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7 Abstract: The novel Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has caused

8 a pandemic resulting in over 2.7 million infected individuals and over 190,000 deaths and growing.

9 Respiratory disorders in COVID-19 caused by the virus commonly present as viral pneumonia-like
10 opacities in chest X-ray images which are used as an adjunct to the reverse transcription-polymerase
11 chain reaction test for confirmation and evaluating disease progression. The surge places high
12 demand on medical services including radiology expertise. However, there is a dearth of sufficient
13 training data for developing image-based automated decision support tools to alleviate radiological
14 burden. We address this insufficiency by expanding training data distribution through use of
15 weakly-labeled images pooled from publicly available CXR collections showing pneumonia-related
16 opacities. We use the images in a stage-wise, strategic approach and train convolutional neural
17 network-based algorithms to detect COVID-19 infections in CXRs. It is observed that weakly-
18 labeled data augmentation improves performance with the baseline test data compared to non-
19 augmented training by expanding the learned feature space to encompass variability in the unseen
20 test distribution to enhance inter-class discrimination, reduce intra-class similarity and
21 generalization error. Augmentation with COVID-19 CXRs from individual collections significantly
22 improves performance compared to baseline non-augmented training and weakly-labeled

23 augmentation toward detecting COVID-19 like viral pneumonia in the publicly available COVID-
24 19 CXR collections. This underscores the fact that COVID-19 CXRs have a distinct pattern and hence

25 distribution, unlike non-COVID-19 viral pneumonia and other infectious agents.

26 Keywords: augmentation; chest-X-rays; convolutional neural network; COVID-19; deep learning;
27 pneumonia; localization

28

29  1.Introduction

30 The novel Coronavirus disease 2019 (COVID-19) is caused by a strain of coronavirus called the
31  Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) that originated in Wuhan in the
32 Hubei province in China. On March 11, 2020, the World Health Organization (WHO) declared the
33 disease as a pandemic [1], and as of this writing (in late April 2020), there are more than 2.7 million
34  globally confirmed cases with over 190,000 reported deaths with unabated growth. The disease is
35  detected using the reverse transcription-polymerase chain reaction (RT-PCR) tests that are shown to
36  exhibit high specificity but variable sensitivity in detecting the presence of the disease [2]. However,
37  these test kits are in limited supply in some geographical regions, particularly third-world countries
38  [3]. The turnaround time is reported to be 24 hours in major cities and even greater in rural regions.
39  This necessitates the need to explore other options to identify the disease and facilitate swift referrals
40  for the COVID-19 affected patient population in need of urgent medical care.

41 A study of literature shows that viral pneumonia is commonly found to affect the lungs with the
42 progression of COVID-19 disease, often manifesting as ground-glass opacities (GGO), with
43 peripheral, bilateral, and predominant basal distribution in the lungs, preventing oxygen entry,
44 thereby causing breathing difficulties along with hyperthermia [2]. These patterns are visually similar
45  to, yet distinct from those caused by non-COVID-19-related viral pneumonia and those caused by
46 other bacterial and fungal pathogens [2]. Also, current literature studies reveal that it is difficult to
47 distinguish viral pneumonia from others caused by bacterial and fungal pathogens [4]. Fig. 1 shows
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48  instances of CXRs with clear lungs, showing bacterial pneumonia, and COVID-19-related

49  pneumonia, respectively.
\ - =
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50

51 (a) (b) (c)

52 Figure 1. CXRs showing (a) Clear lungs; (b) Bacterial pneumonia infections manifesting as
53 consolidations in the right upper lobe and retro-cardiac left lower lobe; (¢) COVID-19 pneumonia
54 infection showing bilateral manifestations.

55

56 While not recommended as a primary diagnostic tool due to risk of increased transmission, chest
57  radiography and computed tomography (CT) scans are used to screen/confirm respiratory damage
58  in COVID-19 disease and evaluate its progression [3]. CT scans are reported to be less specific than
59  RT-PCR but highly sensitive in detecting COVID-19 and can play a pivotal role in disease
60  diagnosis/treatment [3]. However, the American College of Radiology has recommended against use
61  of CT scans as a first-line test!. Additional considerations of increased risk of transmission, access,
62  and cost also contribute to the recommendation. When radiological imaging is considered necessary,
63 portable chest X-rays (CXRs) are considered a good and viable alternative [2]. However, in a
64  pandemic situation, assessment of the images places a huge burden on radiological expertise, which
65  is often lacking in regions with limited resources. Automated decision-making tools could be
66  valuable in alleviating some of this burden, and also as a research tool for quantifying disease
67  progression.

68 A study of literature shows that automated computer-aided diagnostic (CADXx) tools built with
69  data-driven deep learning (DL) algorithms using convolutional neural networks (CNN) have shown
70  promise in detecting, classifying, and quantifying COVID-19-related disease patterns using CXRs
71 and CT scans [5, 6] and can serve as a triage under resource-constrained settings thereby facilitating
72 swiftreferrals that need urgent patient care. These tools combine elements of radiology and computer
73 vision to learn the hierarchical feature representations from medical images to identify typical disease
74  manifestations and localize suspicious regions of interest (ROI).

75 It is customary to train and test a DL model with the data coming from the same target
76  distribution to offer probabilistic predictions toward categorizing the medical images to their
77  respective categories. Often this idealized target is not possible due to limited data availability, or
78  weaklabels. In the present situation, despite a large number of cases worldwide, we have very limited
79  COVID-19 CXR image data that is publicly available to train DL models where the goal is to recognize
80  CXR images showing COVID-19-related viral pneumonia from those caused by other non-COVID-
81 19 viral, bacterial and other pathogens. Acquiring such data remains a goal for medical societies such
82  as the Radiological Society of North America (RSNA)2 and Imaging COVID-19 Al Initiative in
83 Europe’. Large number of training data enable a diversified feature space across categories that help
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Ihttps://www.acr.org/Advocacy-and-Economics/ACR-Position-Statements/Recommendations-for-
Chest-Radiography-and-CT-for-Suspected-COVID19-Infection
2https://press.rsna.org/timssnet/media/pressreleases/14 pr target.cfm?ID=2167

3https://imagingcovid19ai.eu/
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84  enhance inter-class variance leading to better DL performance. The absence of such data leads to
85  model overfitting and poor generalization to unseen real-world data. Under these circumstances,
86  data augmentation has been proven to be effective in training discriminative DL models [7]. There
87  are several data augmentation methods discussed in the literature for improving performance in
88  natural computer vision tasks. These include traditional augmentation techniques like flipping,
89  rotations, color jittering, random cropping, and elastic distortions and generative adversarial
90  networks (GAN) based synthetic data generation [8].
91 Unlike natural images, such as those found in ImageNet [9], medical images tend to have
92 different visual characteristics exhibiting high inter-class similarities and highly localized ROIL Under
93  these circumstances, traditional augmentation methods that introduce simple pixel-wise image
94 modifications are shown to be less effective [10]. On the other hand, GAN-based DL models that are
95  used for synthetic data generation are computationally complex and the jury is still out on the
96  anatomical and pathological validity of synthesized images. These networks are hard to train due to
97  the problem of Nash equilibria, defined as the zero-sum game between the generator and the
98  discriminator networks where they contest with each other in improving performance [11]. Further,
99  these networks are shown to be sensitive to the selection of architecture and hyperparameters and
100  often get into mode collapse, resulting in degraded performance [11]. In general, there is a great
101  opportunity for research in developing effective data augmentation strategies for medical visual
102 recognition tasks. Goals for such medical data augmentation techniques include reducing overfitting
103 and regularization errors in a data-scarce situation. The urgency offered by the pandemic has led to
104  the motivation behind this study.
105 In this work, we use weakly-labeled CXR images that are pooled from publicly available
106  collections showing pneumonia-related opacities to augment training data toward improving inter-
107 class variance. The goal is to improve COVID-19 detection in CXRs, with the baseline being the
108  training data without augmentation.

109 2. Materials and Methods

110 2.1. Data and Workflow

111 This retrospective analysis is performed using four publicly available CXR collections:

112 A) Pediatric CXR dataset [4]: A set of 5,232 anterior-posterior (AP) projection CXR images of
113 children of 1 to 5 years of age acquired as part of routine clinical care at the Guangzhou Children’s
114 Medical Center in China. The set contains 1583 normal, 2780 bacterial pneumonia, and 1493 CXRs
115  showing non-COVID-19 viral pneumonia, respectively.

116 B) RSNA CXR dataset [12]: The RSNA, Society of Thoracic Radiology (STR), and the National
117  Institutes of Health (NIH) jointly organized the Kaggle pneumonia detection challenge to develop
118  image analysis and machine learning algorithms to automatically categorize the CXRs as showing
119  normal, non-pneumonia-related or pneumonia-related opacities. The publicly available data is a
120 curated subset of 26,684 AP and posterior-anterior (PA) CXRs showing normal and abnormal
121  radiographic patterns, taken from the NIH CXR-14 dataset [13]. It includes 6012 CXRs showing
122 pneumonia-related opacities with ground truth (GT) bounding box annotations for these on 1,241
123 CXRs.

124 C) CheXpert CXR dataset [14]: A subset of 4683 CXRs showing pneumonia-related opacities
125 selected from a collection of 223,648 CXRs in frontal and lateral projections, collected from 65,240
126  patients at Stanford Hospital, California, and labeled for 14 thoracic diseases by extracting the labels
127  from radiological texts using an automated natural language processing (NLP)-based labeler,
128  conforming to the glossary of the Fleischner Society.

129 D) NIH CXR-14 dataset [13]: A subset of 307 CXRs showing pneumonia-related opacities
130 selected from a collection of 112,120 CXRs in frontal projection, collected from 30,805 patients. Images
131  arelabeled with 14 thoracic disease labels extracted automatically from radiological reports using an
132 NLP-based labeler.
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133 E) Twitter COVID-19 CXR dataset: A collection of 135 CXRs showing COVID-19-related viral
134 pneumonia, collected from SARS-CoV-2 positive subjects has been made available by a
135 cardiothoracic radiologist from Spain via Twitter. (https://twitter.com/Chestlmaging) The images are
136 made available in JFIF format at approximately 2Kx2K resolution.

137 F) Montreal COVID-19 CXR dataset: As of April 14, 2020, a collection of 179 SARS-CoV-2
138 positive CXRs and others showing non-COVID-19 viral disease manifestations has been made
139 publicly available by the authors of [15] in their GitHub repository. The CXRs are made available in
140 AP and PA projections.

141 Table 1 shows the distribution of data extracted from the datasets identified above and used for

142 the different stages of learning performed in this study. The numerator and denominator show the
143 number of train and test data used in models’ training and evaluations. The GT disease bounding
144 box annotations for a sample of the test data, containing 27 CXRs collectively from the Twitter
145  COVID-19 and Montreal COVID-19 CXR collections is set by the verification of publicly identified
146  cases from an expert radiologist who annotated the sample test collection.

147 Table 1. Dataset characteristics. Numerator and denominator denote the number of train and test
148 data respectively (UP=Pneumonia of unknown type, BP= Bacterial (proven) pneumonia, VP=non-
149 COVID-19 viral (proven) pneumonia, CP = COVID-19 pneumonia).

Dataset UP BP P cr

A - 2538/242 1345/148 -

B -/6012 - - -

C -/4683 - - -

D -/307 - - -

E - - - -/135

F - - - -/179
150
151 Broadly, our workflow consists of the following steps: First, we preprocess the images to make

152 them suitable for use in DL. Then, we evaluate the performance of a custom CNN and a selection of
153 pre-trained CNN models for binary categorization of the publicly available pediatric CXR collection
154  showing bacterial or viral pneumonia. The trained model is further used to categorize the publicly
155  available COVID-19 CXR collections as showing viral pneumonia. Next, we use the trained model to
156  weakly label the CXRs in the publicly available CXR collections with pneumonia-related opacities as
157  showing bacterial or viral pneumonia. The baseline training data is augmented with these weakly
158  labeled CXRs to improve detection performance with the baseline hold-out test data and the COVID-
159 19 CXR collections. We also augment the baseline training with COVID-19 CXRs from one of the two
160  different collections to evaluate for an improvement in performance in detecting CXRs showing
161  COVID-19 viral pneumonia from the other collection. This data augmentation strategy recognizes
162 the biological similarity in viral pneumonia and radiological manifestation due to COVID-19 caused
163 respiratory disease. It also takes advantage of dissimilarity to bacterial pneumonia-related opacities.
164  Finally, the strategy reduces the intra-class similarity and enhances inter-class discrimination in the
165  strategic ordering of the coarsely labeled data. We have already shown in our other work that
166  iteratively pruned deep learning ensembles produce impressive results with this data [6]. In this
167  work, we show that it is also possible to obtain very good results using a biologically sensitive and
168  discriminative training data augmentation strategy.

169 2.2. Lung ROI Segmentation and Preprocessing

170 It is important to add controls during training data-driven DL methods for disease
171 screening/diagnosis. Learning irrelevant feature representations could adversely impact clinical
172 decision making. To assist the DL model to focus on pulmonary abnormalities, we used a dilated
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173 dropout-U-Net [16] to segment the lung ROI from the background. Dilated convolutions are shown
174  to improve performance [17] with exponential receptive field expansion while preserving spatial
175  resolution with no added computational complexity. A Gaussian dropout with an empirically
176  determined value of 0.2 is used after the convolutional layers in the network encoder to avoid
177  overfitting and improve generalization. A publicly available collection of CXRs and their associated
178  lung masks [18] is used to train the dilated dropout-U-Net model to generate lung masks of 224x224
179 pixel resolution. Callbacks are used to store the best model weights after each epoch. The generated
180  masks are superimposed on the original CXRs to delineate the lung boundaries, crop them to the size
181  of abounding box, and re-scale them to 224x224 pixel resolution to reduce computational complexity.
182  Fig. 2 shows the segmentation steps performed in this study.

183 Additional preprocessing steps performed are as follows: i) CXRs are thresholded at to remove
184 very bright pixels to remove text annotations (empirically determined to be in the range [235 255])
185  that might be present in the cropped images. Missing pixels are in-painted using the surrounding
186  pixel values. ii) Images are normalized to make the pixel values lie in the range [0, 1]. iif) CXR images
187  are median filtered to remove noise and preserve edges. iv) Image pixel values are centered and
188  standardized to reduce computational complexity. Next, the cropped CXRs are used to train and
189  evaluate a custom CNN and a selection of pretrained models at different learning stages performed
190  in this study.

191
Dilated m H Cropped
4’ Dropout ——» rl(::l I;; ©
192 U-Net
193

194  Figure 2. The segmentation approach showing dilated dropout U-Net based mask generation and
195  Lung ROI cropping.

196  2.3. Models and Computational Resources

197 The performance of a custom CNN model whose design is inspired by wide residual network
198  (WRN) architecture proposed in [19] and a selection of ImageNet pretrained CNN models is
199  evaluated during different stages of learning performed in this study. The benefit of using a WRN
200  compared to the traditional residual networks (ResNets) [20] is that it is shallower resulting in shorter
201  training times while producing similar or improved accuracy. In this study, we used a WRN based
202 custom CNN architecture with dropouts used in every residual block. After pilot empirical
203 evaluations, we used a network depth of 28, a width of 10, and a dropout ratio of 0.3 for the custom
204  WRN used in this study.
205 We evaluated the performance of the following pretrained CNN models, viz., a) VGG-16 [21], b)
206  Inception-V3 [22], ¢) Xception [23], d) DenseNet-121 [24], and e) NasNet-mobile [25]. The pretrained
207  CNNs are instantiated with their ImageNet [9] pretrained weights and truncated at their fully-
208  connected layers. The output feature maps are global average pooled and fed to a final dense layer
209  with Softmax activations to output the prediction probabilities.
210 The following hyperparameters of the custom WRN and pretrained CNNs are optimized
211 through a randomized grid search method: i) momentum, ii) L2-weight decay, and iii) initial learning
212 rate of the Stochastic Gradient Descent (SGD) optimizer. We initialized the search ranges to [0.80
213 0.99], [1e-8 le-2], and [le-7 1le-3] and for the learning momentum, L2-weight decay, and initial
214 learning rate, respectively. The custom WRN is initialized with random weights and the pretrained
215  models are fine-tuned end-to-end with smaller weight updates to make them data-specific and
216  classify the CXRs to their respective categories. Callbacks are used to monitor model performance
217  and store the best model weights for further analysis.
218 The performance of the custom WRN and the pretrained CNN models are evaluated in terms of
219 i) accuracy, ii) area under the (receiver operating characteristic -- ROC) curve (AUC), ii) sensitivity or
5
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220  recall, iv) specificity, v) precision, vi) F-score, and vii) Mathews correlation coefficient (MCC). The
221 models are trained and evaluated on a Windows System with Intel Xeon CPU 3.80 GHz with 32 GB
222  RAM and NVIDIA GeForce GTX 1070 GPU. We used Keras 2.2.4 API version with Tensorflow
223 backend and CUDA/CUDNN dependencies.

224 2.4. Weakly-labeled Data Augmentation

225 We train the custom WRN and the pretrained models on the pediatric CXR collection [4] and
226  evaluated them on the ability to categorize hold-out test data into bacterial and viral pneumonia
227  categories. This start stems from following the literature which reveals that CXRs showing COVID-
228 19 viral pneumonia manifestations are visually similar to, yet distinct from those caused by bacterial,
229  fungal, and other non-COVID-19-related viral pneumonia [2]. We use the best performing baseline
230 model to evaluate its performance in categorizing the CXRs from Twitter COVID-19 and Montreal
231  COVID-19 collections as belonging to the viral pneumonia category.

232 We also evaluated the performance of the best performing baseline model in weakly
233 categorizing the CXRs showing pneumonia-related opacities from RSNA, CheXpert, and NIH CXR
234 collections as belonging to the bacterial or viral pneumonia categories. These weakly classified CXRs
235  are used to augment the baseline training data. The idea behind this augmentation is to expand the
236  training data feature space: i) to make the training distribution encompass the variability in the test
237 distribution, enhance inter-class discrimination, and reduce intra-class similarity; and, ii) to decrease
238  the generalization error by training with samples from a diversified distribution. The model is trained
239 with different combinations of the augmented training data and evaluated for an improvement in
240  performance as compared to the non-augmented baseline in classifying: i) the baseline hold-out
241  pediatric CXR test data to bacterial or viral pneumonia categories; and, ii) Twitter COVID-19 and
242 Montreal COVID-19 CXR collections as belonging to the viral pneumonia category. The baseline
243 training data is also augmented with the CXRs showing COVID-19 viral pneumonia from one of the
244 two different COVID-19 CXR collections used in this study to evaluate for performance improvement
245  with the other collection. This is done to evaluate if the COVID-19 viral pneumonia patterns are very
246  distinct and unique that can only improve performance toward COVID-19 detection as compared to
247  that with weakly-labeled data augmentation and non-augmented training.

248  2.5. Salient ROI Localization

249 Visualization helps in interpreting the model predictions and identify the salient ROI involved
250  in decision-making. In this study, the learned behavior of the best performing baseline model in
251  categorizing the CXRs to the bacterial and viral pneumonia classes is visualized through gradient-
252 weighted class activation maps (Grad-CAM) [26]. Grad-CAM is a gradient-based visualization
253  method where the gradients for a given class are computed concerning the features extracted from
254 the deepest convolutional layer in a trained model and are fed to a global average pooling layer to
255  obtain the weights of importance involved in decision-making. This results in a two-dimensional heat
256  map which is a weighted combination of the feature maps involved in categorizing the image to its
257  respective class.

258 3. Results and Discussion

259 Optimal hyperparameters values obtained using a randomized grid search for the custom WRN
260  and pretrained CNNss that are trained and evaluated on the pediatric CXR collection to classify them
261  at the patient level into showing bacterial or viral pneumonia are shown in Table 2. For model
262  validation, we allocated 20% of the training data which was randomly selected. The performance
263 achieved by the models is shown in Table 3.

264 It can be observed that the VGG-16 model demonstrates superior performance in terms of
265  accuracy and AUC with the hold-out test data. Xception model gives higher precision and specificity
266  than the other models. However, considering the F-score and MCC that give a balanced precision
267  and sensitivity measure, the VGG-16 model outperformed the others in classifying the pediatric CXRs

6
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268  as showing bacterial or viral pneumonia. The performance excellence of the VGG-16 model is
269  attributed to the fact that the architecture depth of the model is optimal to learn from the data used
270  in this study and extract diversified features to categorize the CXRs to their respective categories.
271  Deeper models like DenseNet-121 showed performance degradation as they suffered from overfitting
272 issues and are not able to effectively model the variations across the categories. In this regard, we
273  select the best performing VGG-16 model for further analysis on the Twitter COVID-19 and Montreal
274  COVID-19 CXR collections as showing viral pneumonia.

275 Table 2. Optimal values for the hyperparameters for the custom WRN and pretrained CNN5s
276 obtained through randomized grid search M: Momentum, ILR: Initial learning rate, and L2: L2-
277 weight decay).

Models Optimal values

M 1ILR L2

Custom 090 1e-3 1le-5
Pretrained 0.95 1e-3 1le-6

278
279 Table 3. Performance achieved by the custom WRN and pretrained CNNss in classifying the
280 pediatric CXR dataset into bacterial and viral categories. Here Acc.: Accuracy, Sens.: Sensitivity,
281 Prec.: Precision, F: F-score, and MCC: Matthews Correlation Coefficient). Here bold values indicate
282 superior performance.
Models Acc. AUC Sens. Spec. Prec. F MCC
Custom WRN  0.8974 0.9534 0.9381 0.8311 0.9008 0.9191 0.7806
VGG-16 0.9308 0.9565 0.9711 0.8649 0.9216 0.9457 0.8527
Inception-V3 09103 0.937 0.9587 0.8311 0.9028 0.9299 0.8085
Xception 09282 0954 0.9546 0.8852 0.9315 0.9429 0.8469
DenseNet-121  0.9026 0.9408 0967 0.7973 0.8864 0.925 0.7931
NASNet-mobile 0.9282 0.9479 0.9753 0.8514 09148 0.944 0.8477
283
284 In this part of the study, we establish a baseline using the learned representations for the viral

285  pneumonia category from the pediatric CXR collection for identifying COVID-19 viral pneumonia-
286 related manifestations in the aforementioned COVID-19 CXR collections. As mentioned before, this
287  is based on the knowledge that COVID-19 is a kind of viral pneumonia, but while being similar is
288  different in some respects [2]. The baseline performance achieved is shown in Table 4. Fig. 3 shows
289  the confusion matrix obtained toward classifying Twitter and Montreal COVID-19 CXR collections
290  as showing viral pneumonia using baseline VGG-16 model trained to separate bacterial from viral
291  pneumonia in CXR images.

292 As observed in Table 4 and Fig. 3, the results obtained with the baseline VGG-16 model trained
293 on the pediatric CXR collection to learn the representations of bacterial and viral pneumonia didn’t
294 deliver superior performance in detecting COVID-19 related viral pneumonia manifestations in the
295  Twitter and Montreal COVID-19 CXR collections. We attribute this to limited variance in the training
296  distribution and hence a narrow feature space to learn related patterns. The model fails to
297  appropriately classify the Twitter and Montreal COVID-19 CXR collections as belonging to the viral
298  pneumonia class.

299


https://doi.org/10.1101/2020.05.04.20090803
http://creativecommons.org/licenses/by-nc-nd/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2020.05.04.20090803; this version posted May 8, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY-NC-ND 4.0 International license .

300 Table 4. Performance metrics achieved in classifying the Twitter and Montreal COVID-19 CXR
301 collections as showing viral pneumonia using baseline VGG-16 model trained to separate bacterial
302 from viral pneumonia in CXR images.
Model Accuracy
Twitter-COVID-19 Montreal-COVID-19
VGG-16 0.2885 0.5028
303
304

Confusion matrix

Confusion matrix

Bacterial_pneumonia

True label

True label

%,
e

Predicted label - -0 Predicted label °

305 (@) (b)
306  Figure 3. Confusion matrix obtained toward classifying (a) Twitter and (b) Montreal COVID-19 CXR

307  collections as showing viral pneumonia using baseline VGG-16 model.

308

309 The learned behavior of the baseline trained VGG-16 model with the pediatric CXR collection is
310  interpreted through Grad-CAM visualizations and is shown in Fig. 4. The gradients for the bacterial
311 and viral pneumonia classes that are flowing into the deepest convolutional layer of the trained
312  model are used to interpret the neurons involved in decision-making. The heat maps obtained as a
313 result of weighing these feature maps are superimposed on the original CXRs to identify the salient
314  ROI involved in categorizing the CXRs to their respective classes. It is observed that the model is
315  correctly focusing on the salient ROI for the test data coming from the same training distribution that
316  helps to categorize them into bacterial and viral pneumonia classes. However, the salient ROI
317  involved in categorizing a test image from the Montreal COVID-19 CXR collection that comes from
318  a different distribution compared to the baseline training data didn’t properly overlap with the GT
319  annotations. This leads to the inference that the model is not properly trained to identify the disease
320  manifestations in the unseen test data that has similar, yet distinct visual representations as to the
321  baseline training data.

322 With data-driven DL methods, the training data may contain samples that do not contribute to
323 decision-making. Modifying the training distribution could provide an active solution to improve
324 performance with similar and/or different test distribution. In response, our approach is to expand
325  the training data feature space to create a diversified distribution that could help learn and improve
326  the performance with the baseline test data coming from the same distribution as the training data
327  and/or with other test data coming from a different distribution. In this study, we propose to expand
328 the training data feature space by augmenting them with weakly classified CXR images. For this, the
329  trained baseline VGG-16 model is used to weakly classify the CXR images from NIH, RSNA, and
330  CheXpert collections showing pneumonia-related opacities as showing bacterial or viral pneumonia.
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331  The weakly labeled images are further stored to augment the baseline training data to improve
332 performance in categorizing the test data from pediatric, Twitter COVID-19, and Montreal COVID-
333 19 CXR collections. We also augmented the baseline with the COVID-19 CXR collections to study
334 their effect on improving performance with the baseline test data. The performance metrics achieved

335  with the baseline test data using different combinations of the augmented training data is shown in
336  Table5.
337

338 (e) (f)
339  Figure 4. Original CXRs and their salient ROI visualization: (a) and (b) shows a CXR with bilateral

340  bacterial pneumonia and the corresponding Grad-CAM visualization; (c) and (d) shows a CXR with
341 viral pneumonia manifestations and the corresponding salient ROI visualization; (e) and (f) shows a
342 sample CXR from the test set of Montreal COVID-19 CXR collection with GT annotations and the
343 corresponding salient ROI visualization.

344 Table 5. Performance metrics achieved with the different combinations of the augmented training
345 data toward classifying the baseline test data into bacterial and viral pneumonia categories. Bold
346 values indicate superior performance.
Dataset Acc. AUC Sens. Spec. Prec. F MCC
Baseline 09308 0.9565 0.9711 0.8649 0.9216 0.9457 0.8527
Data augmentation with weakly labeled images
Baseline + Montreal 09179 09479 09794 0.8176 0.8978 0.9368 0.827
Baseline + Twitter 0.9308 0.9577 0.9835 0.8446 0.9119 0.9464 0.8541
Baseline + NIH 09179 0.9600 0.9587 0.8514 0.9134 0.9355 0.8249
Baseline + CheXpert 0.9405 0.9689 0.9877 0.8624 0.9201 0.9542 0.8716
Baseline + RSNA 0.9359 0.9592 0.9877 0.8514 0.9158 0.9503 0.8653
Baseline + NIH + CheXpert 0.9333 0.9606 0.9835 0.8514 0.9154 0.9483 0.85%4
Baseline + NIH + RSNA 09231 09642 0.9959 0.8041 0.8926 0.9415 0.8411

Baseline + CheXpert + RSNA 0.9359 0.9628 0.9835 0.8582 0.919 0.9501 0.8647
Baseline + NIH + CheXpert + RSNA 0.9154 09542 0.9794 0.8109 0.8944 0.935 0.8217
Baseline + CheXpert + Twitter 0.9103 0.9538 0.9629 0.8244 0.8997 0.9302 0.8088
Baseline + CheXpert +Montreal = 0.9231 0.9595 0.9711 0.8446 09109 094 0.8365

347
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348 Note that the baseline training data augmented with the weakly labeled CXR images from the
349  CheXpert CXR collection demonstrated superior performance in all metrics compared to the non-
350  augmented and other combinations of augmented training data. This underscores the fact that this
351  augmentation approach resulted in a favorable increase in the training data size, encompassing a
352 diversified distribution to learn and improve performance in the test data, compared to that with
353  non-augmented training.

354 We also studied the effect of weakly labeled data augmentation with the test data from Twitter
355  and Montreal COVID-19 CXR collections. The results are as shown in Table 6.

356 Table 6. Performance metrics achieved using combinations of the augmented training data toward
357 classifying Twitter and Montreal COVID-19 CXR collections as belonging to the viral pneumonia
358 category. Bold values indicate superior performance.
Dataset Accuracy
Twitter-COVID-19 Montreal-COVID-19
Baseline 0.2885 0.5028
Data augmentation with weakly labeled images
Baseline + NIH 0.1037 0.2625
Baseline + CheXpert 0.5555 0.6536
Baseline + RSNA 0.2296 0.4469
Baseline + NIH + CheXpert 0.1852 0.4078
Baseline + NIH + RSNA 0.1407 0.4413
Baseline + CheXpert + RSNA 0.2222 0.4357
Baseline + NIH + CheXpert + RSNA 0.1852 0.4413
Baseline + CheXpert + Twitter - 0.7095
Baseline + CheXpert + Montreal 0.8889 -
Baseline + Twitter - 0.9778
Baseline + Montreal 0.9926 -

359

360  The performance evaluation results demonstrate that the baseline training data augmented with the
361  weakly labeled CXR images from the CheXpert collection initially improved performance with an
362  accuracy of 0.5555 and 0.6536 as compared to the non-augmented baseline (0.2885 and 0.5028) in
363  classifying Twitter and Montreal COVID-19 CXR test data, respectively, as belonging to the viral
364  pneumonia category. The performance degradation with other combinations of weakly-labeled data
365  augmentation underscores the fact that adding more data introduces noise into the training process;
366  increasing the number of training samples do not always improve performance since these samples
367  either do not contribute or adversely impact decision-making.

368 Modifying the distribution of the training data in a way to include only those samples could
369  provide an effective solution to improve performance with the test data from a similar or different
370  distribution as compared to the non-augmented training data. In this regard, we also augmented the
371  baseline training data with the COVID-19 viral pneumonia CXRs from one of two different collections
372 and evaluated the performance with the other. This is performed to evaluate if there is a performance
373  improvement if the training data is modified to include only samples with a known, similar
374  distribution. It is observed from Table 6 that augmenting the baseline training data with the Twitter
375  COVID-19 CXR collection significantly improved performance in detecting COVID-19 CXRs in the
376  Montreal collection as compared to the weakly-labeled augmentation using CheXpert CXRs and the
377  non-augmented baseline. We observed similar improvements in performance with the Twitter
378  COVID-19 CXRs when the baseline training data is augmented with the Montreal COVID-19 CXR
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379  collection for model training. Fig. 5 shows the confusion matrix obtained toward this study. This
380  underscores the fact that augmenting the training data with COVID-19 CXRs, though not coming
381  from the same collection, significantly improved performance with the test data from a different
382  COVID-19 CXR collection, as compared to non-augmented baseline and weakly-labeled data
383  augmentation with non-COVID-19 viral and bacterial pneumonia CXRs. The COVID-19 viral
384  pneumonia has a distinct pattern, compared to non-COVID-19 viral and other pneumonia. For this
385  reason, irrespective of the collection the CXRs come from, augmenting the training data with samples
386  from one COVID-19 CXR collection significantly improves performance with the other.

387

160

Confusion matrix Confusion matrix

140

120

100

True label

388 (a) (b)
389  Figure 5. Confusion matrix obtained toward classifying (a) Twitter and (b) Montreal COVID-19 CXR
390  collections as showing viral pneumonia using the VGG-16 model trained on the baseline augmented
391  with Montreal COVID-19 and Twitter COVID-19 CXR collections, respectively.

392

393 Fig.6 shows the learned behavior of the VGG-16 model trained on the baseline data augmented
394  with Montreal COVID-19 and Twitter COVID-19 CXR collections individually to predict on a test
395  sample with GT annotations from Montreal COVID-19 and Twitter COVID-19 CXR collections,
396  respectively.

397

398
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399  Figure 6. Original CXRs, heat maps, and salient ROI visualization: (a), (b), and (c) shows a COVID-
400 19 viral pneumonia test CXR from Montreal collection with GT annotations, the corresponding heat
401  map, and Grad-CAM visualization, (d), (e), and (f) shows a COVID-19 viral pneumonia test CXR
402 from the Twitter collection with GT annotations, the heat map, and its associated class activation

403  maps.
404
405 Unlike the degraded performance of the model trained on non-augmented data that failed to

406  localize salient ROl in a test CXR showing COVID-19 viral pneumonia, as observed from Fig. 4, the
407  model trained on the augmented baseline with COVID-19 CXRs from one collection delivered
408  superior localization performance with the test CXR samples from the other collection. Fig. 6a shows
409  thelearned interpretation of these trained models in the form of heat maps and class activation maps.
410 Tt is observed that the models are correctly focusing on the salient ROI, matching with the GT
411  annotations that help to categorize them as showing COVID-19 viral pneumonia. This leads to the
412 inference that the model has effectively learned the diversified feature space augmented with class-
413 specific (COVID-19 viral pneumonia) data that has a distinct pattern compared to non-COVID-19
414  viral and bacterial pneumonia to effectively localize the salient ROI involved in decision-making.

415 4. Conclusions and Future Work

416 Image Weakly labeled data augmentation helped to improve performance with the hold-out
417  baseline test data because the CXRs with pneumonia-related opacities in CheXpert collection has a
418  similar distribution to bacterial and non-COVID-19 viral pneumonia that helped to expand the
419  training feature space by introducing a controlled variance to improve performance with the baseline
420  test data. However, with COVID-19 CXRs, weakly-labeled data augmentation didn’t deliver superior
421 performance since COVID-19 viral pneumonia has a distinct pattern as compared to non-COVID-19
422 viral and bacterial pneumonia.

423 In this study, we evaluated the effect of weakly-labeled data augmentation toward classifying
424 the CXRs as showing COVID-19 viral pneumonia. In this regard, being a one-class problem, we have
425  only false-negatives and no false positives. As future work, we aim to expand the analysis toward
426  classifying non-COVID-19 and COVID-19 viral pneumonia and other multi-class problems, where
427  we aim to perform multi-class ROC analysis and obtain an efficient operating point suiting model
428  deployment. Considering limited data availability as with COVID-19 detection, we also aim to
429  construct model ensembles to combine the predictions of models trained on various combinations of
430  augmented training data to further improve COVID-19 detection performance.
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