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Abstract  

In this study, we propose an evolution law of COVID-19 transmission based first on a 
representation of population by a domain part of an infinite ordered lattice in which epidemic 
evolution is represented by a wave like free spread starting from a first case as an epicentre. Free 
energy of spread on a given day is defined equal to the natural logarithm of the number of 
infected cases. Dissipation of propagation is obtained using a postulated form of free energy built 
using thermodynamics of irreversible processes in analogy to isotherm wave propagation in solids 
and elastic damage behaviour of materials. The proposed expression of daily free energy rate 
leads to dissipation of propagation introducing a parameter quantifying measures taking by 
governments to restrict transmission. Entropy daily rate representing disorder produced in the 
initial system is also explicitly defined. In this context, a simple law of evolution of infected cases 
as function of time is given in an iterative form.  The model predicts different effects on peak of 
infected cases Imax and epidemic period, including effects of population size N, effects of 
measures taking to restrict spread, effects of population density and effect of a parameter T 
similar to absolute temperature in thermodynamics. Different effects are presented first. The 
model is than applied to epidemic spread in Tunisia and compared with data registered since the 
report of the first confirmed case on Mar 2, 2020. It is shown that the low epidemic size in 
Tunisia is essentially due to a low population density and relatively strict restriction measures 
including lockdown and quarantine.  
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1. Introduction 

First cases of pneumonia unknown etiology have been declared in Wuhan, China since Dec 8, 
2019. Pneumonia starts with severe acute respiratory infection symptoms and some cases 
developed acute respiratory distress syndrome with failure complications.  On Jan 7, 2020 , 
Chinese centre for disease control and prevention identified a new coronavirus (Chen et al, 
(2020)). 

COVID-19 is a human coronavirus include in the gender beta coroanvirus group 2b, family 
coronaviridae. It is the third strain of virus of the coronavirus family (CoV), isolated in humans in 
the context of an epidemic after SARS-CoV in China (2002) and MERS-CoV in Saudi Arabia 
(2012). Examination of the COVID-19 genome showed genetic similarity to SARS-CoV about 
79.5% .Human to human transmission takes place by either respiratory droplets or close contacts.  
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According to the world health organization, COVID-19 is a unique virus that causes respiratory 
disease and which spreads via oral and nasal droplets (Kolifarhood et al, 2020).  

On Mar 2, the first case has been declared in Tunisia.  

Actually, COVID-19 is causing a disease representing a planetary problem for public health and 
negative impact on humanity (Boccaletti S. et al, 2020). 

The objective of this paper is to propose a simple model to predict COVID-19 transmission 
using early data of the outbreak. Majority of epidemic transmission models are based on 
mathematical approaches dividing population in different interacting groups and assuming 
different rates of transmission between them. Solutions are conducted using integration of 
differential equations and principle of conservation (Kermack, W.O. and MC Kendrick, A.G., 
1927). Population is generally assumed as a closed system, the probabilistic formalism of 
transmission between individuals of different groups leads to a population size effect on 
epidemic size and epidemic period. Models that are more sophisticated include also Monte Carlo 
numerical simulations for stochastic models and more realistic epidemic networks. See for 
example a review by House et al,(2013) and recent studies by  Kim et al, (2020), Liang, (2020), Li 
et al (2020) among several others for COVID-19 modelling.  

Epidemic networks and lattice methods have their origin in social science and computer science 
(See for example a review by Keeling and Eames (2005)).  Lattice models are representation of an 
ordered network in which epidemic transmission is similar to a wave like spread in regular grid 
representing connected individuals. Epidemic starts from an epicentre and spreads out in a 
roughly circular manner. Figure 1 illustrates an example in two dimensions. Lattice models are 
suitable for example for forest-fire models (Bak et al, 1990) where nodes represent trees that burn 
leaving empty sites. Keeling and Eames (2005) interpreted this representation as similar to 
epidemic transmission.  

This paper proposes, in this context  of lattice representation, a law of propagation and 
dissipation using a formalism in analogy to elastic wave propagation and a size and temperature 
dependent elastic damage material model ((Ben Hassine et al (2019) and (Limam et al, 2014).) 
The advantage of a formalism inspired from thermodynamics is that different effects emerge 
from principles.  
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Figure 1. Lattice representation of population with a wave like epidemic spread. 

2. Materials and Methods 

The proposed model is first presented and explained in Section 3. In Section 4, the model is 
applied to study different effects including measures to restrict spread, effect of population 
density and size and effect of a parameter T similar to absolute temperature in thermodynamics. 
Epidemic evolution in Tunisia is also analysed. We consider for comparison, data from national 
observer for new and emergent diseases (http://www.onmne.tn) until Apr 25. 

3. Theory 

Consider first a simple mathematical model given by Equation (1) and (2). 𝐼௡ is the number of 
infected people on day 𝑛 . Theses Equations correspond to epidemic theoretical free 
transmission in a population of size N defined in a finite convex domain part of a perfect infinite 
ordered lattice of connected people and starting from an epicentre 𝐼଴ = 1 belonging to the 
domain. Population density is inversely proportional to the square of distance d depicted in 
figure1. Coefficient C defined by Equation (1) is considered as an intrinsic characteristic of 
population density and independent of population size. It is clear that it decreases when distance 
d increases which means that when population density decreases. It represents the number of 
transmission between every infected person at wave front to other persons.   A theoretical free 
transmission in the lattice corresponds to the linear curve with a slope ln[C] in a semi-logarithmic 
scale depicted in figure 2 (a, b) for a domain representing, for example, a typical dense city with 

N=12 Million and C=1.62. In that case population size N will be reached at  𝑛௦ =
୪୬ (ே)

୪୬ (஼)
, on day 

34, meanwhile epidemic will continue to propagate in the lattice outside the population domain, 
as the considered population is fixed but transmission to the outside was made possible by 
hypotheses. 

𝐼௡ାଵ = 𝐶𝐼௡        (1) 

𝐼௡ = 𝐶௡𝐼଴     (𝐼଴ = 1)   (2) 
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Figure 2.  Infected cases as function of time (day n): Analogy with wave spread in elastic damage 
material 

In reality transmission process is dissipative and the linear curve of slope ln[C] corresponds only 
to early stage. C can be deduced, for example, from initial data curves fitting in a semi-logarithmic 
curve as shown in figure 2. This coefficient should be reduced by measures imposed by 
governments including lockdown and quarantine, or by population behaviour including social 
distancing, personal hygiene, for example by wearing a mask in fear of the spread of the virus 
similarly to the effect described by for example by Kim et al, (2020) or Liang, (2020). This 
behaviour emerges naturally after first deaths inducing a disorder in the initial lattice of figure 1, 
which means physically that entropy should increase.   

The idea of the proposed model can be highlighted when we made an empirical analogy of the 
linear curve depicted in figure 2 with energy as function of time of an elastic wave propagation in 
a rod obeying Hooke’s law of elasticity and submitted to harmonic imposed power. So we 
defined by analogy free energy of the virus spread by 𝜑 = ln (𝐼௡) which gives a constant daily 
rate in the case of linear curve depicted in figure 2 and defined by Equations (1) and (2). 

In reality, material behaviour as epidemic spread is dissipative and wave velocity will decrease due 
to material damage. In analogy to reduction of Young modulus of elasticity in damage mechanics 
(Kachanov, 1958), we should introduce a reduction of C in a semi-logarithmic scale. So we 
postulate the evolution model of infected cases 𝐼௡on day n, given by Equations (3-7), where T is 
a parameter similar to absolute temperature in thermodynamics and where a first case is  𝐼଴ = 1. 

ூ೙శభ(்)

ூ೙(்)
= 𝐶(𝑛)

(ଵି஽೙)

(ଵାி೙)೅
     (3) 

𝐷௡ = 0 for 𝑛 ≤ 21    and      𝐷௡ =
௃೙షమభ

௃೙శభ
 for  𝑛 > 21     (4) 

𝐹௡ = 0 for 𝑛 ≤ 21      and       𝐹௡ =
௃೙

ே
  for 𝑛 > 21    (5) 

With 
௃೙శభ

௃೙
= 𝐶(𝑛) (𝐽଴ = 1)       (6) 

𝐶(𝑛) = 𝐶 for 𝑛 ≤ 21    and      𝐶(𝑛) = 𝐶𝑅 for 𝑛 > 21    (7) 

In order to give a physical sense to these Equations, we define first a free energy rate of the virus 
noted 𝜑௡ାଵ − 𝜑௡ = ∆𝜑 given by Equation (8). In a thermodynamically consistent  isotherm 
framework ,  Helmholtz free energy is defined by the rate ∆𝜑 = ∆𝑈 − 𝑇∆𝑆, where ∆𝑈 is internal 
energy rate and ∆𝑆 is entropy rate given respectively by Equations (9) and (10) in the case of 
virus spread analogy and identified from Equation(8).  

∆𝜑 = ln (
ூ೙శభ

ூ೙
) =ln൫𝐶(𝑛)(1 − 𝐷௡)൯ − 𝑇𝑙𝑛(1 + 𝐹௡) (8) 

∆𝑈 = ln൫𝐶(𝑛)(1 − 𝐷௡)൯  (9) 

∆𝑆 = ln(1 + 𝐹௡)  (10) 
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In order to consider lockdown and quarantine effect, C is decreased from day 21 and noted CR, a 
coefficient between 1 and C (Equation 7). Equation (4) is introduced to model recovering or 
death from day 21 with parameter 𝐷௡. This is justified by recent studies reporting that observed 
duration of viral shedding among survivors was between 8 days and 37 days Zhou et al (2020). 
Evolution law of damage given by Equations (4, 6 and 7) is independent of population size and 
temperature and can be considered as an intrinsic property of virus spread. Its application with 
CR=1.15 ignoring entropy dissipative effect which means with T=0, leads to the trilinear curve 
presented in figure 2 (a and b) where population size will be reached with an epidemic period 
𝑛௦ = 89 days for the considered example in Figure 2. Figure 2(a) shows also the theoretical case 
of an ideal  lockdown with CR=1 and T=0 which leads to an epidemic period of 40 days due to a 
recovering rate higher than infection rate in that case with an epidemic peak of 11200, reached on 
day 21 and independent of N.  Evolution law of damage given by Equations (4, 6 and 7) are 
defined exclusively by C and CR and remain independent of population size. This evolution law 
of damage induces a decreasing of internal energy rate defined by Equation (9) which remains 
also independent of population size and temperature and equal to free energy rate when T=0. 
Effects of T and N are rather due to entropy production. Similar hypothesis was considered for a 
damage evolution law as an intrinsic characteristic of the material independent of specimens size 
and temperature see (Ben Hassine et al (2019) and (Limam et al, 2014).  

Equation (5) is introduced to consider population size effect, also from day 21. It is worth 
mentioning that the considered free energy is choosing with an entropy rate ∆𝑆 = 𝑙𝑛(1 + 𝐹௡) , 
null before damage initiation (𝐹௡ = 0 for (𝑛 ≤ 21)) and always positive, which means that 
entropy increases according to the second law of thermodynamics and contributes to dissipate 
free energy of the virus. Theoretical free transmission in an ordered lattice case given by 
Equations (1) and (2) can be obtained when considering CR=C, and T=0, in analogy to absolute 
zero state in thermodynamics, where entropy effect vanishes.  Parameter T should be understood 
as for example hygiene measures in the system which can be linked also to ultraviolet rays 
increasing with ambient temperature rising. When increased it contributes to increase entropy 
effect and consequently to decrease free energy rate and epidemic spread. This is in agreement 
with recent environment studies shown also through statistical analysis of data that transmission 
decreases as ambient temperature increases, see for example ((Prata et al, 2020) and (Liu et al, 
2020)). 

Figure 2(b) shows an example applying the proposed model with N=12 Million, C=1.62 , 
CR=1.15 and T=7. Introducing entropic effect, epidemic size is decreased with a peak of 79000 
infected cases and an epidemic period of 56 days.  Parameters were chosen to give an order of 
epidemic comparable to a dense city like Wuhan (Liang, (2020), Li et al (2020)).  C was identified 
from the first slope of data using a regression analysis between day 8 and day 21.  

4. Results 

4.1. Restriction measures (CR) effect 

Figure 3 presents an example of the model applied first with N=12Million,  C=1.62 , CR=1.15 
and T=7 in a Cartesian scale and then with the same parameters but more restricted measures 
traduced by a reduction of C on day 21 to CR=1.1. It can be observed that CR=1.1 describes 
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stricter measures that induce a decreasing of epidemic size and slightly increase epidemic period. 
The maximum of positive cases Imax is decreased from 79000 to 46000. 

 

Figure 3.  Restriction measures effect on infected cases curve (N=12E6, C=1.62, T=7) 

4.2. Population size (N) effect 

Figure 4 shows effect of population size N on infected cases in a Cartesian scale. C, CR and T are 
fixed and the size N is changed from 3 to 12 and 24 Million. It is deduced that when population 
size increases epidemic size and period increase, with respective maximums Imax of 25000, 
79000 and 128000 reached respectively on days 30, 39 and 42 with respectively epidemic periods 
of about 41, 56 and 60 days. When N increases the ratio (Imax/N) decreases and respectively 
given by 0.83%, 0.66% and 0.53%. 
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Figure 4.  Population size effect on infected cases curve ( C=1.62, CR=1.15,  T=7) 

 

4.3. Tunisian case, population density effect and T effect 

Figure 5 presents data in Cartesian scale in Tunisia until Apr 25. On this date, our ministry of 
health reported 38 deaths and 194 recovered cases. The model is depicted and reproduces actual 
data tendencies, considering C=1.3 corresponding to initial data fitting in semi logarithmic scale  
and quarantine and lockdown effects thereafter with CR=1.115. The model reproduces data 
tendencies with  Imax=912 and an epidemic period of 92 days, which means an epidemic spread 
end at the beginning of June if the same measures are maintained. It is noted that a reduction of 
C from 1.62 to 1.3 induces a reduction of epidemic peak of about 50 times as deduced when 
comparing figure 5 with figure 3. Furthermore, it is noted in figure 5 that parameter T when 
changed from 7 to 25 slightly decreases epidemic.  

 

 

Figure 5.  COVID-19 spread in Tunisia (N=12E6, C=1.3,  CR=1.115, T=7, T=25) 

 

5. Discussion  

An evolution law of COVID-19 based on analogy with wave propagation in elastic solids and a 
damage model  is proposed. The key coefficient C is obtained by fitting initial slope of data in a 
semi-logarithmic scale between day 8  and day 21. Results are very sensitive to this parameter, 
considered as an intrinsic parameter of population density. For populations of a comparable size, 
but with coefficients respectively C=1.3 and C=1.62, results show that epidemic size can increase 
very fast. The second important parameter is CR. It traduces measures like lockdown and  
quarantine. When controlled, which means decreased, it decreases epidemic size.  

6. Conclusion  
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The low predicted epidemic size in Tunisia is essentially due to a low population density (C=1.3) 
and strict restriction measures (CR=1.115). Population density is inversely proportional to the 
square of distance d depicted in figure1 which explains its important effect on transmission.  
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