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Abstract: Difficulties assessing and predicting the current outbreak of the severe acute respiratory 5 

syndrome coronavirus 2 can be traced, in part, to the limitations of a static description of a dynamic 6 

system. Fourier transforming the time-domain data of infections and fatalities into the frequency 7 

domain makes the dynamics easily accessible.  Defining a quantity like the “case fatality” as a spectral 8 

density allows a more sensible comparison between different countries and demographics during an 9 

ongoing outbreak. Such a case fatality informs not only how many of the confirmed cases end up as 10 

fatalities, but also when. For COVID-19, knowing this time and using the entire case fatality spectrum 11 

allows determining that an outbreak had entered a steady-state (most likely its end) about 14 days 12 

before this is obvious from time-domain data. The lag between confirmations and deaths also helps to 13 

estimate the effectiveness of contact management: The larger the lag, the less time the average 14 

confirmed person had to infect people before quarantine.  15 

 16 

Motive: The severe acute respiratory syndrome coronavirus 2[1] is currently spreading around the 17 

world in an epidemic wave.  To fight the epidemic itself as well as to mitigate collateral damage done 18 

by mass quarantine measures[2], it is key to assess the situation quickly and accurately. Much 19 

information can be already determined during the outbreak, thereby allowing to assess effectivity and 20 

necessity of countermeasures. We show here how to gain critical information using only the time series 21 

of reported confirmed and fatal cases.   22 

Intro: In an ongoing outbreak, the number of infected people cannot be accurately known. Mainly two 23 

numbers are communicated to describe the currently ongoing COVID-19 outbreak: the number of 24 

“confirmed cases” and the number of “deaths” [3]–[5]. The problem is that in a time-dependent 25 

situation, each number may change rapidly. It is usually more important to know the timing at which 26 

the numbers are reported than the numbers themselves.  27 

A prime example of this is the case fatality ratio. Different timing underlies most of “The many 28 

estimates of the COVID-19 case fatality rate”[6]. In time-dependent situations, “rate” is reserved to 29 

describe quantities per unit time, so the case fatality is a ratio, not a rate.  30 
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The fraction of infected persons who end up dying should remain constant, unless radical 31 

improvements in treatment happen. This is the infection fatality ratio, an important quantity. If one 32 

has a good estimate of the infection fatality ratio in one country, one can estimate the infections in 33 

another country from the number of deaths recorded there. However, in an ongoing outbreak, the 34 

infection fatality ratio is fundamentally different from dividing the number of deaths that have 35 

occurred up to now by the number of infections up to now, because people do not die instantly from 36 

the infection. To illustrate this point, we do the following thought experiment: “A condition is fatal in 37 

100 % of the cases. 100 people have acquired the condition by now. How many of them are dead?” 38 

The answer is: Between 0 and 100, depending on when the condition was acquired and how fast it 39 

leads to death. The timing is more important than the fatality of the condition.  40 

In an ongoing outbreak, we cannot know the actual rate of infections; we can only know the numbers 41 

of reported confirmed cases and deaths. To understand a number, one has to understand the question 42 

it answers[7]. The number of confirmed cases reported today answers the question: “In how many 43 

cases have people been tested, confirmed positive in a laboratory, with this confirmation having been 44 

reported today?” This question is quite complicated. The number of confirmed cases depends on 45 

several factors. The actual number of infected people is only one of them; usually the number of 46 

tests[8] and the day of the week are important. The number of deaths answers the question: “How 47 

many of the confirmed infected appear to have died from COVID-19?” This is a bit simpler, but the 48 

“appear” does leave room for interpretation. The problem with finding the infected is that many 49 

present very mild symptoms that are indistinguishable from those associated with influenza and other 50 

common respiratory diseases usually summed up as “the common cold”. The severe cases, especially 51 

those leading to deaths, are harder to miss. Therefore, Ward[8], and Flaxman et. al.[9] conclude that 52 

the reported deaths are likely closer to the actual deaths than the confirmed are to the actual infected. 53 

If one wants to fight a pandemic, not merely monitor it, another question becomes important: “In how 54 

many cases do we know that infectious people stopped spreading the disease because they were put 55 

into quarantine?” That number, too, is the number of confirmed cases, since confirmed infectious 56 

persons generally will be quarantined.  57 

So: How can we describe the time dependence of the observables of an epidemic?  58 

The problem is that the confirmations C reported on the day t depend on all infections I on each day 59 

before that day t and how long before they happened. Mathematically: 60 

𝐶(𝑡) = ∫ 𝐼(𝑡𝐼)𝜒𝐼𝐶(𝑡, 𝑡 − 𝑡𝐼)𝑑𝑡𝐼
𝑡

−∞
     (1) 61 

Here 𝜒𝐼𝐶(𝑡, 𝑡 − 𝑡𝐼 , 𝑥) is the infection confirmation response function, which gives the probability at 62 

time t of reporting the confirmation of an infection that happened 𝑡 − 𝑡𝐼 days before. 𝑡𝐼 is the time of 63 
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infection. In the following, we will assume that this probability does not change over time, and hence 64 

only depends on how much earlier the infections happened: 65 

 𝜒𝐼𝐶(𝑡, 𝑡 − 𝑡𝐼) = 𝜒𝐼𝐶(𝑡 − 𝑡𝐼).      (2) 66 

The same can be done for the death rate 𝐷(𝑡) at time responding to the confirmation rate 𝐶(𝑡𝐶) at 67 

time 𝑡𝐶: 68 

𝐷(𝑡) = ∫ 𝐶(𝑡𝐶)𝜒𝐶𝐷(𝑡 − 𝑡𝐶)𝑑𝑡𝐶
𝑡

−∞
= ∫ ∫ 𝐼(𝑡𝐼)𝜒𝐼𝐶(𝑡𝐶 − 𝑡𝐼)𝑑𝑡𝐼

𝑡𝐶

−∞
𝜒𝐶𝐷(𝑡 − 𝑡𝐶)𝑑𝑡𝐶

𝑡

−∞
     (3) 69 

𝜒𝐶𝐷(𝑡 − 𝑡𝐶) is the case fatality response function. We note that even under the simplifying 70 

assumptions of no changes in testing, reporting, or treatment of the disease over time, we are left with 71 

complicated convolution integrals over the infections, which themselves change exponentially over 72 

time. About 200 years ago, Fourier[10] faced the same problem in the description of heat transport, 73 

where heat and temperature also change exponentially over time (and space). His work lead to the 74 

development of the Fourier transformation, which simplifies the description of a time-dependent 75 

phenomenon 𝐵(𝑡) by transforming it into a spectral density 𝐵̃(𝑓) in the frequency (f) domain: 76 

𝐵̃(𝑓) = ∫ 𝐵(𝑡)𝑒𝑖2𝜋𝑓𝑡𝑑𝑡
∞

−∞
     (4) 77 

Fourier transforming equation (2) replaces the convolution in the time domain with a simple 78 

multiplication in the frequency domain.  79 

𝐷̃(𝑓) = 𝐶̃(𝑓)𝜒̃𝐶𝐷(𝑓) = 𝐼(𝑓)𝜒̃𝐼𝐶(𝑓)𝜒̃𝐶𝐷(𝑓)    (5) 80 

𝐷̃(𝑓), 𝐶̃(𝑓) and 𝐼(𝑓) are the deaths, confirmations, and infections happening at a frequency 𝑓. 𝜒̃𝐼𝐶(𝑓), 81 

𝜒̃𝐶𝐷(𝑓) and 𝜒̃𝐼𝐷(𝑓) = 𝜒̃𝐼𝐶(𝑓)𝜒̃𝐶𝐷(𝑓) are the infection confirmation ratio, the case fatality and the 82 

infection fatality, respectively. So one can simply divide fatal cases by confirmed cases to obtain the 83 

case fatality ratio – in the frequency domain. This simplicity comes at a price, though: The case fatality 84 

is not a single number, but an entire spectrum of multiple frequencies. Further the case fatality 𝜒̃𝐶𝐷(𝑓)  85 

at each frequency 𝑓 is a complex number1 composed of an amplitude |𝜒̃𝐶𝐷|(𝑓) and a lag 𝜏(𝑓): 86 

 𝜒̃𝐶𝐷(𝑓) = |𝜒̃𝐶𝐷|(𝑓)𝑒𝑖2𝜋𝑓𝜏(𝑓)     (6) 87 

The amplitude of the case fatality |𝜒̃𝐶𝐷|(𝑓) answers the question: “What fraction of the confirmed 88 

cases reported at frequency 𝑓 end up dying?” And the lag 𝜏(𝑓): “How soon?”  89 

                                                           
1 We use the ̃  to indicate all complex numbers in this paper. 
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Let us apply this formalism to reported data. For the initial demonstration, we chose a place where the 90 

outbreak is over and the reporting and testing policy did not substantially change over time: China, 91 

excluding Hubei province.  92 

We take the daily reports of confirmations and deaths from the data published by John Hopkins 93 

University on GitHub[3], [11]. Dong, Du and Gardner’s[3] data start on January 22nd, 2020, which is day 94 

t=0 in this paper. One can already see in the time domain data in fig. 1 a) that the deaths trail the 95 

confirmations by about 10 days. Fourier’s formalism implies continuous observation over time, while 96 

we here have discrete observations, one each day. A discrete Fourier transformation algorithm now 97 

called fast Fourier transform was invented by Fourier’s contemporary Gauss[12], [13] to analyse the 98 

time-dependent observations of planets and comets. The fast Fourier transform has become extremely 99 

common; last but not least digital copies of this paper may be compressed using it. The compression 100 

works because the most relevant information is contained in very few frequency steps. In the case of 101 

China ex. Hubei, the amplitude spectra of confirmations and deaths in fig. 1 b) start fluctuation 102 

randomly for frequencies larger than 0.06/day. This means data at these frequencies are most likely 103 

dominated by statistical fluctuations and do not contain much useful information. We can therefore 104 

limit our analysis to the 6 frequency steps below 0.06/day and still capture the relevant information 105 

from two series of almost 100 time steps (days). Hence, we only plot the case fatality for these first 106 

frequency steps in fig. 1 c). We can see that the amplitude and the lag are quite constant, at almost 107 

0.9 ∙ 10−2 fatalities/confirmation and ca. 11 days, respectively. This means the outbreak in China ex. 108 

Hubei can be described in the simple terms that about 1/100 of confirmed cases died, and the death 109 

was reported on average 11 days after the confirmation. This, however, could also have been inferred 110 

by just overlapping the curves of confirmations and deaths, albeit less mathematically rigorous. We 111 

aim to retrieve a good estimate of the case fatality in an ongoing outbreak, not just in one that is 112 

essentially over. We stick with China ex. Hubei and ask the question: “What could we have known on 113 

day 20 (February 11th)?” Well, when we Fourier transform the rates reported up to day 20, we see in 114 

fig. 1 c) that the 0 frequency value of the case fatality is 0.35 ∙ 10−2 fatalities/confirmation, much lower 115 

than the final value. This is not surprising, because the 0-frequency value is just the accumulated 116 

number of deaths divided by the accumulated number of confirmations. As explained above, this value 117 

is quite useless as the outbreak is ongoing on day 20.  118 

The second Fourier component, however, is already at 0.6 ∙ 10−2 fatalities/confirmation, much closer 119 

to the final value. In general, we should average over the whole spectrum. We suppress the noise from 120 

statistical fluctuations by first using a 7-day floating average over the daily reports and then weighting 121 

the average by the spectral intensity of deaths, since the lower number of deaths, the larger their 122 

relative statistical error. The 7-day floating average unfortunately delays the time traces by half a week, 123 
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costing some valuable time and reducing time resolution. It is necessary for estimating amplitudes, 124 

especially in countries which report significantly less on weekends. Even with the delay from the 7-day 125 

average, the spectral average converges towards to final case fatality value around day 25, about two 126 

weeks before the “static case fatality” does.  127 

We also have a posteriori recognized that deaths lag the confirmations by about 11 days. When we 128 

compare the deaths accumulated up to a certain day with the confirmations accumulated up to 11 129 

days earlier, we also get an estimate of the case fatality amplitude that converges towards the final 130 

value after day 25. While we only know this 11-day value a posteriori from our Fourier analyses, one 131 

could infer it from studying individual cases much earlier: Wang et al.[14] reported a median time 132 

between the onset of first symptoms and the onset of the acute respiratory distress syndrome of 8 133 

 

 

Fig. 1. a) Reported rates of confirmations (blue, left axis) and deaths (red, right axis) in mainland 

China, excluding Hubei. Dots are daily reports, lines are floating averages over the past 7 days. b) 

Amplitude spectra of the time traces from a). c) Case fatality amplitude (blue, left axis) and lag (red, 

right axis) for the frequencies above the noise floor, which is below 0.06/day. Full dots come from 

dividing the spectra from day 96, seen in b); empty dots from spectra derived from the first 20 days. 

d) Estimates of amplitude and lag of the case fatality by different methods as a function of time: 

Full lines are deaths reported up that time divided by confirmations up to the same time. Using the 

confirmations obtained 11 days earlier yields the dashed line. The dots are obtained from spectra 

taken up to that time, the amplitude is a weighted spectral average of based on 7-day averaged 

spectra, the lag is the value at first frequency above 0 from daily spectra.  
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days on February 7th (day 16 ). The first symptoms set in shortly after a patient can be tested positive 134 

and respiratory distress is how most severe acute respiratory syndrome corona virus 2 patients die, at 135 

least those dying quickly. So those 8 days would have given reasonable initial guess for the lag.  136 

Having obtained the case fatality of the outbreak in China ex. Hubei, we can now answer the question: 137 

“How many confirmations 𝐶𝑋(𝑌) would an ex. Hubei style system have reported at if it reported deaths 138 

like country Y?” This is done by dividing the spectrum of deaths 𝐷̃(𝑌) of country Y by the case fatality 139 

𝜒̃𝐶𝐷(𝑋) of China ex. Hubei. (X here stands for China ex. Hubei).  140 

 𝐶̃𝑋(𝑌) = 𝐷̃(𝑌)/𝜒̃𝐶𝐷(𝑋)      (7) 141 

This gives the confirmation spectrum 𝐶̃𝑋(𝑌) for county Y assuming the case fatality of region X. An 142 

inverse Fourier transform then yields the confirmation rates 𝐶𝑋(𝑌). We use 7-day floating averages to 143 

suppress statistical noise. The most important assumption for the merit of this comparison is that 144 

deaths and confirmations behave linearly with respect to each other, i.e., that more confirmations do 145 

not lead to a change in case fatality. We call this comparison “ex. Hubei standard” and perform it for 146 

two places which perform widespread testing and where the outbreaks are more recent: South Korea 147 

(seen in fig. 2) and Germany (fig. 3). In summary, the “ex. Hubei standard” calculates the number of 148 

infected from the number of deceased, using the case fatality of China. 149 

For Korea, the ex. Hubei standard shows an increase to a hundred possible confirmations per day 150 

around day 25, ca. 10 days before the Koreans actually find and confirm several hundreds of infected 151 

each day. When the Koreans do, though, they find more than the Chinese would have in the same time 152 

period. This indicates that a few thousand infected people had gone unnoticed for ca. one week, but 153 

then the Koreans identified most of them. This fits the magnitude and timeline of the Shincheonji 154 

 

Fig. 2 a) Reported rates of confirmations (blue, left axis) and deaths (red, right axis) in South Korea. 

Dots are daily reports, full lines averages over the past 7 days, and the dotted line are confirmations 

in an ex. Hubei type response based on the 7-day averaged deaths in South Korea. b) Estimated 

case fatality amplitude (blue, left axis) and lag (red, right axis) based on data 
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cluster[15]. After this initial trend, the ex. Hubei standard based on the deaths in Korea again indicates 155 

much more possible confirmations than the Koreans report.  156 

How can we understand these discrepancies? There can be two reasons: a) The case fatality is 157 

nonlinear, which invalidates eq. (2). b) The case fatalities between Korea and China are fundamentally 158 

different. Discrepancies from day 25 to day 45 can be explained by non-linearity: The Korean’s 159 

employed rapid contact tracing, which means a single confirmation at a time triggers several confirmed 160 

contacts soon after. This allows confirmations (and, more importantly, quarantine of infected) to 161 

outpace infections, beating exponential growth by faster exponential growth. We note that contact 162 

tracing only leads to nonlinearity of the overall response if no new hidden clusters continuously form 163 

to be contact-traced later. Nonlinearity is not a good explanation for the discrepancies after day 45, as 164 

no surges in confirmations happened after the ex. Hubei standard alleged further possible 165 

confirmations in Korea. This would imply Korea having lost most of its capabilities to confirm cases, 166 

while still managing to curb the spread of the disease. We consider this unlikely and therefore we 167 

search for possible causes for differences in the case fatality. We look at how the case fatality of South 168 

Korea differs from China ex. Hubei. In South Korea about twice as many people (2.2 ∙ 10−2 compared 169 

to 0.9 ∙ 10−2) people die after confirmation, but they also die much later than in China. This contradicts 170 

what we would expect from either more infections among the risk group or worse health care; in either 171 

case more people should die sooner but we observe that more die later. Similarly, false positive 172 

confirmations in China cannot explain the observed combination amplitude and lag. A complicated 173 

interplay between those factors cannot be ruled out as an explanation without very detailed data. A 174 

simpler and therefore better[16] explanation for the observed discrepancy is that China reports only 175 

the cases that have certainly died from the severe acute respiratory syndrome coronavirus 2, while 176 

South Korea reports everyone who died while not having yet recovered from the virus. A rapid disease 177 

progression is characteristic for the severe acute corona virus [14], [17], hence one would expect 178 

characteristic cases to die quickly, as they do in China. The risk groups for a severe case of coronavirus 179 

infection are elderly people with pre-existing health conditions[17]. These are people with a low 180 

remaining life expectancy. This means many risk group patients would be expected to die from other 181 

causes than the coronavirus before they would have had time to fully recover. It takes three to six 182 

weeks for severe cases to recover [18]. For a group of random people with an average life expectancy 183 

of 2 years (without CoViD-19 infection) we can estimate that a fraction of 4 ∙ 10−2 of them will die 184 

within one month2. This makes differentiating between a death from Corona virus and “random” death 185 

increasingly difficult, the later the death occurs. China only reporting the quick deaths while Korea also 186 

                                                           
2 Under the assumptions of random and uncorrelated deaths  
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reporting slow deaths, which may not have been caused by the infection, is the simplest explanation 187 

we can find for the discrepancy.  188 

We now turn to Germany and compare the numbers with the cases in China ex. Hubei. We can see 189 

that the curve of confirmations in Germany has a very similar shape as the ex. Hubei standard would 190 

predict, but the number of confirmations is ca. 4 times lower than in China. The Germans found about 191 

1/4 of the cases that the Chinese would have found, provided they reported the same amount of 192 

deaths. Since the German timing seems to be very similar to the Chinese (ex. Hubei) it is not surprising 193 

that the case fatality amplitude corrected by the lag from China ex. Hubei has fluctuated around a 194 

constant of 4.4 ∙ 10−2 since the first death in Germany. By now the spectral averaged case fatality has 195 

reached a similar level. This example illustrates the futility of using the instantaneous case fatality 196 

ratios as the case fatality amplitude of about 4 ∙ 10−2 in Germany at day 50 was expected when 197 

accounting for the lag known from China, while the instantaneous case fatality lay at 0.1 ∙ 10−2. We 198 

note that a day change in the lag would have resulted in an absolute change in estimated case fatality 199 

amplitude by 1 ∙ 10−2  at day 50, but now it will only change by 0.1 ∙ 10−2 for a 1 day different lag. We 200 

note that at this point, most of the data is still from the rising flank of the outbreak, hence we cannot 201 

distinguish if Germany is reporting patients dying very late similarly to Korea or to China, since most 202 

late deaths have not occurred yet. While a sizable fraction of deaths has yet to occur in Germany, very 203 

little new infections will (provided no major changes are induced in the behaviour of the Germans). 204 

This is what the observations of constant spectral case fatality estimates in recent days tell us. Germany 205 

is entering a steady-state, as did China on day 25. Since we have observed that the outbreak is 206 

 

Fig. 3. a) Time traces of reported rates of confirmed (blue, left axis) and deaths (red, right axis) in 

Germany. Dots are daily reports, full lines averages over the past 7 days, and the dotted line are 

confirmations in the ex. Hubei standard divided by 4 for scale. b) Case fatality amplitudes (blue, left 

axis) and lags (red, right axis) estimated using data available at the respective time. The full line 

denotes the instantaneous ratio of accumulated fatalities and confirmations, the dashed line uses 

confirmations accumulated until 11 days prior, and the dots result from spectral analyses. 
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essentially over, provided no major change is made in Germany, how can we monitor if a major change 207 

happens, i.e. if the outbreak is restarted by lifting strict social distancing measures?  208 

Death reports occur too late to be useful, confirmed cases depend more on the effectiveness of the 209 

testing scheme than on the number of infections[8], and as long as most of the infections are 210 

confirmed quickly, contact tracing and quarantine suffices to stop the spread of the disease. We need 211 

to tell if enough people have been found and quarantined quickly enough. Is there a single value that 212 

can be easily reported, which will tell if a new surge of COVID-19 infections is happening or if contact 213 

management is working? The answer to the ultimate question about COVID-19, the contact 214 

management and all the rest is: “- 5 days”. The exact question is: “How long was the average time 215 

between onset of symptoms and quarantine for the cases confirmed today?” We count here the ability 216 

to produce a positive test as a symptom. 5 days is a recent estimate of the average incubation time 217 

[18]. If most infected have been quarantined before they became infectious, the average time between 218 

symptoms and quarantined must be below 0 and cannot go lower than (minus) the average incubation 219 

time. We urge to focus on reporting this time, rather than the precise numbers of confirmations. 220 

Measuring timescales is more important and reliable than quantifying the time-dependent observables 221 

in dynamic situations, since observables will change drastically over time, but timescales tend to be 222 

determined or at least limited by underlying time constants, in this case the incubation time.  This is 223 

the underlying reasoning how we come up with the “ultimate question” and the answer. 224 

 

Fig. 4. Amplitude (blue, left axis, logarithmic) and lag (red, right axis) of the case fatality for 

territories with more than 100 deaths. The amplitude is estimated in two ways: fatalities divided 

by the confirmations 11 days prior are marked with x, averages of the amplitude spectrum with o. 

When those two estimates start matching, the outbreak was entering a steady state and much 

fewer infections happened than during its beginning, the latter happened one average infection-

fatality lag prior.  A large case fatality lag indicates a low infection quarantine lag, which means the 

confirmed cases had little time to infect other people before being quarantined.  
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Can we tell this lag between infectiousness and quarantine from our current analysis? No. But we can 225 

give an indication of where the lag between infectiousness and quarantine was smallest for the past 226 

confirmed cases: We can expect cases to be quarantined by the time they are reported, and the 227 

average time between infection and death is another time constant of the disease3.  So, the larger the 228 

lag between reported confirmations and deaths, the smaller the lag between infections and quarantine 229 

must have been. We plot the current lag and amplitude estimates for the case fatality for all countries 230 

with more than 100 deaths from COVID-19 in fig. 4. The absolute magnitudes of the case fatality mostly 231 

tell how widely a country has been testing[8]; the more tests, the lower the amplitudes. From the case 232 

fatality, we can gauge the state of the outbreak at the time when the people dying now had been 233 

infected: when the 11-day-lag corrected case fatality (marked ×) and spectral average of the 234 

amplitudes (marked ○) have become similar, the outbreak was entering a steady state; the infection 235 

rate was past its peak. This has by now happened in Italy, Belgium, Germany, Iran and China, to name 236 

the examples with the highest fatality count. The lag allows us to differentiate between 3 testing 237 

schemes: Germany and China ex. Hubei have lags on the order of 10 days and few fatalities per case, 238 

because they managed to even test many people with mild symptoms relatively soon. Italy and 239 

Belgium had restricted testing mainly to suspected cases with severe symptoms. Since severe 240 

symptoms are fewer and take ca. 4 days [14] to develop, lags are below 5 days, and case fatalities are 241 

several times larger. However, this testing policy has been somewhat consistent throughout the 242 

outbreak. Hubei and Iran are the third type of response. Here the lag is negative. Confirmed cases were 243 

only widely reported after people had already started dying. Most likely, these territories responded 244 

to deaths by increasing testing and reporting. Lags may also be negative in very early stages of the 245 

outbreak, when the 11-days-corrected estimate may massively overestimate the case fatality while 246 

the spectral average massively underestimates it. This can be seen in the early stages of the Korean 247 

timeline in fig. 2 b). The data in fig. 4 indicates that for example Ecuador, Morocco, Bangladesh and 248 

Saudi Arabia are currently in this early stage of their respective outbreaks.  249 

South Korea was probably the only country that got its initial outbreak under control mainly by contact 250 

management rather than social distancing. By now, however, many countries should have the test and 251 

contact management infrastructure to do the same. Countries with a lag close to 10 days were already 252 

within reach of this goal before. They can switch to this strategy now and monitor the situation by 253 

reporting their answer to the ultimate question: “How much time did the infectious people have to 254 

infect more people?” This can even be done in countries that do not have enough test resources, by 255 

quarantining all even mildly symptomatic people and their contacts on suspicion and only test a small 256 

                                                           
3 Well, differences in treatment and especially reporting of late deaths may change it, as we discussed for 
Korea and China, but not by an order of magnitude. 
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fraction of them, preferably those without known epidemiological links to confirmed cases. It may be 257 

more important to test and report quickly and smartly rather than extensively to get a reliable and 258 

timely estimate for the average time a recent infectious case has spent unquarantined, and this time 259 

is more important than the absolute number of past infections.  260 

Conclusion: Analysing static quantities like the accumulated number of confirmed cases and deaths is 261 

not particularly helpful in understanding a dynamic situation. Fourier analysis of the time series of 262 

confirmation and death rates yields the case fatality spectrum, which allows a more sensible 263 

comparison between different places at different stages of their outbreaks. For example, in comparing 264 

China ex. Hubei and South Korea, we could tell the existence, timing, and magnitude of the Shincheonji 265 

cluster from the confirmation and death rates alone. We further conclude that the main difference in 266 

case fatality between South Korea and China ex. Hubei was reporting, most likely of deaths, since this 267 

is the only explanation for the discrepancies both in the fraction confirmed infected who die and the 268 

lag between confirmations and deaths. Further, we can tell when the static description converges 269 

towards the Fourier description that includes dynamics. Thereby, we know when the outbreak has 270 

been ending. This has, by now, happened in most severely affected countries. The key to 271 

understanding a dynamic situation is to know the time constants involved. Fourier analysis allows 272 

inferring some information on the average time a confirmed case had to infect more people, but we 273 

can do this only based on the number of deaths, which means the most recent infection situation we 274 

can assess that way is at least 2 weeks outdated. We recommend reporting a more up to date and 275 

useful quantity in a dynamic outbreak:  the average time between infectiousness and quarantine for 276 

the recently confirmed cases. This time allows assessing the situation while at the same time indicating 277 

how recent the assessment is, and it can be as recent as the incubation time permits.  278 

Supplementary Information: The python program used to perform this analysis and create the plots is 279 

available under: https://edmond.mpdl.mpg.de/imeji/collection/VVStKlQ0xKllTTkH 280 
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