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ABSTRACT

Background: The rapid global spread of the virus SARS-CoV-2 has provoked a spike in demand for
hospital care. Hospital systems across the world have been over-extended, including in Northern Italy,
Ecuador, and New York City, and many other systems face similar challenges. As a result, decisions
on how to best allocate very limited medical resources have come to the forefront. Specifically, under
consideration are decisions on who to test, who to admit into hospitals, who to treat in an Intensive
Care Unit (ICU), and who to support with a ventilator. Given today’s ability to gather, share, analyze
and process data, personalized predictive models based on demographics and information regarding
prior conditions can be used to (1) help decision-makers allocate limited resources, when needed, (2)
advise individuals how to better protect themselves given their risk profile, (3) differentiate social
distancing guidelines based on risk, and (4) prioritize vaccinations once a vaccine becomes available.
Objective: To develop personalized models that predict the following events: (1) hospitalization, (2)
mortality, (3) need for ICU, and (4) need for a ventilator. To predict hospitalization, it is assumed that
one has access to a patient’s basic preconditions, which can be easily gathered without the need to
be at a hospital. For the remaining models, different versions developed include different sets of a
patient’s features, with some including information on how the disease is progressing (e.g., diagnosis
of pneumonia).
Materials and Methods: Data from a publicly available repository, updated daily, containing
information from approximately 91,000 patients in Mexico were used. The data for each patient
include demographics, prior medical conditions, SARS-CoV-2 test results, hospitalization, mortality
and whether a patient has developed pneumonia or not. Several classification methods were applied,
including robust versions of logistic regression, and support vector machines, as well as random
forests and gradient boosted decision trees.
Results: Interpretable methods (logistic regression and support vector machines) perform just as
well as more complex models in terms of accuracy and detection rates, with the additional benefit
of elucidating variables on which the predictions are based. Classification accuracies reached 61%,
76%, 83%, and 84% for predicting hospitalization, mortality, need for ICU and need for a ventilator,
respectively. The analysis reveals the most important preconditions for making the predictions. For
the four models derived, these are: (1) for hospitalization: age, gender, chronic renal insufficiency,
diabetes, immunosuppression; (2) for mortality: age, SARS-CoV-2 test status, immunosuppression
and pregnancy; (3) for ICU need: development of pneumonia (if available), cardiovascular disease,
asthma, and SARS-CoV-2 test status; and (4) for ventilator need: ICU and pneumonia (if available),
age, gender, cardiovascular disease, obesity, pregnancy, and SARS-CoV-2 test result.

Keywords Predictive models · COVID-19 · coronavirus · SARS-CoV-2 · hospitalization · mortality · ICU · ventilator ·
Electronic Health Records (EHRs)
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1 Introduction

Currently, the world is facing a health and economic crisis due to the spread of the virus SARS-CoV-2 which causes
a disease referred to as COVID-19 [1]. By the end of April 2020, the virus has spread to over 3.3 million people
worldwide and has killed over 230,000 [2,3]. During this pandemic, governments and hospitals have struggled to
allocate scarce resources, including tests, treatment in intensive care units (ICUs) and ventilators [4,5].

As the virus continues to spread, predicting hospitalizations, mortality, and other patient outcomes becomes important
for several reasons: (i) using risk profiles to inform decisions on who should be tested (for the virus and/or antibodies)
and at which frequency, (ii) providing more accurate estimates of who is more likely to be hospitalized and the type
of care they may need, (iii) informing plans for staffing, resources, and prioritizing the level of care in extremely
resource-constrained settings. Equally importantly, as societies adapt to the pandemic, predictive models can (i) assess
individual risk so that social distancing measures can transition from “blanket” to more targeted (e.g., deciding who
can return to work, who is advised to stay at home, who should be tested, etc.) and (ii) direct policy decisions on who
should receive priority for vaccination, which will be critical as initial vaccine production may not suffice to vaccinate
everybody.

To develop predictive models, we leverage supervised machine learning methods that learn from given examples of
predictive variables and associated outcomes – the so called training set. Performance is then evaluated on a separate
test set. In the specific application of interest, we will focus on classification, a setting where the outcome is binary, e.g.,
someone is hospitalized or not.

Many models have been used to predict a patient admission to a hospital, mortality and other health care applications
based on comorbidities. Some examples include: predicting morbidity of patients with chronic obstructive pulmonary
disease [6], febrile neutropenia [7], as well as classifying the hospitalization of patients with preconditions on diabetes
[8], heart disease [9,10], and hospital readmission for patients with mental or substance use disorders [11]. Recent
advances in the machine learning literature have suggested that sparse classifiers, those that use few variables (e.g.,
l1-regularized Support Vector Machines), have stronger predictive power and generalize better on out-of-sample data
points than very complex classifiers [12]. Related work has shown that regularization is equivalent to robustness, that is,
learning models which are robust to the presence of outliers in the training set [13]. Moreover, the benefit of using
sparse predictors is the enhanced interpretability they provide for both the model and the results.

1.1 Objective

Construct data-driven predictive models using data from patients tested for SARS-CoV-2 to predict if a patient will (1)
be hospitalized, (2) die, (3) need treatment in an ICU, and/or (4) need a ventilator. To train and test these classifiers
we use a public dataset [14] made available by the Mexican government that contains individual information on:
demographics (e.g., location), preconditions (e.g., hypertension) and outcomes (e.g., admission to an ICU) for every
person who has been tested for SARS-CoV-2 in Mexico.

1.2 Main Contributions

• We provide descriptive statistics of the distribution of hospitalized and deceased patients given basic informa-
tion on preconditions and demographics.

• We develop interpretable models that not only predict the outcomes but also quantify the role of various
variables in making these predictions.

• The models we develop leverage data from Mexico. This can motivate additional work using the same data,
while the models could be applicable to other Latin American countries with similar population characteristics.
This adds to existing work using Electronic Health Records which has focused on patients in the US, Europe,
or Asia.

The remainder of the paper is organized as follows: In Section 2 we describe the data used accompanied by descriptive
statistics and preprocessing procedures. In Section 3 we describe the binary supervised classification models used and
the performance evaluation metrics employed. In Section 3, we present the main results. Discussion of the results can
be found in Section 4 and Conclusions in Section 5.
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2 Data Description and Preprocessing

2.1 Data

We use a dataset that has been open for the general public by the Mexican Government (and updated daily) [14].
These data include information about every person who has been tested for SARS-CoV-2 in Mexico. They include
demographic information such as: Age, Location, Nationality, the use of an indigenous language; as well as information
on pre-existing conditions, including whether the patient has: diabetes, chronic obstructive pulmonary disease (COPD),
asthma, immunosuppression, hypertension, obesity, pregnancy, chronic renal failure, other prior diseases, and whether
was or is using tobacco. In addition, the data report the dates on which the patient first noticed symptoms, the date when
the patient arrived to a care unit, and the date when the patient was deceased (if applicable). Finally, it contains fields
showing the result of the SARS-CoV-2 test, weather the patient was hospitalized, has pneumonia, needed a ventilator,
and if she/he was treated in an ICU.

As of May 1st, 2020, the data contain more than 91,179 observations out of which more than 20,737 account for positive
tests, around 15,000 tests are being processed, and the rest are negative test results. Table 2 1 provides a more precise
description of the dataset.

Total number of tests 91,179
Positive 20,737
Waiting for Result 15,445
Negative 54,997

Total number of patients hospitalized 24,099
Positive 8,221
Waiting for Result 4,389
Negative 11,489
Pneumonia 14,462
Need Ventilator 1,809
Need ICU 2,059

Number of observations with pre-conditions with non-negative test
Diabetes 6,042
COPD 825
Asthma 1,235
Immunosuppression 632
Hypertension 7,238
Pregnant 221
Cardiovascular disease 991
Obesity 6,998
Chronic renal insufficiency 820

Demographics of patients with non-negative test
Contact with a positive COVID case 11,355
Speak an indigenous language 466

Table 1: Descriptive statistics of data set as on May 1st, 2020.

2.2 Basic Analytics

We provide plots that help us observe trends in the data. We begin by disaggregating data into age groups. In the lower
plot of Figure 1 the number of observations of patients having a positive test or waiting their result per age is shown. In
addition, the upper bar plot denotes the percentage of the patients in a certain age range who have been hospitalized.
This information is aligned with the current knowledge on COVID-19, which indicates that older people have higher
risk of being hospitalized. Also, this plot suggests that the risk of being hospitalized increases linearly from the age of
thirty up to seventy-five and then plateaus. We ran an ordinary linear regression (OLS) to calculate the rate at which the
percentage of hospitalization increases for every additional year of age. The result indicates that the rate is 0.014 with
an R2 equal to 0.99. This suggests that the risk of hospitalization increases by approximately 1.4% for every year of
age between 30 and 75 years old.

Next, in Figure 2 we report the fraction of patients who have been hospitalized, deceased, needed an ICU or a ventilator
given a certain precondition. We observe that for both hospitalizations and deaths, preconditions such as chronic renal
insufficiency, COPD, diabetes, immunosuppression, cardiovascular disease and hypertension are critical. Nevertheless,
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Figure 1: Lower: Number of patients tested positive or waiting for result by age; Upper: Percentage of these patients that have been
hospitalized.

even though this gives us information about the risk of a precondition, it does not include the sensitivity regarding how
age and preconditions affect a patient with COVID-19.

To complement the previous table, we report the same metric by age group and by existing preconditions in Figure 3. To
that end, we create age groups for every five years and report results for groups with at least ten observations, otherwise
the bin is left blank. On the top row of the table, we include the statistic for a patient without any preconditions.
We observe that chronic renal insufficiency, diabetes and immunosuppression are among the preconditions that are
associated with a higher hospitalization rate.

Finally, we present histograms reporting the lag times among various states of the disease for the Mexican population.
For this analysis, we separate the data in three groups: individuals with ages between 0-20, 20-50, and patients over
50 years old. In Figure 4 (left), we plot the distribution of the number of days between the onset of symptoms and a
subsequent hospitalization. Figure 4 (center) depicts the distribution of time (days) between hospital admission and
death. Interestingly, we observe that a large portion of the patients who were hospitalized died the same day they were
admitted, potentially suggesting that deterioration of a patient’s condition is abrupt [15,16]. The rest of the distribution
behaves like the tail of a Weibull distribution with very few patients being hospitalized for more than three weeks.
Finally, Figure 4 (right) shows the distribution of the number of days between the onset of symptoms and death (the
mean is 9.8 days).

2.3 Preprocessing

2.3.1 Removing outliers

We found a few outliers which are easily identified, for example, the pregnancy of male patients, the date of death of a
patient being earlier than the day the patient was admitted to the hospital. Such data points were removed from the
dataset.

2.3.2 One-hot encoding

The data contain precondition features reported as categorical. Specifically, each of these precondition features takes
the value yes, no, unknown or unspecified. We generate one-hot encoding for all these features. One-hot encoding
converts the categorical feature to multiple binary variables by creating auxiliary variables that help distinguish between
the different categories of a feature. For the case of our data, one-hot encoding generates three binary variables for
each specific precondition; these variables (as opposed to categories) are: no, unknown and unspecified. Then, for each
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Figure 2: Fraction (%) of patients with a precondition that have been hospitalized, have died or required an ICU or ventilator.
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Figure 3: Fraction of population per age being hospitalized given a precondition.
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Figure 4: Histograms showing (a) the time between the onset of symptoms and admission date, (b) the time between hospital
admission and death, and (c) the time between the onset of symptoms and death.

observation, at most one of these variables will be active, pointing to the correct value for the original feature. If none
of the three is active, then the value of the precondition is yes.

2.3.3 Removing correlated variables

We find and delete variables that are highly correlated since they, in general, provide similar information. Specifically,
we compute pairwise correlations among the variables, and remove one variable from each highly correlated pair (using
a threshold of 0.8 for the absolute correlation coefficient). We found that the correlated binary features were the ones
corresponding to unknown or unspecified for preconditions. This is because observations that contain an unknown or
unspecified value, typically have this same value for all preconditions (not just for one), indicating potential issues in
data gathering. Hence, we remove all these auxiliary variables denoting unknown or unspecified preconditions.

3 Methods and Metrics

In this section, we briefly introduce the methodologies used to build the binary classifiers. For each model, we train
the classifier using four different supervised classification methodologies: sparse Support Vector Machines (SVM) ,
sparse Logistic Regression (LR), Random Forests (RF) and gradient boosted decision trees (XGBoost). For healthcare
applications, the first two are preferable due to their interpretability. In turn, the last two are the state-of-the-art
classification algorithms today and will serve as a basis to compare the accuracy of the interpretable methods with
the non-interpretable benchmark models. Appendix B provides details on these methods, particularly because the
robust/sparse LR and SVM formulations are not standard.

3.1 Cross-Validated Recursive Feature Elimination

Classifiers based on few variables are desirable because they have stronger predictive power, generalizing better
out-of-sample, and offering enhanced interpretability. Aiming to reduce the number of variables, we employ a Recursive
Feature Elimination (RFE) procedure [17] to find the variables that optimize a given performance metric. The general
framework of this algorithm begins by building a classifier using all the features and computing an importance score for
each predictor. In the case of Logistic Regression or Linear SVM, we use as important score the absolute value (or
magnitude) of the linear coefficient βi of feature i. After this step, the least important feature (the one with the smallest
|βi|) is deleted from the dataset. We repeat iteratively this process until we are left with one feature. Then, for each
of these iterations we report the performance of the model and we pick the set of features that maximize this value.
Additionally, at each iteration, we use cross-validation to tune the hyper parameters of the classifier to achieve the best
performance.

3.2 Performance Evaluation

The primary objective of learning a classifier is to maximize the prediction accuracy, and in our health care setting offer
interpretability of the results.
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We characterize the prediction accuracy of a classifier using two commonly used metrics: (1) the false positive (or false
alarm) rate which measures how many patients were predicted to be in the positive class, e.g., hospitalized, while they
truly were not, as a fraction of all negative class patients. In the medical literature, the term specificity is often used and
it equals 1 minus the false positive rate. (2) The detection rate that captures how many patients were predicted to be on
the positive class while they truly were, as a fraction of all positive class patients. In the medical literature, the detection
rate is often referred to as sensitivity or recall. Another term commonly used is precision defined as the ratio of true
positives over true and false positives.

A single metric that captures both types of error is the Area Under the Curve (AUC) of the Receiver Operating
Characteristic (ROC). ROC plots the detection rate (or sensitivity or recall) over the false positive rate. A naı̈ve random
selection (assigning patients to classes randomly) has AUC of 0.5 while a perfect classifier an AUC of 1.

To complement the AUC metric, we report an accuracy metric that computes the ratio of the number of correct
predictions over all predictions. Additionally, we compute the F1 score for each class, which is the harmonic mean of
precision and recall for that class. We report the weighted F1 score which takes a weighted average of the two per-class
F1 scores using as weights the support of each class (normalized over all samples). We finally note that all metrics
we report are computed on a randomly selected test set of patients (i.e., out-of-sample) which has not been used for
training the models.

4 Results

We build binary classification models to predict hospitalization, mortality and the need for an ICU or ventilator. At a
minimum, all models use a set of base features composed by: age, gender, diabetes, COPD, asthma, immunosuppression,
hypertension, obesity, pregnancy, chronic renal failure, tobacco use, other disease, as well as the SARS-CoV-2 test
result which is either positive or pending (we exclude all negative cases to train our models). In this section, we provide
a summary of the results while in the Appendix A we provide all results.

4.1 Hospitalizations

Our first model predicts if a patient who has tested positive or is waiting for the test result will be hospitalized given
their base features. This model has a moderate accuracy for all methodologies employed which accounts for an AUC of
0.62 and an accuracy of classifying 61The coefficients of the SVM and LR models have the same trend and suggest
that the features that contribute the most for predicting the hospitalization of a patient are: age, gender, chronic renal
insufficiency, diabetes, immunosuppression or if the patient is pregnant. The rest of the variables (COPD, Obesity,
Hypertension, Other, Tobacco Use, Cardiovascular disease and Asthma) have a much smaller impact. It is however
possible that some of these variables have smaller coefficients because the effect is captured by another highly correlated
variable (e.g., obesity and diabetes).

4.2 Mortality

We explore two models to predict mortality. The first model assumes we only know the base features of a patient
whereas the second model includes variables that indicate if the patient has been hospitalized or not, has pneumonia, or
has needed an ICU or ventilator. The reason to consider the first model is to have a classifier which identifies which
patients are the most vulnerable prior to hospitalization, while the second model predicts the mortality of an individual
in the hospital by using information on how the disease is progressing. In order to have a more balanced dataset and to
detect better the deceased class, we ran this model only on the observations of patients who have been hospitalized and
have been tested positive or are waiting for their test result.

Prior to attending a healthcare facility. This model considers the case in which we only know the base features of
a patient. When running this model, we are able to predict with 73% accuracy and with an AUC equal to 0.69 the
mortality of a patient.

After attending a healthcare facility. We also consider the case in which we have information about the hospitalization,
pneumonia ICU and ventilator of a patient. This classification task achieves an AUC of 0.74 with an accuracy of 76%.

Both interpretable models, LR and SVM, suggest that the variables that are critical for predicting mortality are the
patient’s age, test status, immunosuppression and pregnancy. For the model that has more features, as expected,
information about the need for ventilator and ICU are highly relevant when predicting mortality.
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4.3 ICU need

Similar to the mortality case, we train two classification models to predict the need for an ICU.

Prior to knowing if patient has developed pneumonia. By only using the base features, we achieve an accuracy of
80% with an AUC of 0.54.

Knowing if a patient has developed pneumonia or not. The results for this model suggest that information about
pneumonia is relevant for predicting ICU need as it raises the accuracy of the model to 82% and the AUC to 0.63.

In these cases, SVM and LR suggest that information on: development of pneumonia (if available), cardiovascular
disease, asthma, and test result are among the features with higher importance for predicting the need for an ICU.

4.4 Ventilator Need

Similar to the mortality and ICU models, we develop two versions of the model.

Prior to knowing if patient has developed pneumonia or needs an ICU. The accuracy of this model is higher than
both the mortality and the ICU models, achieving an accuracy of 81% and an AUC of 0.56.

Knowing if a patient has developed pneumonia or not and the need for an ICU. This model suggests, as expected,
that this additional information is relevant for predicting ventilation need. It increases its accuracy to 83% and the AUC
to 0.77.

As in the mortality case and the ICU case, both interpretable models are consistent and have an accuracy comparable or
higher than RF and XGBoost. Moreover, both models classifying the need for a ventilator show that information on
ICU and pneumonia (if available), age, gender, cardiovascular disease, obesity, pregnancy, and test result are the most
relevant features for predicting the need for a ventilator given that a patient has tested positive or is waiting for a test
result.

5 Discussion

Overall, the models we develop range from moderately to significantly accurate. Predicting hospitalizations appears
harder just based on the basic variables at our disposal, particularly considering all patients who have a positive test or
with a test pending. Potential additional features are at play including state of health (measured through detailed lab
results) and the viral load they were exposed to. Furthermore, a number of hospitalizations are driven by socioeconomic
factors, e.g., the living arrangements of a patient and whether he/she can pose infection risk for many others. Still,
an AUC of 0.62 is significantly better than random and the results could help tighten estimates on the number of
hospitalizations expected.

From an actionable and planning perspective, predicting ICU treatment and ventilator need are quite useful. These
models can be quite accurate, achieving accuracies of 82% and 84%, respectively, when information on how the disease
is progressing is taken into account (e.g., development of pneumonia). Similarly, the mortality model can achieve an
accuracy of 76%. Again, it is important to emphasize that we lack very important information, such as lab results,
which can characterize the state of the patient prior to hospitalization and throughout its duration.

An interesting observation is that interpretable models (such as LR and SVM), when used in conjunction with
robustness/regularization approaches and elaborate feature selection procedures, can lead to performance that is
comparable, if not better than more complex and expensive classifiers. The significant advantage of the former models
is that they are interpretable and provide information on which variables drive the predictions.

To the extent that these risk models can be used to prioritize the use of resources, we understand that medical risk is not
the only factor in making such decisions. Nevertheless, in order to quantify medical risk one can leverage the models
presented in this work.

6 Conclusion

We develop models to identify the medical risk of a patient with (or suspected for) COVID-19. We hope this work can
help hospitals and policymakers to distribute more effectively their limited resources including tests, ICU beds and
ventilators, as well as, to motivate countries and healthcare systems to standardize and share data with the medical
informatics community. Moreover, we hope this research spreads the knowledge of the existence of this public dataset
and motivates researchers to work with these data. Finally, we hope that risk models are taken into account to fine-tune
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social distancing advisories, moving from “blanket” to risk-based, as well as prioritizing vaccine distribution to the
more vulnerable and to those who need to interact with the more vulnerable. For the sake of reproducibility and to
facilitate the analysis for further research we have made open source our models and results on a Github repository [18].
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9 Appendix A

9.1 Hospitalizations

Performance:

SVM LR RF XGBoost

Accuracy 0.609 0.609 0.591 0.606
F1w 0.607 0.607 0.593 0.601
AUC 0.622 0.622 0.612 0.620

Coefficients:

SVM LR

Age 1.000 1.000
Pregnant 0.166 0.172
Chronic Renal Insufficiency 0.156 0.167
Diabetes 0.181 0.165
Immunosuppression 0.139 0.139
COPD 0.097 0.094
Obesity 0.081 0.083
Other 0.046 0.046
Hypertension 0.045 0.039
Tobacco Use 0.007 0.007
Cardiovascular Disease -0.008 -0.005
Asthma -0.062 -0.065
Gender -0.119 -0.121

9.2 Mortality

9.2.1 Prior to attending a healthcare facility.

Performance:

SVM LR RF XGBoost

Accuracy 0.722 0.729 0.728 0.728
F1w 0.637 0.631 0.613 0.615
AUC 0.680 0.687 0.674 0.685

Coefficients:

SVM LR

Age 1.000 1.000
Immunosuppression 0.215 0.175
Other 0.157 0.141
Asthma 0.131 0.114
Chronic Renal Insufficiency 0.129 0.110
Obesity 0.105 0.104
Hypertension 0.093 0.087
Pregnant 0.179 0.087
Diabetes 0.084 0.077
COPD 0.062 0.042
Cardiovascular Disease 0.048 0.027
Tobacco Use -0.062 -0.055
Gender -0.123 -0.116
Test Result -0.565 -0.778

9.2.2 After attending a healthcare facility

. Performance:

SVM LR RF XGBoost

Accuracy 0.761 0.762 0.752 0.762
F1w 0.717 0.711 0.647 0.705
AUC 0.729 0.744 0.744 0.752

Coefficients:

SVM LR

Age 1.000 1.000
Ventilator 0.638 0.486
Pregnant 0.294 0.222
Immunosuppression 0.222 0.200
Other 0.147 0.139
Asthma 0.146 0.139
Obesity 0.136 0.132
Chronic Renal Insufficiency 0.122 0.112
Pneumonia 0.103 0.108
Hypertension 0.089 0.086
Diabetes 0.090 0.086
ICU 0.095 0.067
COPD 0.067 0.051
Cardiovascular Disease -0.011 -0.012
Tobacco Use -0.077 -0.069
Gender -0.096 -0.095
Test Result -0.545 -0.718

9.3 ICU Need

9.3.1 Prior to knowing if patient has developed
pneumonia

.

Performance:

SVM LR RF XGBoost

Accuracy 0.799 0.799 0.799 0.799
F1w 0.710 0.710 0.710 0.710
AUC 0.538 0.548 0.541 0.554

Coefficients:
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SVM LR

Age 1.000 1.000
Obesity 0.532 0.502
Pregnant 0.830 0.488
Cardiovascular Disease 0.564 0.455
Asthma 0.457 0.364
Other 0.223 0.170
Diabetes 0.064 0.052
Hypertension -0.000 0.000
Immunosuppression -0.202 -0.159
COPD -0.277 -0.209
Tobacco Use -0.266 -0.250
Chronic Renal Insufficiency -0.340 -0.316
Gender -0.372 -0.368
Test Result -0.777 -0.843

9.3.2 Knowing if a patient has developed pneumonia
or not

Performance:

SVM LR RF XGBoost

Accuracy 0.822 0.822 0.822 0.822
F1w 0.741 0.741 0.741 0.741
AUC 0.623 0.633 0.630 0.639

Coefficients:

SVM LR

Pneumonia 1.000 1.000
Cardiovascular Disease 0.527 0.319
Asthma 0.425 0.276
Other 0.257 0.167
Obesity 0.228 0.163
Age 0.198 0.144
Immunosuppression 0.204 0.126
Hypertension 0.042 0.025
Diabetes 0.024 0.016
Pregnant 0.198 0.000
Tobacco Use -0.030 -0.016
Chronic Renal Insufficiency -0.108 -0.052
Gender -0.228 -0.172
COPD -0.287 -0.185
Test Result -0.407 -0.334

9.4 Ventilator Need

9.4.1 Prior to knowing if patient has developed
pneumonia or needs an ICU

.

Performance:

SVM LR RF XGBoost

Accuracy 0.805 0.805 0.805 0.805
F1w 0.718 0.718 0.718 0.718
AUC 0.557 0.560 0.541 0.560

Coefficients:

SVM LR

Age 1.000 1.000
Obesity 0.595 0.519
Cardiovascular Disease 0.360 0.254
Tobacco Use 0.135 0.097
Hypertension 0.090 0.081
Diabetes -0.009 0.000
Chronic Renal Insufficiency -0.018 0.000
COPD -0.063 -0.017
Immunosuppression -0.162 -0.134
Other -0.198 -0.184
Asthma -0.261 -0.196
Pregnant -0.486 -0.297
Gender -0.396 -0.387
Test Result -0.748 -0.769

9.4.2 Knowing if a patient has developed pneumonia
or not and the need for an ICU

.

Performance:

SVM LR RF XGBoost

Accuracy 0.827 0.830 0.818 0.825
F1w 0.810 0.809 0.736 0.791
AUC 0.774 0.773 0.770 0.779

Coefficients:

SVM LR

ICU 1.000 1.000
Pneumonia 0.233 0.724
Age 0.174 0.275
Chronic Renal Insufficiency 0.072 0.122
Obesity 0.066 0.113
Cardiovascular Disease 0.064 0.097
Tobacco Use 0.029 0.043
Pregnant -0.079 0.000
Hypertension -0.012 -0.013
COPD -0.013 -0.013
Diabetes -0.012 -0.020
Immunosuppression -0.056 -0.034
Other -0.047 -0.074
Gender -0.045 -0.081
Asthma -0.061 -0.083
Test Result -0.064 -0.117
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10 Appendix B

For all models we will assume we are given training data xi ∈ RD , where we use bold letters to denote vectors, and
classification labels yi = {0, 1} for all i = 1, . . . , n, where D is the number of variables in the data set, xi is the vector
of variables for the i-th patient, and n is the number of samples (or patients).

10.1 Sparse Linear Support Vector Machines

A support vector machine (SVM) is a binary classifier that seeks to find a separating hyperplane in the feature space, so
that the two classes reside on opposites sides [24]. The main idea of the SVM is to maximize the margin between the
data and the chosen hyperplane, where the margin is defined as the distance of the closest data point in a class to the
margin. Unfortunately, in many cases the data are not linearly separable, meaning that there is no hyperplane able to
perfectly separate all points. The so-called soft-margin SVM tolerates this misclassification, and it is formulated as
follows:

min
β0,β,ξi

1

2
‖β‖2 + C

n∑
i=1

ξi + ρ||β‖1

s.t. ξi ≥ 0, ∀ ∈ 1, ..., n

yi(x
′
iβ + β0) ≥ 1− ξi, ∀i ∈ 1, ..., n

where the hyperplane is characterized by the perpendicular vector and the intercept (β, β0), and the variables ξi are
used to identify the misclassification of a point which is penalized by C. For SVM, the labels are assumed to be in
{−1, 1}. What is different than a standard SVM formulation is the use of an l1-norm regularizer, inspired by robustness
arguments [13]. The scalar ρ represents the strength of the regularizer. This problem can be reformulated as a convex
quadratic programming problem which can be solved using standard solvers.

10.2 Sparse Logistic regression

Similar to sparse SVM, logistic regression (LR) [25] is an interpretable binary linear classifier. The key idea is to
model the posterior probability of the outcome yi (e.g. a patient being hospitalized) as a logistic function of a linear
combination of the features xi. To that end, it uses parameters θ that weigh the input features and an offset θ0. These
parameters are selected by maximizing the log-likelihood of a function by the use of gradient-based algorithms. LR
has been particularly popular in the medical literature because it predicts the probability that a sample belongs to the
positive (or negative) class. In this work, we employ a sparse logistic regression. This is an l1-regularized logistic
regression which includes in the objective function an extra term proportional to ‖θ‖1 in the log likelihood sense. Same
as in sparse SVM, the motivation to include this term is to render the predictor more robust [26]. Formally, the problem
is defined as

min
θ,θ0

n∑
i=1

(− log p(yi|xi;θ, β0)) + λ‖β‖1

where p(yi = 1|xi;θ, θ0) = 1/(1 + e(−θ0−θ
′xi)) = 1 − p(y = −1|xi;θ, θ0) , and λ is a parameter controlling the

sparsity term. When λ = 0, we have the standard logistic regression model.

10.3 Random Forests

This type of classifiers is one of the most precise models for binary classification today. Random Forest (RF) [27]
are part of a bigger class of predictors called ensemble methods. The main idea of ensemble classifiers is to reduce
the variance of an estimated predictor by training many noisy but approximately unbiased models and making the
classification decision based on the majority of vote of these weak classifiers. In particular, RF is an ensemble of
decision trees (DT) [28]. To grow each DT of the RF, the model uses data obtained through random sampling with
replacement from the training set. A DT is fully grown until a minimum size (or depth) is reached. Even if the decision
of an individual DT is very noisy due to the sampling process, the average of many DTs is not, as long as these trees are
not highly correlated. RFs are easy and fast to implement to large data sets and do not have a high risk of overfitting. A
general disadvantage of these methods is the lack of interpretability as every prediction is obtained by majority voting
of many (hundreds or thousands) of DTs. weak and small DTs.

13

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 8, 2020. ; https://doi.org/10.1101/2020.05.03.20089813doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.03.20089813
http://creativecommons.org/licenses/by-nc-nd/4.0/


10.4 XGBoost

Similar to RF, XGBoost (which stands for Extreme Gradient Boosting) [29] is a decision-tree-based ensemble model that
uses a gradient boosting framework. In prediction problems involving unstructured data (images, text, etc.) deep neural
networks tend to outperform all other algorithms or frameworks. However, when it comes to small-to-medium structured
tabular data, as is the case for our application in hand, decision tree based algorithms are considered best-in-class.

Similar to RF, XGBoost has great accuracy but lacks interpretability and it is included in this work as a benchmark.
This classifier, as of today, has been credited with winning numerous Kaggle competitions [30] and has being used
widely in cutting-edge industry applications.
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