an index case as well as tracing and isolating possible secondary cases of the 91 

index case. We then used a stochastic transmission model which makes a distinction 92 

between close contacts (e.g. household members) and casual contacts to assess which steps 93 

and (possible) delays are crucial in determining the effectiveness of CTS. We 94 

evaluated how delays and the level of contact tracing coverage influence the effective 95 

reproduction number, and how fast CTS needs to be to keep the reproduction number 96 

below 1.  We also analyzed what proportion of onward transmission can be prevented for 97 
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short delays and high contact tracing coverage.  Assuming that around 40% of transmission 98 

occurs before symptom onset, we found that keeping the time between symptom onset and 99 

testing and isolation of an index case short (<3 days) is imperative for a successful CTS. This 100 

implies that the process leading from symptom onset to receiving a positive test should be 101 

minimized by providing sufficient and easily accessible testing facilities. In addition, reducing 102 

contact-tracing delays also helps to keep the reproduction number below 1. 103 

 104 

Implications of all the available evidence 105 

Our analyses highlight that CTS will only contribute to containment of COVID-19 if it can be 106 

organised in a way that time delays in the process from symptom onset to isolation of the 107 

index case and his/her contacts are very short. The process of conventional contact tracing 108 

should be reviewed and streamlined, while mobile app technology may offer a tool for 109 

gaining speed in the process. Reducing delay in testing subjects for SARS-CoV-2 should be a 110 

key objective of CTS.  111 

 112 

  113 
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Introduction 114 

As the first wave of the SARS-CoV-2 has reached its peak of cases in many countries, 115 

societies are preparing so-called exit-strategies from the COVID-19 lockdown, while still 116 

successfully controlling transmission. Contact tracing, in combination with quarantine and 117 

potentially testing of the contacts, is considered a key component in a phase when lockdown 118 

measures are gradually lifted1-8. Contact tracing is an intervention, where an index case with 119 

confirmed infection is asked to provide information about contact persons, who were at risk 120 

of acquiring infection from the index case within a given time period before the positive test 121 

result. These contact persons are then traced and informed about their risk, quarantined, and 122 

tested if eligible for testing according to national testing guidelines. This requires upscaling 123 

of conventional contact tracing capacity. The potential of mobile apps to support contact 124 

tracing is widely discussed and such technology has been used in several Asian countries. 125 

Although these countries have successfully reduced case numbers, no causal relationship 126 

between use of app technology and epidemic control has yet been shown9-14. Many 127 

uncertainties remain on the optimal process of contact tracing with conventional methods 128 

and/or mobile applications, on the timing of testing for current or past infection, and on the 129 

required coverage of contact tracing needed.  130 

 131 

Modelling studies have demonstrated how mobile applications can increase effectiveness of 132 

contact tracing, compared to conventional approaches for contact tracing, but effectiveness 133 

depends on what proportion of the population will use the app consistently for a sufficiently 134 

long period of time9. Modelling studies have predicted that contact tracing alone cannot 135 

control an outbreak if tracing coverage is too low2,15. What tracing coverage is needed 136 

depends on how much transmission occurs before symptom onset, and on the details of the 137 

tracing process. 138 
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 139 

In previous work, we have investigated the impact of timeliness and completeness of case 140 

reporting for the effectiveness of surveillance and interventions16,17, and we quantified the 141 

timeliness of contact tracing of infected passengers during an airline flight for the 2009 142 

pandemic influenza18. In all of these studies, the timing of various steps in the monitoring and 143 

intervention chain emerged as one of the key factors for effectiveness of a public health 144 

response. Usually, there are identifiable delays in the response chain that may be critical to 145 

the overall effectiveness of a strategy.  146 

 147 

Here we analyze in detail the process chain of identifying index cases by symptom-reporting 148 

followed by testing, and subsequent contact tracing, with the aim to inform policy makers on 149 

the relative importance of key steps in the process. We use a mathematical model that reflects 150 

the various steps and delays in the contact tracing process to quantify the impact of delays on 151 

the effective reproduction number and the fraction of onward transmission prevented per 152 

diagnosed index case5,19.  153 

 154 

Methods 155 

Time delays in contact tracing 156 

Our starting point is an assumed effective reproduction number (Re) for COVID-19 of around 157 

1, describing a situation with “social distancing but measures lifted to some extent”. We then 158 

quantify the relative contribution of the individual components of a contact tracing strategy 159 

(CTS) required to bring and maintain the effective reproduction number with CTS (RCTS) to a 160 

value below 1. For simplicity we do not include transmission in healthcare settings, as in 161 

healthcare settings like nursing homes, which can be viewed as closed populations, other 162 

interventions are more appropriate. 163 
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 8 

We break down the process of contact tracing in two steps (Figure 1; Supplementary 164 

Information Table S1).  165 

• An index case acquires infection (at time T0), then after a short latent period becomes 166 

infectious (at time T1), and finally symptomatic (at time T2), which is here defined as 167 

“being eligible for testing”.  Subsequently a proportion of all symptomatic subjects gets 168 

tested and diagnosed (at time T3). The time between T2 and T3  is called the “testing 169 

delay” (D1 = T3 - T2), and may vary between 0 and 7 days, and in this period individuals 170 

might self-quarantine. We refer to the proportion of all symptomatically infected cases 171 

that are tested as testing coverage and vary it from 20% to 80% in increments of 20%. 172 

After being diagnosed, we assume index cases are isolated with no further transmission.   173 

• The second step is tracing contacts of the index case, which occurs at time T4. A fraction 174 

of those contacts will be found and tested. We assumed that all contacts, regardless of 175 

symptoms, are offered testing, and that those testing negative do not spread. Those who 176 

are found infected will be isolated, with effectiveness ranging from 0% to 100%. We 177 

assume that contacts in isolation do not spread. The time between T3 and T4 is the 178 

“tracing delay” (D2 = T4 – T3), which may range from 0 (for instance with app 179 

technology) to 3 days (with conventional approaches). In this step, tracing coverage is 180 

defined as the proportion of contacts detected, which either depends on the capacity of 181 

conventional approaches (ranging from 20% to 80% in increments of 20%) or on the 182 

fraction of the population using suitable app technology for screening (ranging from 20% 183 

to 100% in increments of 20%). We did not consider hybrid approaches of combined 184 

conventional and app-based CTS.     185 
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 9 

The best-case scenario we consider is that persons eligible for testing are immediately tested 186 

(coverage 80%) with a very fast test result (test-delay 0 days) and immediate isolation when 187 

testing positive, followed by immediate tracing (trace delay 0 days) of all contacts, that 188 

immediately adhere to isolation measures (coverage 80%). We consider more realistic 189 

scenarios where testing and tracing are suboptimal, e.g. a conventional CTS, and we vary 190 

these parameters separately in a sensitivity analysis (see Supplementary Information).  191 

 192 

Impact on effectiveness on population level 193 

To analyse the impact of these time delays on the effectiveness of contact tracing we use a 194 

model introduced by Kretzschmar et al19, which was adapted for SARS-CoV-25. The 195 

stochastic model describes an epidemic as a branching process with progression through 196 

latent infection and infectious period in time steps of 1 day. Infectivity and probability of 197 

symptom onset per day of the infectious period, and numbers of contacts per day were fitted 198 

to distributions taken from published data. 20-24 We distinguish between close contacts (e.g. 199 

household contacts, but also other high-risk contacts) and casual contacts, which differ in the 200 

risk of acquiring infection from the index case. Also, the time required for tracing and 201 

isolating infected contacts and the coverage of tracing may differ between these types of 202 

contacts and between different CTS (i.e., conventional contact tracing versus mobile app 203 

supported contact tracing). We assume that isolation is perfect, i.e. that isolated persons do 204 

not transmit any longer, and that all traced infected contacts are isolated, regardless of 205 

whether they develop symptoms or not. The model allows for explicit computation of the 206 

basic reproduction number R0, the effective reproduction number under social-distancing 207 

interventions Re, and the effective reproduction number with CTS (Rcts). Reproduction 208 

numbers were calculated as expectations, and distributions of individual reproduction 209 
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 10 

numbers were simulated. The model was coded in Mathematica 12.1.  For details, see the 210 

Supplementary Information.   211 

 212 

Parameter settings 213 

We assumed that without social distancing individuals have on average 4 close contacts per 214 

day and around 9 casual contacts per day, with stochastic variability. The distributions were 215 

fitted to data from the Polymod study for the Netherlands23. Transmission probability per 216 

contact for close contacts was taken to be 4 times higher than for casual contacts. 217 

Symptomatic and asymptomatic cases were assumed to be equally infectious. Overall, the 218 

transmission probability was calibrated to a basic reproduction number of R0 = 2.5. For  219 

social distancing, we assumed that close contacts were reduced by 40% and casual contacts 220 

by 70%. The resulting effective reproduction number was Re = 1.2.     221 

 222 

Uncertainty of model outcomes 223 

We considered uncertainty due to stochastic variability, and uncertainty due to possible 224 

variation in parameter estimates. We dealt with stochastic variability by computing  225 

individual reproduction numbers for 1000 individuals for all scenarios, and plotted their  226 

distributions as boxplots. Parameter uncertainty was explored by performing simulations 227 

using hypercube sampling for transmission probabilities and probabilities of symptom onset 228 

per day of the infectious period (Supplementary Information). 229 

 230 

Scenarios modelled 231 

We analyzed the impact of various testing and tracing delays and tracing coverage on the 232 

effective reproduction number Rcts while keeping the testing coverage at 80%. For 233 

comparison, we also considered the strategy where symptomatic individuals get tested and 234 
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 11 

isolated, without subsequent tracing (Riso). We varied the testing delay D1 between 0 and 7 235 

days, the tracing delay D2 between 0 and 3 days, and tracing coverages between 0% and 236 

100% in increments of 20%. For conventional contact tracing, we assumed that coverage is 237 

higher for close contacts than for casual contacts.  238 

 239 

We then compared the effectiveness of conventional CTS alone with a scenario in which 240 

mobile app technology is used for alerting subjects to be tested and for tracing contacts. 241 

Differences between these strategies were taken as follows. The testing delay (D1) is reduced 242 

with app technology. We assumed a conventional CTS setting in which symptomatic 243 

individuals need to decide to seek health care to get tested, and we assumed that with app 244 

technology symptomatic persons get alerted and can be tested without health care 245 

interference. For conventional CTS we assumed suboptimal coverage in identifying contacts 246 

from the week before diagnosis due to recall bias, especially for casual contacts. For CTS 247 

with mobile app technology we assume 60% and 80% tracing coverage of the contacts of 248 

subjects using app technology. We show also results for 100% coverage, although 249 

realistically more than 80% is not feasible, because not all contacts may be correctly 250 

identified and compliance with isolation of those tested positive may not be perfect. We 251 

assume that tracing goes back for 7 days before the positive test result. The exact parameter 252 

values for this comparison are shown in Table 1.  253 

 254 

Next, we quantified the impact of coverage of testing and app use on the effectiveness of 255 

CTS. We varied the percentage of app users in the population between 20% and 100% in 256 

increments of 20%.  We first considered the situation that testing is provided for 80% of 257 

persons with symptoms independent of app use, and app use only influences the fraction of 258 

contacts that are traced. Alternatively, assumed that only app users are tested (i.e. testing 259 
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coverage varies between 20% and 100% in increments of 20%), and coverage of tracing also 260 

depends on fraction of app use. In all cases, a contact person could only be traced if both the 261 

index case and the contact person were app users, i.e. the probability of a contact being traced 262 

is given by the square of the proportion of app users.  263 

 264 

Finally, we quantified the fraction of transmissions of an index person that can be prevented, 265 

and the contribution to the fraction prevented from isolation and from tracing contacts with 266 

decreasing delays. The number of onward transmissions of an index case is by definition 267 

described by the effective reproduction number of the realized scenario. Therefore, the 268 

difference of reproduction numbers between two intervention scenarios under the condition 269 

that an index case is diagnosed, describes the fraction of onward transmissions prevented. For 270 

contact persons, this is the fraction of the total infectivity that lies after the time of isolation, 271 

i.e. the part of infectiousness that is prevented by contact tracing. In other words, a contact 272 

person who is detected and isolated before the start of their infectious period is a fully 273 

prevented transmission, while a contact person who is only traced and identified after 70% of 274 

their infectivity has passed, is counted as 0.3 of a prevented onward transmission.  275 

 276 

Role of the funding source 277 

The funders of the study had no role in study design, data collection, data analysis, data 278 

interpretation, writing of the manuscript, or the decision to submit for publication. All authors 279 

had full access to all the data in the study and were responsible for the decision to submit the 280 

manuscript for publication. 281 

 282 

Results 283 
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In the best-case scenario, if 80% of infectious persons that develop symptoms are tested and 284 

isolated within 1 day after symptom onset the effective reproduction number Re is expected 285 

to decline from 1.2 to Riso = 1.0, without contact tracing (Figure 2). Contact tracing may 286 

further decrease the reproduction number to Rcts=0.8 in the best case scenario. In the best 287 

case scenario – a testing delay of 0 days, a tracing delay of 0 days, and a tracing coverage of 288 

80%, the additional reduction of Rcts predicted by the model is 33%. Yet, with a testing delay 289 

of 2 days, tracing delay should be at most 1 day, or tracing coverage should be at least 80% to 290 

keep Rcts below 1. In these scenarios, the reduction of Rcts compared to the best-case scenario 291 

is estimated at 17% (Supplementary Information Figure S4). With a testing delay of more 292 

than 3 days, even perfect contact tracing cannot bring Rcts values below 1. 293 

 294 

We assumed that conventional CTS has longer tracing delay and lower tracing coverage than 295 

CTS based on app technology which results in marked differences in Rcts for the whole range 296 

of testing delay (Figure 2A). With conventional CTS, Rcts would remain above 1, if the 297 

testing delay exceeds 0 days, whereas contact tracing based on app technology could still 298 

keep Rcts below 1, as long as testing and tracing coverage would be at least 80%, or if testing 299 

delay is 1 day and tracing coverage 60%. If the testing delay reaches 5 days or more, app 300 

technology adds little effectiveness to conventional CTS or just isolating symptomatic cases.   301 

 302 

The reductions of Re (based on social distancing) achieved by isolation of symptomatic cases 303 

only, conventional CTS, and mobile app-based CTS are shown in figure 3A. For isolation 304 

only and for conventional CTS we assumed a delay of 4 days between symptom onset and 305 

isolation of the index case. The relative reductions are independent of the level of Re, similar 306 

reductions are seen for R0, i.e. in a situation without social distancing (Supplementary 307 

Information). Conventional CTS, even if applied for all infected subjects with symptoms, is 308 
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27% less effective than mobile app-based CTS alone, due to longer tracing delays and lower 309 

tracing coverage.  Figure 3B shows the distributions of individual reproduction numbers for 310 

the testing delays assumed in Table 1, i.e. 4 days for isolation and conventional CT, and 0 311 

days for app-based CTS. Only for app-based CTS the means of the individual reproduction 312 

numbers are below 1. 313 

 314 

The effectiveness of app-based technology declines with lower fractions of persons using it 315 

(Figure 4). Yet, app-based tracing on its own remains more effective than conventional 316 

tracing alone, even with 20% coverage, due to its inherent speed. Even with low coverage 317 

there is a reduction of Re, due to fast tracing of a small part of the population. Depending on 318 

Re, such an approach might be sufficient to reduce Rcts to levels below 1.  This can be seen in 319 

the distributions of the individual reproduction numbers (Figure 4B and 4D), where in 4B the 320 

means of the distributions are below 1 for 40% and more app use, while in 4D this is the case 321 

for 60% and above.  322 

 323 
 324 
In Table 2, we quantified proportions of transmissions per index case that can be prevented 325 

depending on testing delay, stratified by of isolation of index cases and tracing delays. In the 326 

best-case scenario (testing and tracing delay being 0 days) around 80% of transmissions can 327 

be prevented if tracing coverage is 80%.   328 

 329 
 330 
 331 
Discussion  332 

Using a mathematical model that describes the different steps of CTS for COVID-19 we have 333 

quantified the relevance of delays and coverage proportions for controlling SARS-CoV-2 334 

transmission.  We conclude that reducing the testing delay, i.e. shortening the time between 335 

symptom onset and positive test result (assuming immediate isolation), is the most important 336 
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factor for improving CTS effectiveness. Reducing the tracing delay, i.e. shortening the time 337 

of contact tracing (assuming immediate testing and isolation if positive), may further enhance  338 

CTS effectiveness. Yet this additional effect rapidly declines with increasing testing delay. 339 

The effectiveness of app-based CTS declines with lower app use coverage, but it remains 340 

more effective than conventional contact tracing even with lower coverage, due to its 341 

inherent speed. CTS therefore has the potential to control virus transmission, and to enable 342 

alleviation of other control measures, but only if all delays are maximally reduced.  It should 343 

be noted that we simulated two CTS systems (conventional CTS with testing and tracing 344 

delays and app-based CTS without delays) and ignored hybrid approaches. At present, most 345 

European countries are using conventional CTS, but are attempting to reduce delays (for 346 

example, by improving testing and tracing capacity and by removing testing barriers), and are 347 

piloting or planning the addition of app-based contact-tracing. Such hybrid CTS systems 348 

would fall somewhere between the fully conventional and app-based scenarios described in 349 

this paper.     350 

 351 

Several factors can reduce CTS effectiveness, such as large proportions of cases who remain 352 

asymptomatic or are otherwise not diagnosed, and large proportions of contacts who cannot 353 

be traced. App-based technology could increase the proportion of tracable contacts, because 354 

it does not rely on recall of names and contact details, but this would require the participation 355 

of a substantial proportion of the population. App use acceptance may be hampered by 356 

privacy concerns and other ethical considerations, which limit its acceptance.   Also, app use 357 

needs to continue over a long time period, requiring sustained adherence by app users. Low 358 

participation does not render CTS useless, however, because it could help to locally 359 

extinguish clusters before they grow larger. In addition, every measure that lowers the 360 
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effective reproduction number, even if it is already below 1, will lower the cumulative case 361 

number and speed up the time until elimination of the virus from the population. 362 

 363 

The strength of our approach is that it explicitly takes many details of the contact tracing 364 

process into account, such that the key factors can be identified. A limitation of our approach 365 

is that it does not take population age-structure into account, which may influence the 366 

proportion of asymptomatic cases and mobile app use coverage. Also, the willingness of a 367 

case to self-isolate depends on age and social norms, may depend on socio-economic status, 368 

and is affected by perceived benefit of isolation in relation to perceived risk of the infection 369 

to others25. We also excluded other heterogeneities while assuming homogeneous mixing26,27, 370 

and assumed homogeneously distributed use of app technology for different coverage levels. 371 

Clustering of non-users may have consequences for overall effectiveness of CTS, similar to 372 

clustering of non-vaccinated persons. Furthermore, we ignored that a sizeable portion of 373 

transmissions may be acquired nosocomially when population prevalence is still low. 28 The 374 

model also ignores that some contacts of the index case may have self-quarantined with 375 

symptoms before they are traced by CTS, which lowers the benefits of CTS.   376 

 377 

Our results add to results from other modelling studies, which showed that CTS can be an 378 

effective intervention if tracing coverage is high and if the process is fast2,15. A determining 379 

factor is the proportion of transmissions occurring before symptom onset, which determines 380 

the urgency of tracing and isolating contacts as fast as possible. Our study showed in detail 381 

what the role is of each step in the CTS process in making it successful. Our model differs in 382 

that it makes a distinction between close and casual contacts, and that we consider scenarios 383 

for conventional CTS and mobile app-based CTS characterized by specific delays and 384 

coverages. 385 
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 386 

Our finding of the crucial importance of the first step of CTS, establishing a diagnosis in 387 

cases with symptoms, has important consequences. It requires an infrastructure for testing, 388 

that allows persons with symptoms to be tested, preferably, within one day of symptom onset. 389 

Studies have demonstrated that viral shedding in the respiratory tract is highest at the start of 390 

symptoms29,30, so early testing will also increase the sensitivity of this approach. To further 391 

enhance effectiveness, as many infectious persons as possible need to be tested regardless of 392 

symptoms, which requires a low threshold for testing. As the clinical symptoms of COVID-393 

19 are mostly mild and heterogeneous, many persons should be eligible for testing, resulting 394 

in a large proportion of negative test results. Future work should determine the optimal 395 

balance between the proportion of test-negatives and the effectiveness of CTS.  396 

 397 

Our findings also provide strong support to optimize contact tracing. In the Netherlands, CTS 398 

was based on establishing contact between an index case and a public health officer, followed 399 

by an interview after which contacts are traced. This procedure is labor intensive, time 400 

consuming, prone to recall bias, incomplete (anonymous contacts cannot be traced), and 401 

usually takes several days. Optimizing this process by improving testing and tracing capacity, 402 

removing testing barriers, and by adding app-based and/or other digital technologies to 403 

minimize tracing delay are needed to establish optimal control of transmission. These 404 

improvements are currently being implemented or considered. Overall, our findings suggest 405 

that optimized CTS, with short delays and high coverage for testing and tracing could 406 

substantially reduce the reproduction number, which would allow alleviation of more 407 

stringent control measures.     408 

 409 

Data availability 410 
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The Mathematica code used for the analysis are available on Github under 411 

https://github.com/mirjamkretzschmar/ContacttracingModel 412 

 413 

Contributors 414 

MEK and MB conceived the study. MK designed and programmed the model, and produced 415 

output. MvB, MCJB, and GR helped with the analysis and literature research. JvdW 416 

contributed to data interpretation and writing. All authors interpreted the results, contributed 417 

to writing the manuscript, and approved the final version for submission. 418 

 419 

Declaration of interests 420 

We declare no competing interests. 421 

 422 

Acknowledgements 423 

MEK received funding from ZonMw projects number 91216062 and number 10430022010001. GR received 424 
funding from Fundação para a Ciência e a Tecnologia project reference 131_596787873. MB received funding 425 
from EU H2020 grant RECOVER (H2020-101003589). 426 
 427 
We thank Patricia Bruijning-Verhagen and Hans Heesterbeek for useful discussions. This 428 
work forms part of RECOVER (Rapid European COVID-19 Emergency Response research). 429 
RECOVER is funded by the European Union’s Horizon 2020 research and innovation 430 
programme under grant agreement No 101003589. 431 
 432 

  433 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted June 29, 2020. ; https://doi.org/10.1101/2020.05.09.20096289doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.09.20096289
http://creativecommons.org/licenses/by-nc-nd/4.0/


 19 

References 434 

1. Fraser C, Riley S, Anderson RM, Ferguson NM. Factors that make an infectious 435 

disease outbreak controllable. Proc Natl Acad Sci U S A 2004; 101(16): 6146-51. 436 

2. Hellewell J, Abbott S, Gimma A, et al. Feasibility of controlling COVID-19 outbreaks 437 

by isolation of cases and contacts. Lancet Glob Health 2020. 438 

3. Keeling MJ, Hollingsworth TD, Read JM. The Efficacy of Contact Tracing for the 439 

Containment of the 2019 Novel Coronavirus (COVID-19). medRxiv 2020: 440 

2020.02.14.20023036. 441 

4. Klinkenberg D, Fraser C, Heesterbeek H. The effectiveness of contact tracing in 442 

emerging epidemics. PLoS One 2006; 1: e12. 443 

5. Kretzschmar ME, Rozhnova G, van Boven M. Isolation and contact tracing can tip 444 

the scale to containment of COVID-19 in populations with social distancing. medRxiv 2020: 445 

2020.03.10.20033738. 446 

6. Muller J, Kretzschmar M, Dietz K. Contact tracing in stochastic and deterministic 447 

epidemic models. Math Biosci 2000; 164(1): 39-64. 448 

7. Tang B, Wang X, Li Q, et al. Estimation of the Transmission Risk of the 2019-nCoV 449 

and Its Implication for Public Health Interventions. J Clin Med 2020; 9(2). 450 

8. Salathe M, Althaus CL, Neher R, et al. COVID-19 epidemic in Switzerland: on the 451 

importance of testing, contact tracing and isolation. Swiss Med Wkly 2020; 150: w20225. 452 

9. Ferretti L, Wymant C, Kendall M, et al. Quantifying SARS-CoV-2 transmission 453 

suggests epidemic control with digital contact tracing. Science 2020. 454 

10. Kamel Boulos MN, Geraghty EM. Geographical tracking and mapping of 455 

coronavirus disease COVID-19/severe acute respiratory syndrome coronavirus 2 (SARS-CoV-456 

2) epidemic and associated events around the world: how 21st century GIS technologies are 457 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted June 29, 2020. ; https://doi.org/10.1101/2020.05.09.20096289doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.09.20096289
http://creativecommons.org/licenses/by-nc-nd/4.0/


 20 

supporting the global fight against outbreaks and epidemics. Int J Health Geogr 2020; 19(1): 458 

8. 459 

11. Parker MJ, Fraser C, Abeler-Dorner L, Bonsall D. Ethics of instantaneous contract 460 

tracing using mobile phone apps in the control of the COVID-19 pandemic. J Med Ethics 461 

2020. 462 

12. Nguyen THD, Vu DC. Summary of the COVID-19 outbreak in Vietnam - Lessons and 463 

suggestions. Travel Med Infect Dis 2020: 101651. 464 

13. Ruan L, Wen M, Zeng Q, et al. New measures for COVID-19 response: a lesson from 465 

the Wenzhou experience. Clin Infect Dis 2020. 466 

14. Show evidence that apps for COVID-19 contact-tracing are secure and effective. 467 

Nature 2020; 580(7805): 563. 468 

15. Peak CM, Kahn R, Grad YH, et al. Individual quarantine versus active monitoring of 469 

contacts for the mitigation of COVID-19: a modelling study. Lancet Infect Dis 2020. 470 

16. Bonacic Marinovic A, Swaan C, van Steenbergen J, Kretzschmar M. Quantifying 471 

reporting timeliness to improve outbreak control. Emerg Infect Dis 2015; 21(2): 209-16. 472 

17. Bonacic Marinovic AA, Koopmans M, Dittrich S, et al. Speed versus coverage trade 473 

off in targeted interventions during an outbreak. Epidemics 2014; 8: 28-40. 474 

18. Swaan CM, Appels R, Kretzschmar ME, van Steenbergen JE. Timeliness of contact 475 

tracing among flight passengers for influenza A/H1N1 2009. BMC Infect Dis 2011; 11: 355. 476 

19. Kretzschmar M, van den Hof S, Wallinga J, van Wijngaarden J. Ring vaccination and 477 

smallpox control. Emerg Infect Dis 2004; 10(5): 832-41. 478 

20. Bi Q, Wu Y, Mei S, et al. Epidemiology and Transmission of COVID-19 in Shenzhen 479 

China: Analysis of 391 cases and 1,286 of their close contacts. medRxiv 2020: 480 

2020.03.03.20028423. 481 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted June 29, 2020. ; https://doi.org/10.1101/2020.05.09.20096289doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.09.20096289
http://creativecommons.org/licenses/by-nc-nd/4.0/


 21 

21. Chan JF, Yuan S, Kok KH, et al. A familial cluster of pneumonia associated with the 482 

2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. 483 

Lancet 2020; 395(10223): 514-23. 484 

22. Chen N, Zhou M, Dong X, et al. Epidemiological and clinical characteristics of 99 485 

cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet 486 

2020; 395(10223): 507-13. 487 

23. Mossong J, Hens N, Jit M, et al. Social contacts and mixing patterns relevant to the 488 

spread of infectious diseases. PLoS Med 2008; 5(3): e74. 489 

24. Backer JA, Klinkenberg D, Wallinga J. Incubation period of 2019 novel coronavirus 490 

(2019-nCoV) infections among travellers from Wuhan, China, 20-28 January 2020. Euro 491 

Surveill 2020; 25(5). 492 

25. Webster RK, Brooks SK, Smith LE, Woodland L, Wessely S, Rubin GJ. How to 493 

improve adherence with quarantine: rapid review of the evidence. Public Health 2020; 182: 494 

163-9. 495 

26. Dowd JB, Andriano L, Brazel DM, et al. Demographic science aids in understanding 496 

the spread and fatality rates of COVID-19. Proc Natl Acad Sci U S A 2020; 117(18): 9696-8. 497 

27. Prem K, Cook AR, Jit M. Projecting social contact matrices in 152 countries using 498 

contact surveys and demographic data. PLoS Comput Biol 2017; 13(9): e1005697. 499 

28. Wang D, Hu B, Hu C, et al. Clinical Characteristics of 138 Hospitalized Patients With 500 

2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. JAMA 2020. 501 

29. He X, Lau EHY, Wu P, et al. Temporal dynamics in viral shedding and 502 

transmissibility of COVID-19. Nat Med 2020; 26(5): 672-5. 503 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted June 29, 2020. ; https://doi.org/10.1101/2020.05.09.20096289doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.09.20096289
http://creativecommons.org/licenses/by-nc-nd/4.0/


 22 

30. Kucirka LM, Lauer SA, Laeyendecker O, Boon D, Lessler J. Variation in False-504 

Negative Rate of Reverse Transcriptase Polymerase Chain Reaction-Based SARS-CoV-2 Tests 505 

by Time Since Exposure. Ann Intern Med 2020. 506 

 507 

 508 

  509 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted June 29, 2020. ; https://doi.org/10.1101/2020.05.09.20096289doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.09.20096289
http://creativecommons.org/licenses/by-nc-nd/4.0/


 23 

 510 

Table 1: Comparison Conventional CT and Mobile app CT 511 

 Conventional CT Mobile app CT 

Testing coverage 80% 20%, 40%, 60%, 80%, 100% 

Testing delay (D1), assuming 

immediate isolation when testing 

positive 

4 days 0 day 

Time to trace close contacts (D2) 3 days 0 day 

Time to trace other contacts, 

assuming testing and isolation of 

those who test positive 

3 days 0 day 

Tracing coverage close contacts  80% 20%, 40%, 60%, 80%, 100% 

Tracing coverage casual contacts 50% 20%, 40%, 60%, 80%, 100% 

Time traced back 7 days 7 days 

 512 

 513 
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Table 2. Percentage of onward transmissions prevented per diagnosed index case for various 515 
interventions: only isolation of the index case (left column) or isolation of the index case with tracing 516 
and isolation of 80% of infected contacts (columns 2-5). 517 
 518 
 519 

 Isolation 
only 

Contact tracing 
Delay D2 (days) 

Delay D1 (days)  3 2 1 0 
0 50.4 62.4 67.8 73.9 79.9 
1 35.7 47.3 53.4 60.7 68.5 
2 23.4 33.0 38.9 46.5 55.4 
3 14.2 21.0 26.0 32.9 41.8 
4 7.8 11.9 15.7 21.4 29.1 
5 3.8 5.9 8.4 12.5 18.4 
6 1.6 2.4 3.8 6.4 10.4 

  520 
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Figure 1: Schematic of the contact tracing process and its time delays. 521 
 522 
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Figure 2: Comparison of a conventional and mobile app CTS. For parameter values, see table 1. 531 
We assumed that testing coverage is 80% for the conventional CTS and 60%, 80%, and 100% for the 532 
mobile app CTS. For mobile app CTS it is assumed that the tracing coverage equals the testing rate, 533 
i.e. it is 60%, 80%, and 100%, respectively. Expected reproduction numbers are shown as a function 534 
of testing delay D1.  535 
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Figure 3: The reduction of the effective reproduction number for various CTS. (A) The 544 
reproduction number with CTS, Rcts, is shown as a percentage of the reproduction number where only 545 
social distancing is implemented (Re). For the isolation scenario and conventional tracing scenario we 546 
assumed that there is a delay of 4 days between symptom onset and isolation of the index case. For 547 
the mobile app CTS, testing delay was assumed to be 0 days. Testing coverage was assumed to be 548 
80% in the isolation and conventional CT scenarios; app use prevalence was assumed to be 60%, 549 
80%, and 100% in the mobile app CTS. (B) Distributions of individual reproduction numbers for 550 
1000 individuals and the same scenarios as in (A). 551 
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Figure 4: The impact of mobile app use on Rcts for varying levels of app use. In 4A and 4B, we 559 
assume that there is also testing of those who do not use the mobile app, so app use only is used for 560 
tracing contacts. In 4C and 4D, only app users, who develop symptoms, are tested. Panels A and C 561 
show percentage reductions of Re achieved by the CTS; panels B and D show the impact of various 562 
CTS on distributions of individuals reproduction numbers. 563 
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