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Abstract

The initial stages of the CoVID-19 coronavirus pandemic all around
the world exhibit a nearly exponential rise in the number of infections with
time. Planners, governments, and agencies are scrambling to �gure out
"How much? How bad?" and how to e¤ectively treat the potentially large
numbers of simultaneously sick people. Modeling the CoVID-19 pandemic
using an exponential rise implicitly assumes a nearly unlimited population
of uninfected persons ("dilute pandemic"). Once a signi�cant fraction of
the population is infected ("saturated pandemic"), an exponential growth
no longer applies. A new model is developed here, which modi�es the
standard exponential growth function to account for factors such as Social
Distancing. A Social Mitigation Parameter [SMP] �S is introduced to
account for these types of society-wide changes, which can modify the
standard exponential growth function, as follows:

N(t) = No exp[+Ko t = (1 + �S t ) ] .
The doubling-time tdbl = (ln 2)=Ko can also be used to substitute for

Ko, giving a {tdbl; �S} parameter pair for comparing to actual CoVID-19
data. This model shows how the number of CoVID-19 infections can
self-limit before reaching a saturated pandemic level. It also provides
estimates for: (a) the timing of the pandemic peak, (b) the maximum
number of new daily cases that would be expected, and (c) the expected
total number of CoVID-19 cases. This model shows fairly good agree-
ment with the presently available CoVID-19 pandemic data for several
individual States, and the for the USA as a whole (6 Figures), as well as
for various countries around the World (9 Figures). An augmented model
with two Mitigation Parameters, �S and �S , is also developed, which can
give better agreement with the daily new CoVID-19 data. Data-to-model
comparisons also indicate that using �S by itself likely provides a worst-
case estimate, while using both �S and �S likely provides a best-case
estimate for the CoVID-19 spread.
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1 Introduction

The Coronavirus 2019 disease (CoVID-19), caused by the SARS-CoV-2 (Severe
Acute Respiratory Syndrome Coronavirus 2) pathogen, is now a world-wide
pandemic. In many localities, the number of cases N(t) was found to have an
initial period of nearly exponential growth:

N(t) = No exp[+KD t ] , [1.1a]
KD � (ln 2) = tD , [1.1b]

aside of the �rst few cases, which may be untraceable. In Eqs. [1.1a]-[1.1b],
No is the initial number of infections at the t = 0 start of data tracking, KD is
an exponential growth factor, and tD is the doubling-time. Each locality can
have its own fNo; tD; t = 0g values, and KD and tD should be nearly constant
during this initial period of CoVID-19 spread.
Standard epidemiology identi�es the number of people NG a known infected

individual had recent contact with. Contacts of thatNG group are tracked next,
followed by additional tracking stages. This process sets the KD value.
Society-wideMitigation Measures such as: (a) Social Distancing, (b) wearing

face masks in public, (c) prohibiting large gatherings, (d) implementing large-
scale population testing, (e) disinfecting high-touch surfaces in public areas, (f)
enhanced cleaning of items brought into homes, and (g) minimizing human con-
tact with likely virus-containing materials and matter; all can help reduce N(t)
growth. These Mitigation Measures can modify the Eq. [1.1a] epidemiology
model by causing the local tD values to lengthen.
In order to model these Mitigation Measures, tD and KD become explicit

functions of time, tD(t) andKD(t). Using a linear function for tD(t) lengthening
is one of the simplest time-varying extensions. A linear function of time also
corresponds to the �rst term of a Taylors�Series expansion of some more general
tD(t) analytic function, giving this epidemiology extension:

tD(t) � tdbl (1 + �S t ) , [1.3a]
KD(t) � (ln 2)

tD(t)
= (ln 2) = [tdbl (1 + �S t )] � Ko = (1 + �S t ) . [1.3b]

The t = 0 initial values for tD(t) and KD(t) become the new constants
tdbl and Ko, which characterize the initial exponential growth phase. The �S
coe¢ cient in Eq. [1.3a] is a new Social Mitigation Parameter [SMP] that helps
quantify the e¤ectiveness of the society-wide Mitigation Measures as a whole.
The �S value expresses how well non-infected people manage to avoid the

virus contagion. As a lumped parameter, it likely re�ects an average value over
many processes, known and unknown, which comprise mitigation, to supplement
the contact-to-contact tracking that initially sets tdbl or Ko.
Substituting Eq. [1.3b] into Eq. [1.1a] gives:

N(t) = No exp[+Ko t = (1 + �S t ) ] , [1.4]
as one of the simplest models for CoVID-19 spread. A pure exponential

growth (or decay) has no memory, while Eq. [1.4], for �S > 0, has a memory.
The t = 0 start time of �rst mitigation changes the future history. To include
t < 0 requires replacing Eq. [1.3a] by tD(t) � tdbl (1+max[0; �S t ] ), which has
a corner at t = 0 that preserves the memory of when mitigation �rst started.
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2 Model Features

The Eq. [1.1a] exponential growth pandemic model implicitly assumes a large
uninfected population allows the disease to easily spread ("dilute pandemic").
When almost everybody is infected ("saturated pandemic"), exponential growth
shuts o¤, and Eq. [1.1a] no longer applies.
On 3/10/2020, German Chancellor Angela Merkel1 noted that she "esti-

mates that 60% to 70% of the German population will contract the coronavirus",
indicating that saturated pandemic models are being considered as a worst-case.
Even that worst-case condition assumes: (i) recovered coronavirus patients

are no longer infectious, and (ii) surviving a CoVID-19 infection confers absolute
immunity to re-infection. Recently, South Korea2 found 91 cases of clinically re-
covered patients later testing as CoVID-19 positive. They may also shed viable
coronaviruses in their phlegm and fecal matter3, furthering disease spread. Al-
though these e¤ects are not modeled here, those additional transmission modes
could turn a 60%-70% hope into a 99+% consequence.
These factors show why CoVID-19 modeling beyond Eq. [1.1] is needed,

especially to see if society-wide Mitigation Measures can naturally halt disease
spread, without necessitating a saturated pandemic condition. We show next
that Eq. [1.4] allows for this pandemic shut-o¤, even in the dilute pandemic
case. Since both Ko and �S in Eq. [1.4] have the same units, their ratio is
dimensionless. The long-term limit of Eq. [1.4] gives:

Lim
t!+1

[N(t) =No] = exp[+Ko =�S ] , [2.1]

setting an average value for the total number of all follow-on infections arising
from a single individual. Since it depends only on the ratio of the original
pandemic growth factor Ko to the �S SMP, this model shows the impact of
accounting for a broader environment beyond individual contact tracking.
The early spread of CoVID-19 cases outside of China4, and the early USA

CoVID-19 data5 both had nearly exponential rises, as shown in Figure 1. A
purely exponential rise gives a straight line on a log-plot {log(# of cases) vs
linear time}. The initial doubling-time for the USA was tdbl � 2:02 days,
giving Ko � 0:343 = day using Eqs. [1.1a]-[1.1b]. This initial CoVID-19 data
was prior to any signi�cant Mitigation Measures being implemented.
On March 19, 2020, Governor Gavin Newsom of California ordered a CoVID-

19 "stay-at-home" lockdown of virtually all of California�s ~40 million residents.
Similar statewide CoVID-19 lockdowns were ordered by the Governors of Illinois,
New York, Indiana, Michigan, Ohio, Washington, West Virginia and Wisconsin.
The slowing of CoVID-19 spread by implementing large-scale societal Miti-

gation Measures can be fairly rapid, as illustrated by the USA CoVID-19 data
of Figure 2, which covers March 2020.
The impact of these multi-state Mitigation Measures is evident in Figure 2

as a sudden transition on the log-plot from a straight-line to having downward
curvature, which the �S Social Mitigation Parameter (SMP) aims to quantify.
The local slope in Figure 2 also decreases right after the onset of Mitigation
Measures, indicating further slowing of CoVID-19 spread.
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A well-documented South Korean coronavirus cluster can also be used to help
estimate the expected size of the �S SMP. That CoVID-19 cluster determined
that a single infected person at the Shinjeongji Church caused infection of about
4; 482 people4 within the 47-day time interval between January 20, 2020 and
March 8, 2020. Those data provide this �S estimate:

ln(4; 482) � (0:343 = day) (47 days) = [1 + �S (47 days) ] , [2.2a]
�S = 0:01952 = day� 0:02 = day, [2.2b]

as indicative of minimal mitigation. If additional deliberate mitigation
measures doubled �S to �S � (0:04 = day), Eq. [2.1] would give:

Lim
t!+1

[N(t) =No] = exp[+
(0:343=day) (47 days)
1+(:04=day) (47 days) ] � 270 , [2.3]

for the number of infections per person, a 16:6X reduction from 4; 482 .
Since N(t) in Eq. [1.4] represents a total number of cases, it is similar to a

cumulative distribution function (cdf), which is used in reliability and also has
time as its fundamental variable. The derivative of Eq. [1.4], dN(t) = dt, is
analogous to an unnormalized probability density function (pdf), which can be
used to predict a pandemic peak :

fpdfg � d
dt [

N(t)
No
] = d

dtfexp[+Ko t = (1 + �S t ) ]g =
+Ko(

1
1+�S t

)2 exp[+Ko t = (1 + �S t ) ] , [2.4a]

fpdfg = +Ko [
N(t)
No
] = (1 + �S t)

2, [2.4b]
The time tP of the pandemic peak is set by:

d
dtfpdfg � 0 , [2.5a]
�S tP =

1
2 [Ko=�S ]� 1 , [2.5b]

where Eq. [2.5b] simpli�cation arises from the Eq. [2.5a] constraint. Sub-
stituting Ko = 0:343 = day and �S = 0:02 = day from Eq. [2.2b] into Eq. [2.5b]
gives tP � 379 days. Increasing mitigation to �S = 0:04 = day, keeping the
same Ko = 0:343 = day, now gives tP � 82 days, which is a ~4:6X reduction
in the pandemic peak timing for doubling (2X) the mitigation e¤ect from its
original baseline value. These examples highlight the tremendous impact that
even a small amount of enhanced social mitigation can have.
While the �S = 0 limit of Eq. [2.4b] recovers the Eq. [1.1a] standard

exponential growth, both the fpdfg and [N(t)=No] growth are then unbounded.
However, even a small �S > 0 value in Eq. [2.4b] will have an enormous impact
on the predicted long-time behavior. Since Eq. [2.1] showed that [N(t)=No]
now approaches a �nite value for all �S > 0, this new fpdfg asymptotic limit:

Lim
t!+1; �S>0

[fpdfg] � fConstantg
(�S t)2

, [2.6]

also results. The fpdfg that arises from this model all have an initial
exponential rise, coupled with the Eq. [2.6] "long tail" at large times, which
means that new CoVID-19 cases may arise for a long time, even if signi�cant
Mitigation Measures are in place.
The Eq. [2.6] fpdfg prediction also di¤ers substantially from the widely-used

University of Washington IHME (Institute for Health Metrics and Evaluation)
projections, which use symmetric Gaussians for both the fpdfg rise and fall6.
Thus, these methods provide an alternative risk-bound for evaluating potential
CoVID-19 worst-case scenarios.
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3 Determining {tdbl; �S} from CoVID-19 Data

Explicit numerical values for {tdbl; �S} parameters were determined from the
CoVID-19 data as follows. Rewriting Eq. [1.4] as:

ln[N(t) =No] = [+Ko t = (1 + �S t ) ] � (ln 2) t = [tdbl(1 + �S t ) ]. [3.1]
allowed data �tting to be done on a Y � vs � X log-plot, using Y =

ln[N(t) =No] as the ordinate and X $ t as the abscissa, to calculate and mini-
mize the root-mean-square (rms) error.
The t = 0 point in Eq. [3.1] sets No. To best model Mitigation Measures,

this point was usually chosen at the start of a downward curvature on a log-plot,
so that N(t = 0) � NI , where the NI is now the �rst data point in the analysis.
The prior t < 0 regime can often have a nearly pure exponential growth, as in
Figure 2, and those regions should not be part of rms-error minimization for
evaluating Mitigation Measures.
The NF �nal data point, measured at the most recent t = tF time:

N(t = tF ) � NF . [3.2]
was also �xed for each dataset, so that only {tdbl; �S} value pairs that meet

both N(t = 0) � NI and Eq. [3.2] were used.
In practice, an �S was chosen �rst. The ExcelTM_Tools_Goal-Seek func-

tion was used to adjust tdbl to obey Eq. [3.2], setting the rms-error between
the dataset and Eq. [3.1], with the �nal {tdbl; �S} having the least rms-error.
In the following �gures, all CoVID-19 raw data came from the publicly avail-

able MicrosoftTM "COVID-19 Tracker" site7. When no updates were available,
that site repeated the prior day data, whereas we used the geometric mean of
the day-prior and day-after data for interpolation.

4 E¤ects of Varying the Initial Zero-Time Point

Starting with:
N(t) = 1 exp[+Ko t = (1 + �S t ) + ln(No)] , [4.1a]
Lim
t!+1

[N(t) ] = 1 exp[+(Ko =�S) + ln(No) ] , [4.1b]

todbl � (ln 2) =Ko , [4.1c]
using a shifted time-scale normalization point is examined next:

NS(t
0) = 1 exp[+Ko (t

0 + tA) = [1 + �S (t
0 + tA)] + ln(No)] , [4.2]

This NS(t0) function should closely match Eq. [4.1a], with a shifted time
axis: t = t0 + tA, but the best �t parameter numerical values change. Since:

[1 + �S (t
0 + tA)] = [1 + �S tA] [1 +

�S t
0

(1+�S tA)
] , [4.3a]

Ko (t
0+tA)

[1+�S (t0+tA)]
= [1 + tA

t0 ]
(Ko t

0)
[1+�S tA]

= [1 + �S t
0

(1+�S tA)
] , [4.3b]

then de�ning:
�A � �S=(1 + �S tA) , [4.4a]
KA � Ko=(1 + �S tA) , [4.4b]
tAdbl � (ln 2) =KA = (1 + �S tA) t

o
dbl = (1 + �S tA) (ln 2) =Ko , [4.4c]

it gives:
Ko (t

0+tA)
[1+�S (t0+tA)]

= [1 + tA
t0 ]KA t

0 = [1 + �At
0]
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= KA t
0 = [1 + �At

0] +KA tA = [1 + �At
0] . [4.5]

These equations highlight the net e¤ect of time-shifting. For tA > 0, when t0

begins after Mitigation Measures have started, the shifted-time-axis results in a
larger calculated doubling-time and a smaller SMP �A-value. For tA < 0, when
t0 may include Mitigation Measures already in place at the Eqs. [4.1a]-[4.1c]
t = 0 point, this shifted-time-axis results in a smaller calculated doubling-time
and a larger SMP �A-value.
Finally, for small t0, where �At0 < 1, using Eqs. [4.1b] and [4.5] gives:

1 exp[ +Ko t
(1+�S t )

+ ln(No)] � 1 exp[ +KA t
0

(1+�A t0 )
+ ln(NA)] , [4.6a]

ln(NA) = ln(No) +KA tA , [4.6b]
which shows that the t0 = 0 new initial state should have an NA starting

value obeying NA > No for tA > 0, and NA < No for tA < 0. However, whether
{No; Ko; �S}, or an alternative {NA; KA; �A}, are used to parameterize a given
data set, the net overall function �t and predictions, as a function of calendar
date, should remain fairly self-consistent, even when some ambiguity exists as
to when Mitigation Measures �rst were noticeably e¤ective.

5 USA and Selected States Model Results

The model predictions for CoVID-19 spread in the USA is shown in Fig-
ure 3. This analysis only included data after mid-March 2020, when sev-
eral State Governors �rst instituted mandatory Mitigation Measures. Results
give an SMP estimate of �S � 0:5945=day, a USA initial doubling-time of
t initialdbl � 2:1758 days, which lengthens to t fat Peakgdbl � 5:83 days at the pro-
jected pandemic peak of ~4/19/2020. The predicted total number of CoVID-19
cases is ~5; 464; 000 , giving a projected ~1:67% �nal infection rate, if the present
level of Mitigation Measures or their equivalent, are continued.
These predictions assume no "second wave" of infection or re-infection.

They also do not include the e¤ect of additional Mitigation Measures, which
could further increase the {tdbl; �S} values, and signi�cantly reduce the pro-
jected �nal number of CoVID-19 cases.
Figure 4 shows model predictions for CoVID-19 evolution in California.

Only data after 3/21/2020 was included in the analysis, after California Gov-
ernor Gavin Newsom instituted mandatory Mitigation Measures. It gives an
SMP estimate of �S � 0:03546=day, with an initial doubling-time of t initialdbl �
2:5017 days, which lengthens to t fat Peakgdbl � 9:774 days at the projected pan-
demic peak of ~6/07/2020. The predicted total number of CoVID-19 cases is
~1; 123; 700 , giving a projected ~2:813% �nal infection rate, at the present level
of Mitigation Measures.
Figure 5 shows model predictions for CoVID-19 evolution in New York. A

relatively high SMP estimate of �S � 0:1031=day was found, coupled with a
relatively short initial doubling-time of t initialdbl � 0:9395 days, which creates a
high narrow spike in daily new cases. The present model projects a New York
pandemic peak around 4/10/2020, with an estimated at-peak doubling-time of
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t
fat Peakg
dbl � 3:36 days. The predicted total number of cases at ~1; 218; 000 ,
giving a projected ~6:072% �nal infection rate.
Figure 6 shows model predictions for CoVID-19 evolution in Washing-

ton State. An initial doubling-time of t initialdbl � 2:189 days and an SMP
value of �S � 0:0687=day were found, with a projected pandemic peak around
6/04/2020. The relatively low number of cases at theMitigation Measures start
helps to give a predicted total number of cases of ~557; 600, corresponding to a
~7:15% �nal infection rate.
Figure 7 shows model predictions for CoVID-19 evolution in Illinois. An

initial doubling-time of t initialdbl � 2:457 days and moderate SMP value of
�S � 0:0373=day combine to give a projected pandemic peak around 6/04/2020,
similar to Washington State, but having a higher predicted total number of cases
at ~1; 277; 000 , and a projected ~11:47% �nal infection rate.
Figure 8 shows model predictions for CoVID-19 evolution in Florida. Many

Florida counties instituted their own Mitigation Measures prior to a state-wide
lockdown, slowing CoVID-19 growth. A somewhat high SMP value of �S �
0:0526=day, and an initial doubling-time of t initialdbl � 1:494 days results. A
pandemic peak is estimated at around 5/20/2020, with a predicted total number
of cases at ~1; 090; 000 , and a projected ~4:96% �nal infection rate.

6 World and Selected Countries Model Results

Figure 9 shows model predictions of CoVID-19 evolution for the whole World.
The present-day doubling-time value of t initialdbl � 5:761 days likely represents a
combination of small urban, large urban, and rural area results. However, the
calculated low SMP estimate of �S � 0:01712=day shows that nearly ~4:43% of
the World�s population could be at risk for eventual CoVID-19 infection. At
these present levels, the projected pandemic peak is around 8/15/2020, with
potentially hundreds of millions of people being infected.
Figure 10 shows model predictions for CoVID-19 evolution in China, cov-

ering their "�rst wave" of early exposure and early mitigation. Data were in-
cluded that was prior to a �New Reporting Method�being used, which started
o¤ with one sudden data jump, and nearly level CoVID-19 follow-on results.
The present model predicts what number of cases could have resulted, had the
reporting method not changed. Draconian Mitigation Measures helped to con-
tain the pandemic to Hubei Province andWuhan. These projections show that
those Mitigation Measures have impressively contained CoVID-19 spread.
Figure 11 shows model predictions for CoVID-19 evolution in South Korea,

covering the period of their country�s early exposure and initial mitigation meth-
ods. Pre-pandemic Mitigation Measures, including extensive contact-tracing
and large-scale CoVID-19 testing, were implemented. These projections show
that those Mitigation Measures, as an alternative to China�s methods, also have
impressively contained CoVID-19 spread.
Figure 12 shows model predictions for CoVID-19 evolution in Italy. An

initial doubling-time of t initialdbl � 1:4648 days and SMP estimate of �S �
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0:05282=day give a pandemic peak around 4/29/2020, with a predicted num-
ber of total cases at ~1; 764; 000 , and a projected ~2:92% �nal infection rate.
Figure 13 shows model predictions for CoVID-19 evolution in Germany.

The relatively high SMP estimate of �S � 0:07614=day with an initial doubling-
time of t initialdbl � 1:4177 days combine to give a projected pandemic peak at
around 4/08/2020, with a predicted total number of cases of ~700; 100 , and a
projected ~0:84% �nal infection rate. These values would make Germany one of
the less impacted countries in Europe. They represent predicted �nal CoVID-
19 infection rates that are signi�cantly lower than the original 60%� 70% early
worst-case estimates highlighted by German Chancellor Angela Merkel.
Figure 14 shows model predictions for CoVID-19 evolution in Spain. An

SMP estimate of �S � 0:07058=day, which is comparable to Germany, and a
smaller initial doubling-time of t initialdbl � 1:1778 days combine to give more
predicted CoVID-19 cases than Germany. The estimated pandemic peak is
around 4/21/2020, with a predicted number of total cases at ~1; 526; 000 , and
a projected ~3:26% �nal infection rate.
Figure 15 shows model predictions for CoVID-19 evolution in Ecuador.

Reports of chaos in Ecuador have been alarming. Yet the present data show
a signi�cant and somewhat unexpected leveling o¤ in the number of reported
CoVID-19 cases. This result could mean that some as yet unknown Mitigation
Measures may be operating. Alternatively, the data could mean that there is
a dire CoVID-19 testing and reporting shortfall operating amidst the chaos.
Figure 16 shows model predictions for CoVID-19 evolution in India. These

initial data show virtually no mitigation at present, having one of the lowest
calculated SMP estimates of �S � 0:0148=day, with an initial doubling-time
of t initialdbl � 3:135 days. At this rate, nearly 17:38% of the population of In-
dia could eventually become infected. The estimated pandemic peak is around
5/30/2021, which would be 441 days after the �rst CoVID-19 fatality was re-
ported, on 3/14/2020. Additional Mitigation Measures, further increasing the
{tdbl; �S} values, as well as adding in additional modeling parameters may
signi�cantly reduce these projected number of CoVID-19 cases.

7 Augmented Peak Shape Modeling

Using a new Social Mitigation Parameter [SMP] �S , as in Eq. [1.3a], success-
fully models pandemic shut-o¤, even in the dilute pandemic limit. However,
as the Figures 3-16 insets show, many of the data-vs-model comparisons have
the data trending above the model near the �nal t = tF data point.
Since Eq. [1.3a] for tD(t) is linear, using an Additional Modeling Parameter

[AMP] �S in a higher order polynomial, may �t the fpdfg shape better. A
quadratic function for tD:

tD = tdbl (1� �S Z + �S Z2 ) , [5.1]
where N(t) =No still approaches a constant at long times, as in Eq. [2.1a],

then sets Z2 � t , giving this extension of Eq. [1.3a]:
tD(t) = tdbl (1� �S

p
t+ �S t ) . [5.2]
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Values of �S > 0 in Eq. [5.2] allow the predicted [N(t) =No] values to rise
above the �S = 0 model predictions, and to have a smaller doubling-time, for the
same {tdbl; �S}. However, the best �t {tdbl; �S} values will also di¤er between
the �S > 0 and � � 0 cases, so these changes are relative.
The new fpdfg function for Eq. [5.2] is:

fpdfg � d
dt [

N(t)
No
] = d

dtfexp[+Ko t = (1� �S
p
t+ �S t ) ]g =

+Ko [
N(t)
No
] (1� 1

4�
2
S t ) = [(1 + �S t)

2 (1 + 1
2�S

p
t)] . [5.3]

When fpdfg = 0 in Eq. [5.3], it estimates an end-point for the pandemic at:
tEND = (4 = �

2
S ) , [5.4]

while predicting this maximum number of pandemic cases at tEND:
N(t) = No exp[Ko = (�S � 1

4�
2
S )] . [5.5]

An an example, this augmented model was applied to CoVID-19 evolution
in Italy. As shown in Figure 17, this Eq. [5.3] fpdfg function gives a better
�t to the observed number of daily new CoVID-19 cases.
The initial doubling-time of t initialdbl � 2:5566 days, along with estimates for

the Mitigation Measure parameters of �S � 0:04583=day and �S � �0:1725,
in this augmented model, combine to signi�cantly reduce the projected maxi-
mum number of CoVID-19 cases down to ~264; 820, which is an ~7X less com-
pared to using �S alone, as in Figure 12. This augmented model sets an es-
timated pandemic peak at 3/29/2020, with a projected pandemic end-point
around 7/7/2020, which is also signi�cantly more optimistic.
The true CoVID-19 pandemic progress is likely to be in between Figure 12

as a worst-case, and Figure 17 as a best-case projection. The geometric mean
of the Figure 12 and Figure 17 results set an average of ~683; 500 cases for
Italy at the CoVID-19 pandemic end. These bounds also highlight the amount
of uncertainty that is intrinsic to these empirically based methods.

8 Summary and Conclusions

The standard exponential for modeling pandemics starts with an No known
number of initial cases at some reference time t = 0. Epidemiologists work to
determine a pandemic growth factor KD, which sets the doubling-time tD for
the number of pandemic cases.
The CoVID-19 disease, caused by the SARS-CoV-2 coronavirus pathogen,

initially showed both regional and global exponential growth. It resulted in a
doubling-time of tD � 2:02 days for the US, as highlighted in Figure 1.
An exponential growth normally only halts when it runs out of materials.

In epidemiology that point often occurs when there are virtually no more unin-
fected people left, which we call a saturated pandemic. The exponential growth
function is only applicable when infection rates are much lower than saturation,
which we call a dilute pandemic.
A modi�cation to exponential growth is developed here, which allows ratio

of the number of pandemic cases, N(t), compared to its No initial value at t = 0:
Lim
t!+1

[N(t) =No] =M , [6.1]
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to approach a �nal constant, denoted M, while still being in a dilute pan-
demic condition. This result is attributed to the inclusion of society-wide
Mitigation Measures to stop pandemic growth, before the value of M reaches
the whole population value.
Society-wideMitigation Measures aim to progressively lengthen the tD doubling-

time, essentially making tD(t). Most analyses presented here used a linear
function of time as a simplest non-constant model for tD(t):

tD(t) � tdbl (1 + �S t ) , [6.2a]
KD(t) � (ln 2)

tD(t)
= (ln 2) = [tdbl (1 + �S t )] � Ko = (1 + �S t ) , [6.2b]

where tD(t = 0) � tdbl, and KD(t = 0) � Ko . Here, �S is a new Social
Mitigation Parameter (SMP), to quantify societal Mitigation Measures. This
Eq. [6.2a] extension of a pure exponential growth gives:

N(t) = No exp[+Ko t = (1 + �S t ) ] , [6.3]
as an empirical equation for modeling CoVID-19 spread. Since both Ko

and �S in Eq. [1.4] have the same units, their ratio is a dimensionless number.
The long-term limit of Eq. [6.3] gives:

Lim
t!+1

[N(t) =No] = exp[+Ko =�S ] , [6.4]

setting a �nal value for the Eq. [6.1] constant M, allowing these predic-
tions to be applicable to the dilute pandemic limit. The CoVID-19 number of
estimated cases per day is given by:

fpdfg = d
dt [N(t)=No] , [6.5a]

Lim
t!+1; �S>0

[fpdfg] � fConstantg
(�S t)2

, [6.5b]

which combines an initial exponential rise with "long tail" at large times.
In this model, new CoVID-19 cases can continue to arise for a long time, even
with signi�cant Mitigation Measures in place.
Analysis of available CoVID-19 data using this model shows that it can

match observed data fairly well, both from various US states [Figures 3-8], as
well as for di¤erent global countries [Figures 9-17]. However, using a single
parameter to encompass all societal Mitigation Measures often gives a slightly
larger slope on a log-plot, compared to the latest measured data values, which
makes this model a likely worst-case estimate.
A second data-�tting parameter �S was also used in an augmented model,

to better �t the fpdfg data:
N(t) = No exp[+Ko t =(1� �S

p
t+ �S t ) ] , [6.6a]

max [N(t) =No] = exp[+Ko = (�S � 1
4�

2
S ) ] , [6.6b]

tEND = (4 = �
2
S ) , [6.6c]

where tEND becomes an estimated pandemic end-point, where zero new
CoVID-19 cases per day could occur.
As a representative example, this augmented model was applied to the

CoVID-19 data from Italy [Figure 17]. Those results show that this augmented
model allows a better �t to the observed number of new daily CoVID-19 cases,
but the absence of a CoVID-19 tail in its fpdfg function makes this {Ko; �S ; �S}
augmented model a likely best-case result, with the original {Ko; �S} model be-
ing a likely worst-case estimate.
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This class of CoVID-19 pandemic models all enable pandemic shut-o¤even in
the dilute pandemic limit, with only a small fraction of the total population being
infected. These models also provide estimates for: (a) the maximum number
of cases near pandemic shuto¤, (b) the size and shape of the pandemic peak
[dN(t) = dt], and (c) pandemic peak timing [tP ]. These models and analyses may
help enhance planning and preparation to maximize resource use, potentially
increasing individual and collective CoVID-19 pandemic survival rates.

9 List of Figures

Figure 1: Early CoVID-19 Cases: (a) Outside of China, and (b) Just in the
US. Both graphs show nearly exponential growth.
Figure 2: USA CoVID-19 data, pre-vs-post mid-March 2020. Multi-State

Mitigation Measures slowed growth, transitioning from straight-line to down-
ward curvature.
Figure 3: USA Model Predictions. To allow better mitigation predictions,

only data after mid-March 2020 was included, when several Governors instituted
mandatory lockdowns.
Figure 4: Predicted California CoVID-19 results. After Gov. Gavin New-

som instituted widespread Mitigation Measures, projections showed signi�cant
improvement.
Figure 5: Predicted New York CoVID-19 results. A relatively high Miti-

gation Measure level and a short intrinsic doubling time creates a narrow spike
in daily new cases.
Figure 6: Predicted Washington State CoVID-19 results. The relatively

low number of cases at Mitigation Measure start helps to give a relatively low
�nal number of cases.
Figure 7: Predicted Illinois CoVID-19 results. The slow doubling-time and

moderate amount of Mitigation Measures gives a slow increase to the predicted
CoVID-19 peak.
Figure 8: Predicted Florida CoVID-19 results. Many Florida counties

instituted their own Mitigation Measures prior to a state-wide lockdown, sub-
stantially slowing CoVID-19 growth.
Figure 9: Model predictions for the WORLD, showing present-day low level

of mitigation.
Figure 10: Predicted CHINA CoVID-19 results, using pre-�New Reporting

Method�data. Draconian Mitigation Measures helped to contain pandemic to
Hubei Province and Wuhan.
Figure 11: Predicted SOUTH KOREA CoVID-19 results. Pre-pandemic

contact-tracing and large-scale CoVID-19 testing as Mitigation Measures have
contained the pandemic.
Figure 12: Predicted ITALY CoVID-19 results. Additional curvature in

the actual CoVID-19 data vs Model makes these predictions a likely worst-case.
Figure 13: Predicted GERMANY CoVID-19 results. This model gives a
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more gradual function for the Daily New CoVID-19 cases, making these predic-
tions a likely worst-case.
Figure 14: Predicted SPAIN CoVID-19 results. This model gives a more

gradual function for Daily New CoVID-19 cases, making these predictions a
likely worst-case.
Figure 15: Predicted ECUADOR CoVID-19 results. Reports of chaos in

Ecuador have been alarming. Poor CoVID-19 tracking and low testing may
have skewed these results.
Figure 16: Predicted INDIA CoVID-19 results. Data shows only minimal

mitigation at present. Further mitigations should help make these predictions
a worst-case result.
Figure 17: Predicted ITALY CoVID-19 results, using an augmented 2-

parameter {�S ; �S} Social Mitigation model. Total number of CoVID-19 cases
is much less than Figure 12, but the model post-peak drop is much steeper,
making this a likely best-case result.
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Early Stages of CoVID-19 Growth Outside of China
Initial USA Data shows Doubling Time of ~2.02 Days

Left Side: Chart 2 from 3/11/2020 article “Coronavirus: Why You Must Act Now” by Thomas Pueyo
https:_//_medium.com_/_@_ThomasPueyo_/_coronavirus-act-today-or-people-will-die-f4d3d9cd99ca 
Right Side: Initial Number of USA CoVID-19 Cases, Bing.com Coronavirus Daily Compilations

(a) (b)

Figure 1: Early CoVID-19 Cases: (a) Outside of China, and
(b) Just for the US.  Both graphs show nearly exponential growth.

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 8, 2020. ; https://doi.org/10.1101/2020.05.04.20091207doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.04.20091207
http://creativecommons.org/licenses/by/4.0/


  

3/19/2020

Societal Mitigation Measures Slows Down CoVID-19 Growth

 3/16-19/2020: CA Gov. Newsom Orders Closure of Schools followed by 
full lockdown of all Non-Essential Business; other states soon follow.

 CoVID-19 growth slows post-3/19/2020 Closures

Figure 2: USA CoVID-19 data, pre-vs-post mid-March 2020.  Multi-State Mitigation 
Measures slowed growth, transitioning from straight-line to downward curvature.
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  Figure 3: USA Model Predictions.  To allow better mitigation predictions, only data after 
mid-March 2020 was included, when several Governors instituted mandatory lockdowns.
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  Figure 4: Predicted California CoVID-19 results.  After Gov. Gavin Newsom instituted
widespread Mitigation Measures, projections showed significant improvement.
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Figure 5: Predicted New York CoVID-19 results.  A relatively high Mitigation Measure level 

and a short intrinsic doubling time creates a narrow spike in daily new cases.
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6/04/2020

Figure 6: Predicted Washington State CoVID-19 results.  The relatively low number of cases 
at Mitigation Measure start helps to give a relatively low final number of cases.
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6/04/2020

Figure 7: Predicted Illinois CoVID-19 results.  The slow doubling time and moderate amount 
of Mitigation Measures gives a slow increase to the predicted CoVID-19 peak.
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5/20/2020

Figure 8: Predicted Florida CoVID-19 results.  Many Florida counties instituted their own 
Mitigation Measures prior to a state-wide lockdown, substantially slowing CoVID-19 growth.
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8/15/2020

Figure 9: Model predictions for the WORLD, showing present-day low level of mitigation.
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2/20/2020

Figure 10: Predicted CHINA CoVID-19 results, using pre-“New Reporting Method” data.  
Draconian Mitigation Measures helped to contain pandemic to Hubei Province and Wuhan.
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2/27/2020

Figure 11: Predicted SOUTH KOREA CoVID-19 results.  Pre-pandemic contact-tracing and 
large-scale CoVID-19 testing as Mitigation Measures have contained the pandemic.
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  Figure 12: Predicted ITALY CoVID-19 results.  Additional curvature in the actual 
CoVID-19 data vs Model makes these predictions a likely worst-case.
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  Figure 13: Predicted GERMANY CoVID-19 results. This model gives a more gradual function 
for the Daily New CoVID-19 cases, making these predictions a likely worst-case.
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  Figure 14: Predicted SPAIN CoVID-19 results.  This model gives a more gradual function 
for Daily New CoVID-19 cases, making these predictions a likely worst-case.
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3/28/2020

Figure 15: Predicted ECUADOR CoVID-19 results. Reports of chaos in Ecuador have been 
alarming.  Poor CoVID-19 tracking and low testing may have skewed these results.
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  Figure 16: Predicted INDIA CoVID-19 results. Data shows only minimal mitigation at present.  
Further mitigations should help make these predictions a worst-case result.
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Figure 17: Predicted ITALY CoVID-19 results, using an augmented 2-parameter {α/s\, β/s\} 
Social Mitigation model.  Total number of CoVID-19 cases is significantly less than Fig. 12, but 

the model post-peak drop is much steeper, making this a likely best-case result.
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