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Abstract 
Asymptomatic infections and limited testing capacity have led to under-reporting of 
SARS-CoV-2 cases. This has hampered the ability to ascertain true infection numbers, evaluate 
the effectiveness of surveillance strategies, determine transmission dynamics, and estimate 
reproductive numbers. Leveraging both viral genomic and time series case data offers methods 
to estimate these parameters. 
 
Using a Bayesian inference framework to fit a branching process model to viral phylogeny and 
time series case data, we estimated time-varying reproductive numbers and their variance, the 
total numbers of infected individuals, the probability of case detection over time, and the 
estimated time to detection of an outbreak for 12 locations in Europe, China, and the United 
States. 
 
The median percentage of undetected infections ranged from 13% in New York to 92% in 
Shanghai, China, with the length of local transmission prior to two cases being detected ranging 
from 11 days (95% CI: 4-21) in California to 37 days (9-100) in Minnesota. The probability of 
detection was as low as 1% at the start of local epidemics, increasing as the number of reported 
cases increased exponentially. The precision of estimates increased with the number of 
full-length viral genomes in a location. The viral phylogeny was informative of the variance in the 
reproductive number with the 32% most infectious individuals contributing 80% of total 
transmission events.  
 
This is the first study that incorporates both the viral genomes and time series case data in the 
estimation of undetected COVID-19 infections. Our findings suggest the presence of undetected 
infections broadly and that superspreading events are contributing less to observed dynamics 
than during the SARS epidemic in 2003. This genomics-informed modeling approach could 
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estimate in near real-time critical surveillance metrics to inform ongoing COVID-19 response 
efforts. 
 
Funding: AWS provided computational credit via the Diagnostic Development Initiative. 
 

Introduction 
 
SARS-CoV-2 has infected over 3 million people as of May 5, 2020 ​1​, after first being identified in 
December, 2019. The rapid expansion of the pandemic, high healthcare and case burdens, and 
wide observations of mildly symptomatic or asymptomatic infections​2​ have led to continuing 
uncertainty of the adequacy of public health surveillance systems to effectively estimate the 
number of cases in a population. Testing capacity remains limited in much of the world, 
potentially resulting in a large number of infections going undetected. 
 
Estimating the total number of infections is important for several reasons. It provides information 
on what proportion of the population has been exposed, how many people are still at risk, and 
the level of community transmission, all critical for determining which public health interventions 
should be applied and when. Furthermore, estimating the total number of infected individuals 
helps to evaluate the effectiveness of and identify gaps in surveillance and response efforts. 
Finally, quantifying the total number of infections provides a more accurate denominator for 
calculating fatality probability per infection. 
 
The most direct solution to determine the number of infected individuals is to expand 
population-based testing to identify both symptomatic and asymptomatic cases​3​. However, this 
would necessitate alternate testing strategies, which has not yet been accomplished outside of 
relatively limited efforts that are currently impractical to scale in the global response hampered 
by limited testing capacity. Serological surveys can also inform a post hoc estimate of 
undetected infections in a population, though this would also require an additional sampling 
regimen beyond diagnostic testing of active infections and offers limited information on the 
timing of when infections may have occurred. 
 
Undetected infections can be inferred from gaps in existing data with the use of mathematical 
models; for example, mobility data and case reports from different geographic locations were 
used to infer the total number of infections in China ​4​. However, the estimate of infection 
numbers is sensitive to the variance in the offspring distribution (defined as the distribution of 
secondary infections caused by each infected individual, the mean of which is the reproductive 
number). That is to say, large outbreaks can occur even if the reproductive number is close to 
one because of superspreading events​5​. Quantifying the variance around the reproductive 
number improves the accuracy of estimates of the number of infections and the reproductive 
number and offers an estimate of the contribution of superspreading events to observed 
outbreak dynamics. 
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Viral genomic sequencing is becoming more widespread during viral epidemics​6​ and pathogen 
genomes can inform estimates of the number of infections as well as the variance around the 
reproductive number​7​. Integrating the analyses of genomic data into epidemiological 
mathematical modeling frameworks can jointly estimate reproductive numbers, variance in the 
reproductive number, and the total number of infections in a population, which are correlated 
with each other and difficult to estimate using time series case data alone ​8​. 
 
Here, we aim to estimate the number of undetected SARS-CoV-2 infections, the time-varying 
reproductive number and its variance, and the relative contribution of superspreading events to 
observed outbreak dynamics across time in 12 locations in Asia, Europe, and North America. 
We use a previously described approach that combines the analyses of phylogenies and time 
series case data ​7​ to arrive at more refined estimates than either source of data can provide 
independently. 

Methods 

Overview of methods 
For each location in our dataset, we fit a branching process model simultaneously to time-series 
of confirmed cases and to the viral phylogeny of samples from that location. Using a Bayesian 
inference framework, we estimated the epidemiological parameters of the model as well as 
latent states. More details are provided in the sections below. 

Data 

Time series data 
We downloaded the time series of confirmed cases for the identified locations from the Johns 
Hopkins CSSE COVID-19 Github repo ​9​ (accessed April 4, 2020). Assuming the dates of 
disease confirmation were the same dates as symptom onset, we imputed the dates of infection 
by deducting  days from the confirmation date of each case , where  was drawn from a 
Gamma distribution with a mean of 5.5 days and standard deviation of 2.1 days based on 
estimates of the incubation period of SARS-CoV-2 ​10​. 

Viral genomes 
We downloaded 1,113 full-length genome sequences from the 12 location from GISAID​11 
(accessed April 4, 2020):  1) California, US, 2) Minnesota, US, 3) New York, US, 4) Washington, 
US, 5) Guangdong, China, 6) Hong Kong, China, 7) Hubei, China, 8) Shanghai, China, 9) 
Iceland, 10) Italy, 11) Japan, and 12) United Kingdom. Inclusion criterion for geographic 
locations was the availability of ≥ 50 full-length SARS-CoV-2 genomes from countries or ≥ 30 
from first-level administrative divisions as of April 4, 2020 from GISAID database. The following 
locations also satisfied this criterion but were excluded due to multiple circulating lineages: 
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Austria, Belgium, and Ontario, Canada. We also excluded the following locations because the 
model did not converge within the timeframe of the analysis: France, Netherlands, and 
Switzerland. We excluded sequences with more than 10% ambiguous sites. The location of 
each sequence was assigned according to the annotation on GISAID or the source of exposure, 
if available. For each of the 12 locations, we aligned the sequences against each other using 
MAFFT v7.455 ​12​ with default settings.  
 
We used the ModelFinder​13​ program within IQ-TREE v1.6.12 ​6 ​to identify the best-fit substitution 
model for each dataset according to the Bayesian Information Criteria, and then used the 
selected model to infer the maximum likelihood phylogeny in IQ-TREE v1.6.12 allowing for 
multifurcations. The command line options to IQ-TREE v1.6.12 were ​ -bnni -czb​. 
 
Assuming a molecular clock rate of 8 x 10 ​-4​ with a standard deviation of 5 x 10 ​-4​ substitutions 
per site per year​14​, we used TreeTime to estimate the dates of branching events in the 
phylogeny and re-rooted the phylogeny to maximize the correlation coefficient of the root-to-tip 
plot. The command-line options for treetime were --reroot least-squares --clock-filter 3 --tip-slack 
3 --confidence --clock-rate 0.0008 --clock-std-dev 0.0005. The resulting time trees are provided 
in Supplementary Data 1. 
 
To minimize the effects of multiple introductions and co-circulating lineages on the estimation of 
infection numbers, we subsampled the sequences to the dominant lineages. The excluded 
samples are listed in Supplementary Table 1. 

Analysis time periods 
For each dataset, we estimated the number of new infections starting 10 days before the first 
reported case. The end dates were the most recent collection dates of sequences available on 
GISAID on April 4, 2020. As such, the end dates of analysis were different across the 12 
geographic locations. 

Model inference 
We fit a stochastic branching process model to both the time-series data and viral phylogeny, 
seeded by  number of infections. The number of secondary infections  caused by eachν i  
individual  infected during time step  was drawn from a negative binomial distribution withi t  

mean  and coefficient of variance . The times  of onward transmission to individual  
relative to the infection time of the transmitter were drawn from a Weibull distribution with mean 
of 5.0 days and standard deviation of 1.9 days​10​. The probability of detecting an infection during 
time step  is given by . The latent variable  tracks the number of new infections over time. 
 
We jointly estimated the latent variable  in addition to the following parameters for each 
location using Bayesian inference: ​, , , . The shape  and scale  parameters of the 
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Weibull distribution are fixed to give the mean and standard deviation listed above. The list of 
parameters, their prior distributions or fixed values are listed in Supplementary Table 2. 
 
Using the Bayesian particle Markov chain Monte Carlo (PMCMC) with Metropolis-Hastings 
sampling algorithm described in Li et al.​8​, we fit the branching process model to the time series 

 and time-resolved viral phylogeny  for each of the 12 locations. We randomly 
generated 100 sets of initial parameter values from the prior distributions, ran the PMCMC for 
1000 iterations, and then picked the parameter combination for each dataset with the highest 
posterior probability to start the final PMCMC inference. We ran the final PMCMC inference for 
up to 1 million iterations sampling every 100 iterations, stopping the runs earlier if at least 300 
effective samples were obtained. We checked convergence visually and by calculating the 
effective sample size. In all PMCMC runs, we used 5,000 particles to simulate the epidemics 
and iteratively calculated the likelihood every 8 time steps, where each time step was 0.25 days. 
 
During each iteration of the PMCMC algorithm, a new value for one of the parameters in  is 
drawn from a truncated normal distribution centered around the last accepted parameter value. 
The bounds of the truncation are listed in Supplementary Table 2. The new set of parameter 

values  are accepted with probability , where  is the 
prior probability of parameters  and  is the density function of proposing  given , and 
vice versa.  
 
We concurrently estimated the likelihood  of parameters  and 
obtained a sample of the latent epidemic trajectory  from the density . 
We iteratively estimated the likelihood  of parameters  at each time step 

 by simulating  epidemic trajectories  for  using the stochastic 

branching process model, calculating , and sampling  
particles in the next step according to a multinomial distribution with probabilities proportional to 

. The epidemic trajectory  defines the number of newly infected people at time 
step . Detailed explanation of the PMCMC algorithm has been previously described ​15,16​, as well 
as its application for fitting epidemiological models to both time series data and phylogenies​8,17​. 
 

The probability  is defined as follows. Let 

, then  where  is the probability of 
detecting an infection during time step . 
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For a given epidemic trajectory , the coalescent (branching) rate  is given by 

18​. Let , for , where  is the number of intervals 

within the phylogeny during time step ,  is the number of lineages during that interval,  
is an indicator variable that equals 1 when the interval starts with a branching event and 0 
otherwise, and  is the time duration of the interval. The number of intervals during a time step 
is one more than the number of events during that time step, where an event is defined as a 

branching or sampling event. The probability , where 

. 
 
Both the reproductive numbers ​ and reporting rates  were estimated for each one-week 
period starting from the first reported case. The  and  parameters before the first reported 
case were assumed to be the same as  and  values during the first week of the reported 
case time series. 

Code availability 
Code to carry out data cleaning and visualization is available at 
https://github.com/czbiohub/EpiGen-COVID19 ​ and the code to run the model is available at 
https://github.com/lucymli/EpiGenMCMC​. 

Role of funding source 
The computational aspects of this work were supported by the AWS Diagnostic Development 
Initiative via computational credit.  
 

Results 

The proportion of unreported infections 
We jointly estimated the parameters of the branching process model and the epidemic 
trajectories, i.e. the number of new infections over time, using the Bayesian inference algorithm 
described in Methods. Unless defined otherwise, the numbers provided are the median 
estimates with the 95% highest posterior density interval noted in the parentheses.  
 
Defining the number of undetected infections as the estimated number of infections above the 
number of infections that were reported in the time series, we found that 30% (95% HPD: 
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13%-50%) of infections across all locations across all time points were not detected in time 
series of confirmed cases. This median estimate varied from 13% and 92% across locations 
(Table 1; Figure 1). 
 
We found that between January 10 and 23 there were 4,900 (95% HPD: 4,100–7,600) total new 
infections in Hubei province, which was lower than the previous estimate for Wuhan city (capital 
of Hubei) of 13,118 (95% CI: 2,974–23,435)​4​, though we were able to obtain more precise 
estimates and the credible intervals overlapped. Similarly, our median estimate of 2,100 
(1,200–3,900) was lower but the credible interval overlapped with the 4,000 (1,700-7,800) total 
new infections estimated for Wuhan based on traveler data up to January 18 ​19​. Finally, 20,767 
(9,528–38,421) infections were estimated for Wuhan up to January 29 based on data from an 
evacuation flight to Japan ​20​, which is on par with our finding of 21,000 (95% HPD: 
18,000–33,000) during the same period. 
 
The number of undetected infections in California and New York state was unexpectedly small 
given reports of delayed reporting ​21​. To evaluate if oversampling of viral genomes in New York, 
Nassau, and San Francisco Bay Area counties may contribute to biased state-level 
observations, we re-calculated the total numbers of undetected infections for California and New 
York using only confirmed cases from those counties. The estimate of proportion of infections 
that were undetected increased from 37.2% (3.0% - 77.7%) to 78.9% (67.9% - 92.0%) for 
California, and from 12.8% (1.6% - 36.8%) to 40.0% (32.0% - 58.7%) for New York. Further 
analysis of just time series data from these counties may further support these adjusted 
proportions. 
 
The credible intervals around the proportion of infections that were undetected in each location 
was inversely correlated with the number of sequences available for that location 
(Supplementary Figure 2). To quantify the association, we fit a beta regression model of the 
form  where  is the size of the uncertainty interval around the 
proportion of undetected infections (Table 1, column 4) and  is the number of sequences used 
for analysis. The best fit parameters were =2.08 (0.59-3.57) and =0.54 (0.20-0.89), which 
meant that increasing the number of sequences from 10 to 100 decreased the uncertainty 
interval size by 43% from 70% to 40%, and increasing the number of sequences from 100 to 
500 further reduced the uncertainty interval size by 46% from 40% to 21%. 
 
Across all locations, the lowest probability of detection occurred within the preliminary phase of 
the epidemic (Figure 2). This is in line with another modeling study that found increasing rates of 
detection in the US across time ​22​. The estimate of the overall probability of detection based on 
pandemic data from China February 7, 2020 ranged from 7.1% to 47.6% (95% confidence 
interval: 31.6-86.9%)​23–25​, which are not directly comparable to the estimates in this study as 
they used data from all of China rather than from a specific province. 
 
Table 1. The estimated numbers of undetected SARS-CoV2 infections across the 12 locations 
in the study during the analysis periods, and the number of undetected infections before the first 
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confirmed case. The ‘Undetected infections’ columns are rounded to 2 significant figures to 
reflect uncertainty in estimates. The 95% highest posterior density intervals are indicated in 
parentheses beneath median estimates. The dates are in the format ‘year-month-day’. 
 

Location Reported cases 
(during analysis 

period) 

Undetected infections 
(during analysis 

period) 

Undetected infections (%) 
(during analysis period) 

Undetected 
infections (before 

first reported case) 

Analysis dates Date of first 
reported 

case 

California, 
US 

2,690 1,600 
(83 - 9,400) 

37.2% 
(3.0% - 77.7%) 

31 
(0 - 320) 

2019-12-30 to 
2020-03-17 

2020-01-21 

Minnesota, 
US 

108 340 
(38 - 1,400) 

75.6% 
(26.0% - 92.9%) 

210 
(27 - 850) 

2020-01-28 to 
2020-03-12 

2020-03-02 

New York, 
US 

21,740 3,200 
(370 - 13,000) 

12.8% 
(1.6% - 36.8%) 

160 
(0 - 1,000) 

2020-01-22 to 
2020-03-16 

2020-02-25 

Washington, 
US 

4,563 7,300 
(3,800 - 13,000) 

61.4% 
(45.5% - 73.3%) 

1,500 
(970 - 2,100) 

2020-01-15 to 
2020-03-23 

2020-02-18 

Guangdong, 
China 

1,298 890 
(100 - 2,900) 

40.6% 
(7.4% - 68.8%) 

260 
(40 - 790) 

2019-12-07 to 
2020-02-09 

2020-01-10 

Hong Kong, 
China 

96 340 
(16 - 1,500) 

78.0% 
(14.6% - 93.9%) 

80 
(3 - 310) 

2019-12-13 to 
2020-02-23 

2020-01-16 

Hubei, 
China 

29,992 10,000 
(4,100 - 35,000) 

25.8% 
(12.1% - 53.7%) 

280 
(61 - 740) 

2019-11-02 to 
2020-02-02 

2019-12-06 

Shanghai, 
China 

323 3,900 
(2,200 - 6,500) 

92.3% 
(87.4% - 95.3%) 

1,900 
(1,200 - 2,900) 

2019-12-09 to 
2020-02-08 

2020-01-12 

Iceland 673 1,100 
(310 - 2,400) 

61.6% 
(31.4% - 78.1%) 

370 
(120 - 760) 

2020-01-21 to 
2020-03-17 

2020-02-24 

Italy 64,272 27,000 
(8,800 - 56,000) 

29.6% 
(12.0% - 46.7%) 

420 
(14 - 2,200) 

2019-12-23 to 
2020-03-16 

2020-01-26 

Japan 247 940 
(160 - 3,000) 

79.2% 
(39.6% - 92.4%) 

150 
(23 - 430) 

2019-12-14 to 
2020-02-23 

2020-01-17 

United 
Kingdom 

23,216 6,100 
(2,600 - 12,000) 

20.8% 
(10.0% - 34.1%) 

820 
(370 - 1,600) 

2019-12-21 to 
2020-03-24 

2020-01-24 
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Figure 1. The estimated number of new infections over time across the 12 locations (red dots 
represent the median estimates on those days, and the red lines indicate the 95% highest 
posterior density intervals on those days). The bars are the number of reported confirmed cases 
by imputed date of infection. 
 
 

 
Figure 2. The probability of detecting a case  during each week of the analysis period. 
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Heterogeneity in reproductive numbers 
The median reproductive numbers  during each week was above one in 70% of the weeks 
analyzed across the 12 locations (Figure 3). This percentage ranged from 43% in Shanghai to 
90% in Italy. 
 
The overall reproductive number across all locations and time periods was 1.20 (0.12-3.34), 
with the initial reproductive number in each location ranging from 0.27 (0.10-0.93) in Hong Kong 
to 2.23 (0.20-5.32) in California. 
 

 
Figure 3. The reproductive number  over time across the 12 locations. The dates indicate the 
start of the week for which the  was estimated. 
 
To quantify the variance in the reproductive numbers and evaluate the contribution of 
superspreading events to epidemic dynamics, we computed the smallest number of individuals 
that could contribute to 80% of infections during each week (Figure 4). The smaller the number, 
the larger the variance and the more likely that there are superspreading events such as those 
observed during the SARS outbreak of 2003. Across all locations and time periods, the top 33% 
(2%-47%) of infected individuals contributed to 80% of onward infections. This was higher than 
the 16% and 10% estimated for the SARS outbreak in Singapore and Beijing, respectively​5​. The 
numbers were calculated from the estimated  (Figure 3) and coefficient of variation  values 
(see Supplementary Figure 1). 
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Another common parameterization with negative binomial distributions of the reproductive 
number is the dispersion parameter . The smaller the value of , the greater 
the variance. The estimated values of  are 0.38 (0.01-3.46) for reproductive numbers between 
1 and 2, and 0.69 (0.02-6.35) for reproductive numbers between 2 and 3.  

 
Figure 4. The top percentage of individuals causing 80% of infections, given the negative 
binomial offspring distribution during each week with mean  and coefficient of infection . 
The lower the percentage, the larger the variance around reproductive number. 

Time until a local outbreak is detected 
Given the probabilities of detection , the reproductive number , and the coefficient of 
variation  at the start of the analysis in each location, we estimated the length of time that 
would pass before local spread of COVID-19 was detected. We simulated from the branching 
process model using the highest posterior probability parameter combination in each location to 
determine the length of time it would take for 2 infections to be detected in a new location, 
assuming that local transmission would be recognized after 2 confirmed cases. 
 
If outbreaks occurred in similar settings to the 12 locations in terms of initial reproductive 
numbers and detection probabilities, we estimate 11 to 37 days would elapse before 2 infections 
were detected, by which point there would be 4 to 45 total infections in the local population 
(Table 2). 
 
Table 2. The expected number of days before 2 infections were detected in a new location. 
This was based on simulations from the branching process model using initial parameter values 
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estimated for the 12 locations in this study. The last column denotes the expected number of 
total infections by that date. We used maximum posterior density , , and  values to 
generate simulations from which we calculated the values in the last two columns. The 95% 
confidence intervals are shown in parentheses. 

Location    Days to notice Total infected 

Italy 0.3 1.3% 39.3 22 (6-28) 45 (4-232) 

New York, US 0.3 1.6% 11.9 20 (6-50) 28 (3-104) 

Japan 0.6 1.2% 1.3 32 (9-79) 4 (2-13) 

Hong Kong, China 0.6 1.0% 2.1 31 (8-61) 8 (2-24) 

Minnesota, US 0.9 1.1% 3.8 37 (9-100) 11 (2-48) 

Iceland 1 1.1% 2.2 35 (8-95) 9 (2-29) 

Washington, US 1.2 1.0% 1.5 35 (9-91) 9 (3-26) 

Hubei, China 1.2 1.6% 1.7 25 (7-65) 8 (3-28) 

United Kingdom 1.4 1.2% 2.8 28 (8-64) 13 (3-42) 

Guangdong, China 1.6 1.4% 3 23 (7-51) 15 (4-48) 

Shanghai, China 2.1 1.0% 2.8 22 (7-43) 21 (4-87) 

California, US 4.3 2.2% 3.3 11 (4-21) 24 (5-73) 

Discussion 
The identification of asymptomatic individuals presents a particular challenge to COVID-19 
surveillance and outbreak response. Serosurveys will help inform estimates of the proportion of 
the population that has been exposed cumulatively but have limited utility in evaluating 
time-varying case ascertainment. Our findings using viral genomic data suggest that local 
introductions of SARS-CoV-2 resulted in sustained transmission occurring for days or weeks 
before infections were detected in every location evaluated. The probability of detection has 
been dynamic across time as diagnostic testing capacity and response strategies have been 
operationalized. These data further suggest that aggressive response following identification of 
an index case may be warranted to identify cryptic chains of transmission. The approach we 
deploy here may also be useful for monitoring the performance of COVID-19 surveillance 
efforts, including if the rate of undetected infections will continue a decreasing trend as new 
diagnostic assays and testing strategies are developed throughout the course of the pandemic. 
 
The inclusion of the genomic data in the modeling of the spread of COVID-19 enabled more 
precise estimates of the number of infections, and the precision increased with more genomic 
sequences available. Additional viral sequences should further improve epidemiological 
estimates. The data were downloaded for the current analysis on April 4 and as of April 30 the 
total number of full-length viral genomes has increased from 3,001 to 4,148. Furthermore, given 
the increasing availability of serological tests, integrating those results within a modeling 
framework can further constrain the set of plausible epidemic trajectories. 
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The viral phylogeny was also informative of the variance around the reproductive numbers. The 
level of variation estimated here was on par with what has been estimated for pandemic 
influenza ​21​ but not as variable as observed in SARS or MERS​4,22​, suggesting a smaller 
contribution of COVID-19 superspreading events to observed outbreak dynamics and that a 
large proportion of the population can contribute to onward infections. It is worth noting, 
however, that variance was significantly larger in Italy. This could be indicative of nosocomial 
settings amplifying transmission, though more epidemiological studies are warranted to 
determine the source of relative low variance in the Italian epidemic. 
 
Another modeling study​26​ using outbreak sizes in different countries estimated a larger variance 
in the reproductive number, with dispersion parameter  estimated to be 0.10 (0.05-0.20) for 
reproductive numbers between 2 and 3, in contrast to 0.69 (0.02-6.35) estimated in the current 
study. The dependence on the final outbreak size distribution to estimate  could explain the 
difference in estimates, as there are different delays in returning testing results in different 
countries and final outbreak sizes are still not available for most regions as the pandemic is 
ongoing. The larger credible interval around estimate in the present study reflects the wide 
range of location- and time-specific estimates of reproductive numbers. 
 
One of the limitations of this study was that we did not take into account time-varying delays in 
testing during an individual’s course of infection, so the time series data could be offset from the 
genetic data by a number of days. This is a reasonable assumption in locations with consistent 
testing capacity, however these delays likely changed across the course of the epidemic with 
changing testing regimens and burdens on the healthcare and public health systems. More data 
on testing capacity over time in different locations could support refined parameterization of the 
delay distribution over the course of the pandemic. 
 
Using genomic data to infer infected numbers generally is not as sensitive to sampling schema 
as serological surveys, though we do see signals in the data that opportunistic genomic 
sampling may be over-representing subpopulations and biasing estimates for a subset of 
locations. This could explain the seemingly high detection rates in California, New York, and the 
United Kingdom, where multiple smaller outbreaks are occurring within the country or state, but 
genomic data were only generated from a subset of those locations, biasing results towards 
underestimation of the total number of cases at the state or country level. Conversely, the 
estimated infection numbers are likely biased upwards near the root of the phylogeny due to 
multiple introductions into each location ​27​. This would unlikely impact the overall detection rate 
as those early infections only accounted for a small percentage of the total number of infections. 
Future work will aim to generate more representative viral genomic sampling within evaluated 
regions. 
 
The relatively high number of undetected infections in Iceland was unexpected given the 
extensive efforts to test the population. However, population screening only began on March 13, 
towards the end of the analysis period ​20​. Re-running the analysis to accommodate the results of 
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the widespread testing should provide estimates of how much the population screening 
increased detection rates. 
 
Spatial and age structures were not explicitly parameterized by the branching process model, 
although the variance of the reproductive number does capture some of the heterogeneity in 
transmission due to population structure. More explicit parameterization of spatial structure can 
facilitate more spatially granular estimates of epidemiological parameters, such as with mobility 
data. However, incorporating spatial structure in the coalescent model can reduce the 
identifiability of variance of the reproductive numbers​27​. 
 
In addition to improving retrospective parameter estimates, the estimates of detection 
probabilities and reproductive numbers can be used to parameterize predictive transmission 
models to project future infection numbers. Data on testing rates could also improve calibration 
of estimated detection probabilities. 
 
Given the changes in undetected infections and reproductive numbers from week to week 
during the dynamic pandemic response, repeating the analysis outlined in this paper at multiple 
time points can provide near real-time estimates of the reported parameters. Simulations of 
genomic data from the model presented here could also help optimize sampling strategies to 
estimate total infection numbers, particularly for regions which have not yet experienced 
exponential growth of COVID-19 cases. 
 
The genomics of SARS-CoV-2 has played a crucial role in tracking COVID-19 spread globally 
as well as viral evolution. We demonstrated that the viral phylogeny is also informative of 
infection numbers, reproductive number and its variance, and detection performance of 
COVID-19 surveillance systems, critical to informing effective public health response strategies. 
Continued efforts to share full-length viral genomes via open-source databases will enable 
additional tools in the effort to track and respond to the COVID-19 pandemic. 
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