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Abstract

The global pandemic due to the emergence of anovel coronavirus (COVID-19) isathreat to
humanity. There remains an urgent need to understand its transmission characteristics and design
effective interventions to mitigate its spread. In this study, we define a non-linear (known in
biochemistry models as allosteric or cooperative) relationship between viral shedding, viral dose
and COVID-19 infection propagation. We develop a mathematical model of the dynamics of
COVID-19 to link quantitative features of viral shedding, human exposure and transmission in
nine countries impacted by the ongoing COVID-19 pandemic, and state-wide transmission in the
United States of America (USA). The model was then used to evaluate the efficacy of
interventions against virus transmission. We found that cooperativity was important to capture
country-specific transmission dynamics and leads to resistance to mitigating transmission in mild
or moderate interventions. The behaviors of the model emphasize that strict interventions greatly
limiting both virus shedding and human exposure are indispensable to achieving effective
containment of COVID-19. Finaly, in the USA we find that by the summer of 2021, a difference
of about 1.5 million deaths may be observed depending on whether the interventions are to be
maintained strictly or lifted in entirety.

NOTE: This preprint reports new research that has not been certifi(].fd by peer review and should not be used to guide clinical practice.
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Introduction

A novel disease (COVID-19)"3, which was first detected in December 2019 and then found to be
caused by a newly discovered coronavirus, severe acute respiratory syndrome coronavirus-2
(SARS-CoV-2), has become a global pandemic, causing millions of infections, and claiming
more than 240,000 lives as of the time of this publication. In response to the outbreak of
COVID-19, some countries such as Chinalaunched extremely aggressive, unprecedented actions
including social distancing measures, school and workplace closures, travel bans, centralized
quarantine of infected individuals, and contact tracing using cell phone tracking. While new
infections and deaths have been greatly reduced in China*® and in some other countries, the
disease israpidly spreading in many countries, among which the United States, with mixed
efforts to limit transmission, has suffered from the highest number of confirmed cases and deaths.
It speaks for itself the importance and urgency of understanding what interventions may best
serve public health. A knowledge about the underlying mechanisms governing virus transmission
dynamics gives insight into this question.

Mathematical models have been used to understand the transmission dynamics of epidemics’
from seasonal influenza® to the Ebolavirus’®, forecast their outbreak and spread, and evaluate the
efficiency of interventions in containing these diseases™. The most widely applied mathematical
models in epidemiology are compartmental models, for instance, the
susceptible-infected-recovered-deceased (SIRD) model, in which the total population is divided
into several categories susceptible, infected, recovered, and deceased, between which exchange

occurs. These models have served a fundamental role in reaching a quantitative understanding of
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transmission characteristics of COVID-19, such as estimation of basic reproduction number (Ro),
incubation period, and fatality rate™*®, and evaluation of the efficacies of interventions®®%°,
While these models have greatly contributed to our current understanding of the COVID-19
pandemic, they lack information on infection mechanisms by SARS-CoV-2 and overlook the
guantitative relationship between the rate of infection and viral exposure such as what would
happen during a super-spreader event. Instead, spread of the disease istaken to be directly
mediated by interactions between infected and susceptible individuals, which are assumed to
occur through linear relationships, thus creating a gap between the modeling tools currently
available and the knowledge about detailed parameters of the virus, such asrates of virus
shedding and decay®®#, source-dependent viral dose?®?, and dose dependent infectivity®*, for
which experimental data have been collected but not yet used in the development of quantitative
models of the pandemic®.

Here, we develop anovel mathematical model for the transmission dynamics of COVID-19.
We show that the cooperativity in infection between uninfected and infected individualsis
critical in explaining the transmission dynamics of COVID-19 in countries most severely
impacted by the pandemic. Cooperativity has along history in the study of biological dynamics
that began with models of ligand binding to receptors with multiple binding sites and has
numerous applications to understand fundamental molecular processesin living cells such as
gene transcription and signal transduction®#’. Despite the complexity in the pathology of

diseases such as COVID-19, there exists a mechanistic similarity between the binding of aligand

and activation of areceptor with multiple binding sites, and the release of virus from an infected
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person and transmission to an uninfected host which can be multiplicative through many avenues.
Transmission can amplify from one person through airborne transmission and other
dissemination of infectious liquid droplets. Preliminary studies on the dose-dependent response
to virusinfection have also demonstrated that the relationship between viral exposure and
infection is non-linear, suggesting that the infection kinetics is more complicated than assumed

in the original epidemic models?®. Thus, consideration of such non-linearity may offer novel
insights about how the virusis transmitted, how the pandemic can be effectively controlled, and
how much the current public health interventions have contributed to its containment or lack
thereof.

Our mathematical models indicate that, the transmission of COVID-19 isintrinsically
resistant to weak-to-moderate interventions because of the cooperativity of virusinfection,
thereby requiring only aggressive interventions to mitigate its spread. As an example, evaluation
of the COVID-19 transmission characteristics in the USA shows that the current schemes of
interventions, which were temporarily strong but on average weak-to-moderate, may have saved
over 500,000 lives as of July 15, 2020, and will have saved over 2.5 million lives by June 2021 if
the interventions are to be maintained at their peak strength. The early lifting of interventionsis
unfortunately predicted to cost about 1.5 million lives and the COVID-19 pandemic in the
United Statesis unlikely to be contained by current interventions without a large loss of human

life.

Results
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A cooper ative infection model correctly captures country-specific COVID-19 transmission
dynamics

To incorporate viral dose and cooperative infection into compartmental infectious disease models,
we introduced a variable V quantifying the abundance of the virusto a reduced SIRD model in
which the total number of recovered (R) and deceased (D) people are treated as asingle variable,
non-susceptible (N) population (Figure 1A, Methods). The reason for using a reduced model
instead of the original SIRD model is that the rates for the transition from infected (1) to
recovered (R) and deceased (D) are both proportional to the number of infected individuals (1),
thus the sum of these two, N, also changes with arate proportional to |. Moreover, a mode with
fewer parameters has the advantage of reducing parameter uncertainty and better avoiding
overfitting. Using a standard mathematical term describing the cooperative relationship between
V and infection of susceptible individuals by viable virus particles, we derived three variations of
the original SIRD model, including the reduced SIRD model, the reduced SIRD model with virus
pool, and the reduced SIRD model with virus pool and cooperative infection (Figure 1A,
Methods). Cooperativity was modeled using a Hill function with two parameters accounting for
the levels of cooperativity and saturation in response to viral dose, respectively (Methods). These
models were then compared as to their accuracy in fitting data consisting of COVID-19 case
numbers, recovered and deceased individuals in the nine countries with the highest and still
rapidly increasing numbers of COVID-19 infections and deaths, which indicate ongoing
COVID-19 pandemic as of Apr 3, 2020. These countries include USA, Turkey, UK, Spain, Italy,

Germany, France, Switzerland, and Iran. Accuracy of fit was determined by a cost function
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defined as the mean squared deviation between simulated and actual daily numbers of infected
individuals and non-susceptible individuals on dates within the time window between the
confirmation of the first infection in the country and Apr 3, 2020 (Figure 1B). We found that
among the three models, the reduced SIRD model with a virus pool and cooperative infection (i.e.
the cooperative infection model) reached higher accuracy compared to the other two modelsin
all countries, and was able to generate satisfactory fitting (i.e. optimal cost function < 0.005,
which means that the mean error for each data point is less than 7.07% of the maximal value of
actual data over the entire time course) in 7 out of the 9 countries (Figure 1C). By contrast, the
two models without cooperative infection generated satisfactory fitting in only two countries,
and the addition of the virus pool to the reduced SIRD model did not increase thefitting
accuracy of the model despite the increased complexity of model (absolute differencein
-log10(Optimal value of cost function) smaller than 0.003 for all countries, Figure 1C),
suggesting that consideration of cooperativity in infection is critical for the model to accurately
predict the COVID-19 transmission dynamics. We also performed a sensitivity analysis
assuming that 50% or 80% of the infections were undocumented and repeated all analyses using
the adjusted data, to confirm that the model is consistent with the COVID-19 transmission
dynamics and that al conclusions are unaffected in the presence of reporting or testing biases
(Methods) . The cooperative infection model also includes parameters directly related to other
factors contributing to the viral dose dynamics, such as rate constants for virus shedding and
decay, and parameters quantifying the overall susceptibility of healthy population to the virus

and efficiency of patient clearance (Figure 1D). Inference of these parameters from COVID-19
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transmission datain different countries would offer valuable insights into the intrinsic properties

of the virus and its specific transmission characteristics in each country.

The cooper ative infection model predicts country-specific COVID-19 transmission
dynamics

To predict COVID-19 transmission dynamicsin the seven countries where the cooperative
infection model was consistent with its previous transmission dynamics, we simulated the model
over atime window of 80 days starting from February 15, 2020 with parameter sets that
satisfactorily fit the data for each country. Parameter sets generating satisfactory fits were
obtained by sampling the parameter space (Methods). We found that, in the absence of
intervention, all seven countries were predicted to undergo significant increase in the number of
infected individuals, especially for the countries UK, USA and Turkey, for which the numbers of
infections were predicted to increase rapidly without any tendency of slowdown (Figure 2A,
Supplementary Figure 1). To understand COVID-19 transmission characteristicsin different
countries, especially those predicted to face more future challenges, we examined distributions of
parameters determining the transmission dynamics in each country (Figure 2B). We found that
the two model parameters that significantly differ across countries are related to the susceptibility
of the healthy population to infection (k) and the efficiency of patient clearance (a), while
parameters quantifying viral dose dynamics (c and d) and the cooperativity in response to viral
dose (n and K) showed no difference between countries (Figure 2B). These results further

support the use of the cooperative infection model because parameters for virus shedding, decay
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and dose response are directly determined by intrinsic properties of the virus?, thus we expect
values of these parameters to be indistinguishable between countries, while the susceptibility of
the healthy population and efficiency of patient clearance reflects the performance of public
health measures and the healthcare systems which are country-specific. Notably, USA, UK and
Turkey are the three countries with lowest efficiency of patient clearance among the seven
countries, while the USA population was also found to suffer from the highest susceptibility to

infection.

Extremely strict interventions are needed to control the COVID-19 pandemic

We next assessed efficiency of different intervention strategies by simulating their influences on
model-predicted disease transmission dynamics. We considered two scenarios of intervention:
the infected individual-based intervention that targets the infected population to reduce virus
shedding from the infected individuals, and the population-based intervention that limits both
virus shedding from infected individuals and exposure of susceptible individualsto the virus.
The two scenarios of intervention were modeled by introducing a coefficient « that quantifies
the strength of intervention, to the cooperative infection model (Figure 3A). We considered three
different levels of intervention strength ranging from strong to weak (Figure 3B), which are
approximately equivalent to the approximate efficiency of N95 respirators («¢ = 0.1), surgical
masks (@ = 0.2), and homemade masks (a = 0.5)***°. Assuming that the intervention starts at
48 days after the onset of the pandemic in the country (i.e. the date when the first COVID-19

case in the corresponding country was confirmed), we simulated the infection dynamics over a
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time window of 100 days starting from the onset of pandemic (Figure 3C, Supplementary Figure
2) and computed the relative number of infected individuals 100 days after the onset (Figure 3D).
Notably, we found that only population-based interventions with extremely high intervention
strength (@ = 0.1, equivalent to al people wearing N95 respirators) were sufficient to effectively
prevent the growth of infected population (number of infected individuals on day 100 < 15% of
the number in the absence of interventions for all countries except for Turkey and 39.8% for
Turkey, Figure 3D). Taken together, these results suggest that in response to the COVID-19
pandemic, extremely strict interventions that affect the entire population are indispensable to

prevent the spread of the disease.

Cooperative infection resultsin resistance to public health inter ventions

To understand how inclusion of the cooperative infection term contributes to the response of
COVID-19 transmission dynamics to interventions, we next examined how the cooperative
infection term H, which determines the rate of infection together with the susceptibility of
healthy population and number of susceptible individuals (Figure 4A), depends on the dose of
viable virus. For each country, we simulated the relationship between the viral dose and the
cooperative infection term using 5,000 parameter sets (Figure 4B). We found that, compared to a
linear relationship, the cooperative infection term H has the tendency of amplifying arelatively
small concentrations of virus, resulting in higher sensitivity to lower viral doses (i.e. small
amount of virusis able to cause a considerable number of infections) and stronger resistance to a

reduction in viral dose (i.e. moderate reduction in viral dose isinsufficient to effectively prevent
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the infections). We further illustrate this feature of the cooperative infection model by simulating
the influence of different levels of viral concentration reduction on the value of cooperative
infection term (Figure 4C). We found that, under a moderate-to-strong intervention that reduces
the viral concentration by 90% (the left panel), the value of the cooperative infection term was
only reduced by around 40% to 70% (values ranging from 44.9% for Germany to 68.6% for UK
based on parameters with optimal fitting, left pand of Figure 4C, yellow stars). Thisfinding
indicates that the majority of infections cannot be prevented by these interventions. On the other
hand, under an extremely strong intervention that removes 99% of the virus (the right pandl), the
value of cooperative infection term was effectively reduced by the extent of more than 90%
(values ranging from 93.0% for Italy and 97.3% for France, right panel of Figure 4C, yellow
stars). Taken together, these results demonstrate that the cooperativity in infection, which has
been found to be indispensable for the model to accurately reproduce country-specific
COVID-19 transmission dynamics in our previous analysis, dampens the effects of interventions,

thus requiring extremely strong interventions to effectively mitigate the pandemic.

Transmission characteristicsof COVID-19in the United States of America

The USA has suffered from the highest numbers of infections and deaths among all countries,
and the numbers of infections and deaths caused by COVID-19 are increasing, especially after
most states have entered the initial phases of reopening in June and July of 2020. It is therefore
important to understand whether the temporally varying public health responses and

interventions, such aslockdowns, stay-at-home orders, travel restrictions and recommendations
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of wearing masksin public space, have effectively prevented the spread of COVID-19 and
protected the health of the U.S. population, which reside in all sorts of neighborhoods that
greatly differ with each other in cultural, social and economic factors.

To understand the state by state temporal heterogeneity in how public health interventions
have shaped the COVID-19 transmission dynamicsin the USA, we built state-by-state
COVID-19 transmission models with the consideration that the strength of public health
intervention may change with time (Figure 5A, Methods). Four different phases were model ed:
aninitial phase when thereis no intervention; a ‘start of intervention’ phase in which the
intervention strength beginsto rise (i.e. the intervention coefficient « decreases) and finally
reaches its peak value; a‘ maintenance of intervention’ phase during with the peak value of
intervention strength is maintained; and, finally, a‘lifting of intervention’ phase in which the
intervention strength decreases with time. Parameters determining lengths of each phase and the
rates of intervention strength changes were then estimated by fitting actual state-wide COVID-19
transmission data.

We fit the model to data of COVID-19 infections, deaths and recoveries during the timespan
from Jan 22, 2020 to July 15, 2020 in all 51 territories of the USA, including all 50 states and the
District of Columbia (Figure 5B, S3). We found that the model satisfactorily fit the datain most
of the territories (optimal cost function value < 0.005 in 40 out of 51 territories, Figure S3),
confirming that the model correctly captures the spatially heterogenous COVID-19 transmission
dynamicsin the USA. Next, to evaluate the efficiency of public health responsesin containing

COVID-19 spread in each state and territory, we predicted the daily numbers of infections and
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deathsin the timespan from July 16, 2020 to June 5, 2021 in each state and territory, and
computed the nationwide numbers of infections and desths, assuming that the current scenarios
of interventions were left unchanged (Figure 5C, ‘ current intervention’), interventions were
completely absent (‘no intervention’), or interventions were never lifted once the peak strengths
were reached (‘no lifting of intervention’). We found that, the current interventions have saved
over 500,000 lives as of July 15, 2020, and will have saved around 1 million lives at the
beginning of June 2021 (5.22x10°as of July 15, 2020 and 1.01x10° as of June 1, 2021, Figure 5C).
Notably, if in any state the interventions were never lifted, the number of lives saved by the summer
of 2021 will rise to over 2.5 million (2.54x10° lives saved as of June 1, 2021). In other words, the
number of lives cost by lifting the interventions early can exceed the number of lives saved by
imposing the interventions in the first place. This may bring into question the decision to reopen
states before the pandemic is completely under control. Model-computed numbers of lives saved by
intervention and cost by lifting interventions were also comparable to each other in most of the states
(Figure 5D). Finally, the peak values of intervention strength coefficient a(t) inthese states are
distributed around 0.2 (median value = 0.202, Figure 5E, $4), while the average valuesof a(t) over
the timespan of Jan 22, 2020 to July 15, 2020 were higher than 0.5 in almost all states (44 out of 51,
Figure 5E, $4). Recalling our finding that only extremely strong interventions (i.e. a < 0.1) are
sufficient to prevent the transmission of COVID-19, these results reveal that in amost all states, the
public health interventions are not strong enough to fully mitigate the COVID-19 pandemic, although

they have mitigated its transmission and saved lives to some extent.
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Discussion

In this study, we have developed a mathematical model for the transmission dynamics of COVID
19 based on the concept of cooperativity in biology. The model was found to accurately
reproduce the transmission dynamics of COVID-19 in seven countries that are most severely
impacted by the pandemic while models without the cooperative infection were inconsistent with
available data. These findings highlight the importance of cooperativity in shaping population
level responses to an infectious virus and offer new insights into the transmission dynamics of
infectious diseases. Notably, the cooperativity in infection leads to the resistance of virus
transmission to intervention strategies that are not strong enough, resulting in increased difficulty
in designing effective interventions to control the pandemic. Aggressive interventions with the
strength approximately equivalent to at least requiring all individuals, no matter infected or not,
to wear N95 respirators all time whilein public space, are predicted to be necessary by the model.
Furthermore, with the consideration of temporally varying intervention strength, we were able to
extend the model to capture the temporal and spatial heterogeneity of COVID-19 transmissionin
the United States of America. Projection of future COVID-19 transmission dynamics and
inference of intervention strengths in these states based on the models together show that the
current public health interventionsin the United States are not sufficient to completely mitigate
the pandemic, despite being able to reduce infections and deaths caused by COVID-19 to some
extent. These findings together stress the necessity of strong interventionsin effectively
controlling the transmission of COVID-19.

We also note that, as with any mathematical model for a complicated process, this model is

13
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not without limitations. Like all models in computational epidemiology, this model does not
account for many factors that contributes to the transmission of COVID-19. First, this model
assumes that there is no regional heterogeneity in the country or state of interest, and that the
population is homogenously mixed, while it has been demonstrated that the susceptibility to and
fatality of COVID-19 depends on many demographic factors, such as gender and age™*, and
life style related variables, such as smoking history®. Countries and state are assumed to be
isolated from each other, which means no international and interstate travels occur during the
time period, while imported cases likely contribute to many COVID-19 outbreaks around the
world. Moreover, since a data-driven approach was used to parameterize the models, it might
underestimate the severity of the pandemic because of the existence of undocumented infections
due to the limitation of diagnostic capacity®. Other factors not included in the model, such as
seasonality in transmission of coronaviruses™, existence of asymptotic infections®, and change
of case definition® may also affect the epidemic curve of COVID-19. Nevertheless, the model,
while possibly underestimating the severity of COVID-19 dueto ssimplification, still forecasts
the rapid escalation in COVID-19 spread, and highlights the extreme urgency of stronger
interventions such as contact tracing, rigorous socia distancing, or the application of N95
respirators for public use by showing that moderate interventions are not likely to effectively
reduce transmission due to the cooperative infection term. Modest measures such as those
adopted so far in the USA unfortunately nevertheless disrupt the normal function of society and
creates substantial economic and societal costs and may not be effective as planned.

In summary, this study develops a cooperative infection model that connects viral dynamics

14
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to the transmission dynamics of COVID-19 at the population level, captures the nonlinearity in
the dose-response relationship in viral infection, correctly reproduces COVID-19 transmission
characteristicsin different countries, and, forecasts the rapid spread of COVID-19 in the absence
of extremely strong interventions due to the cooperativity in SARS-CoV-2 infection. While
further research and analysis are needed to improve the model and better understand the
molecular mechanisms behind the cooperativity in viral infection, the predictions of this model
demonstrate the indispensability of stronger interventions™* that should encourage policy

makers with interests in public good.

Methods

Data acquisition

Time-course data for numbers of currently infected individuals (i.e. active cases) and total
infected individuals (i.e. total cases, including both infected individuals and recovered or
deceased individuals) in the nine countries, which were used in fitting the models, were retrieved

from https.//www.worldometers.info/coronavirus/. Data for total population estimatesin the nine

countries, which were used in estimation of the initial number of susceptible people at the onset
of pandemic in each country, were obtained from the 2019 Revision of World Population

Prospects (https://popul ation.un.org/wpp/). COVID-19 transmission datain 51 territories of the

USA, including daily numbers of total infected individuals, which include both currently infected
individuals and recovered or deceased cases, and daily numbers of recoveries and deaths were

retrieved from The COVID Tracking Project (https://covidtracking.com). Data of population in
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territories of the USA were obtained from The United States Census Bureau

(https://www.census.gov/datal/tabl es/time-seri es/demo/popest/2010s-state-total .html).

M athematical modelsfor COVID-19 transmission

We develop our models based on the original SIRD model for transmission of an infectious

disease:
B3 - _pisin
< %r bISIIT] — yl1] = 7l1]
rrady
\% = 1[1]

In which [§] isthe total number of susceptible individuals, [1] isthe total number of infected
individuals, [R] isthe total number of recovered individuals and [D] isthe total number of
deceased individuals, b, y and t are model parameters. To simplify this model, we let

[N] = [R] + [D] denote thetotal number of non-susceptible (i.e. recovered or deceased)
individuals. By letting a = y + 7, we can then derive the equations describing the dynamics of

the reduced SIRD modd!:
d[S]

ek —b[S][/]
dal[i]

< T b[S1[I] — all]
d[N]

it

Based on the reduced SIRD model, we further include an additional term [V] quantifying the
total size of viable virus pool. Dynamics of this variable depend on virus shedding from infected

individuals with arate linear to the total number of infected individuals [1], and virus decay with
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arate proportional to [V]. In the absence of cooperative infection, we assume a linear
relationship between the chance of a susceptible individual being infected and [V], that is, the
infection of susceptible individuals happens with arate proportional to the product of [V] and [S].

Thus, we have equations for the reduced SIRD model with virus pool:

(D) v
M _ viisy -t
% = a[l]

k% = c[1] — d[V]

Finally, to model the cooperativity in infection of an individual, we assume that the relationship

between the chance of a susceptible individual being infected and the viable virus pool size[V]

—[V]:K. Thus, we have differential

follows a non-linear relationship described by a Hill function e

equations for the dynamics of the reduced SIRD model with virus pool and cooperative infection

(i.e. the cooperative infection model):

(d[S] _ Vi

F
L
% = all]

\% = c[I] - d[V]

Simulation and parameter space sampling of the models
M odels were implemented with MATLAB scripts and solved using the function ode23s() for
solving stiff ordinary differential equations. Model parameters for each country were estimated

using differential simulated annealing, a global optimization algorithm that allows sampling of
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the parameter space®, by minimizing the cost function:

t=n 2 t=n 2
=5 2 (o)« 2, (")
t=1 t t=1 t

Inwhich p isaset of parameters, n isthe total number of time points with available data,
I:(p) isthe number of infected individuals on the t-th day predicted by the modd with
parameter set p, I, istheactua number of infected individuals on the t-th day, N.(p) isthe
number of non-susceptible individuals on the t-th day predicted by the model with parameter set
p, N, istheactual number of non-susceptible individuals on the t-th day. A parameter set p is
considered to generate a satisfactory fitting to the actual dataif f(p) < 0.005. All parameter
sets with satisfactory fitting to the data found during the sampling were kept for the following
analysis. Parameters used for the differential ssmulated annealing algorithm were initial
temperature B, = 107°, maximal temperature B,,.x = 108, cooling rate = 1.03, Markov chain
length m = 500.

Sengitivity analysis

Actual numbers of infections, deaths and recoveries were assumed to be two- or five-folds of the
reported values, corresponding to the assumptions that 50% or 80% of the cases were

undocumented in the presence of underreporting. Hence, the numbers of infected and

non-susceptible individuals on the t-th day used for model fitting were adjusted accordingly:

11 = 1"
N = N

In which It(“) and Nt(“) denote the actual numbers of infected and non-susceptible individuals
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onthet-thday, 17 and N are reported numbers of infected and non-susceptible individuals
onthet-thday. ¢ isalinear factor for correction of underreporting, which has the value 2 in the
case of 50% underreporting and 5 for 80% underreporting. Scripts and datasets are availablein
the folder “Parameter sensitivity” at the GitHub page of the project:

https://qithub.com/LocasaleLab/COVID 19 modeds/tree/master/Parameter%20sensitivity.

Simulation of interventions

Simulation of interventions was performed over a time window of 100 days starting from the
onset of the first infection in each country. For each country, simulation was done with 5,000
parameter sets randomly selected from all sampled parameter sets with satisfactory fitting to the
country-specific COVID-19 transmission data. An intervention was assumed to start on day 48.
We first smulated the model without intervention in the time window of day O to day 48, and
then simulated the model under the intervention from day 48 to day 100. For a parameter set p,
the relative number of infected individuals on day 100 under an intervention | was calculated as

below:

N;(p)
Ny (p)

Inwhich N;(p) isthe number of infected individuals on day 100 with the parameter set p and

n(p) =

under theintervention |, and N, (p) isthe number of infected individuals on day 100 with this
parameter set in the absence of intervention.

Simulation of the cooper ative infection term

For each parameter set, we first simulated the cooperative infection model with that parameter

set in the time span from the onset of the pandemic in the corresponding country to April 3, 2020,
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and recorded the maximal value of viral dose [V], [V]max, during thistime span. We then

computed the values of the cooperative infectionterm H = [V[]VT]:K with the 101 values

V] =0, [Vllgnoa" JETE k'[r(])g‘a", o, [V]max- Since H isamonotonically increasing function of [V],

[Vfax

—=—_Relative values of the
[Vmax+K

we have the maximal value of H onthe 101 [V] values. H,,, =

cooperative infection term compared to H,,,, were then plotted against the relative viral dose

% to illustrate the dependence of the cooperative infection term on viral dose.

The model of dynamic intervention

A dynamic intervention term, «(t), was used to model the launching and loosening of public

health interventions in different states of the USA:

W = o e
FO
% = all]

k% = a(t)e[l] - d[V]

a(t) hasfour distinct phases depending on its quantitative relationship with the time ¢: first,
the *no intervention phase’, in which «(t) hasvalue 1, meaning that no intervention isin place
during this phase; followed by the second phase, ‘ start of intervention’, in which a(t) keeps
decreasing until reaching its minimal value at the start of the third phase, ‘ maintenance of
intervention’, during which a(t) ismaintained at its minimal value. The last phase is the ‘lifting
of intervention’ phase in which a(t) asymptotically approaches 1 (i.e. no intervention). These

dynamic behaviors of a(t) were modeled using the equation:
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( 1 te[0,T)
! elr,r+Z
1+ A(t — T)me-BG1) te[rr+3)
a(t) =5 ! - LE[T+2, T+ 4 )
1 a(D) e R
1

114G -T_mymebers LEITT B AT

Inwhich A, T, m, B, A are parameters that together determine the shape of the a(t) curve.
Among these parameters, T, % and A describesthe lengths of the ‘no intervention’, ‘ start of
intervention’, and ‘ maintenance of intervention’ phases. All model parameters were determined
by fitting daily numbers of COVID-19 infections, deaths and recoveries in the timespan from Jan
22, 2020 to July 15, 2020 in 51 states and DC using the same fitting and sampling methods
described in “Simulation and parameter space sampling of the models’.

Simulation of different intervention scenariosin the USA

ODEs were solved over the time window from Jan 22, 2020 to June 5, 2021 using the function
0de23s() in MATLAB R2019a. To simulate the case of no intervention, the parameter T (i.e.
length of the ‘no intervention’ phase) was set to 10,000 days, while all other parameters were left
unchanged. For the case of no lifting of intervention, the parameter A was set to 10,000 days,
while all other parameters were unchanged. Confidence regions of the smulated curves were
determined based on 500 randomly sampled parameter sets that satisfactorily fit the actual data.
Data and code availability

Data and code used in this study are available at the GitHub page of the Locasale Lab:

https://github.com/Locasalel ab/COVID_19 models. Complete results of fitting and predicting

COVID-19 transmission dynamics in states of the USA are available at:
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Figurelegends

Figure 1. A cooperative infection model captures country-specific COVID-19 transmission
dynamics

A. Diagrams of the original SIRD model, reduced SIRD model, reduced SIRD model with virus
pool, and reduced SIRD model with virus pool and cooperative infection.

B. Workflow for the model selection process and the definition of cost function used.

C. Optimal cost function values achieved in fitting country-specific COVID-19 transmission data
using the reduced SIRD model, reduced SIRD model with virus pool, and reduced SIRD model
with virus pool and cooperative infection. The dashed horizontal line indicates the threshold of
cost function value for satisfactory fitting. A parameter set with cost function value lower than
this threshold was considered satisfactory.

D. Equations for the reduced SIRD model with virus pool and cooperative infection and meaning

of model parameters.

Figure 2. The cooper ative infection model predicts country-specific transmission dynamics
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A. Moddl-predicted numbers of infected individual during the time window of 80 days starting
from February 15, 2020 and comparison between model -predictions and actual data for dates
before April 3, 2020.

B. Range of country-specific model parameters estimated from fitting the COVID-19

transmission data by country.

Figure 3. Extremely strict interventions are needed to control the COVID-19 pandemic
A. Diagram and model equations for the cooperative infection model under infected
individual-based intervention (upper panel) and population-based intervention (lower pane!).
B. Values of the intervention strength coefficient a used in smulation of the interventions and
their equivalent levels of virus-blocking efficiency.

C. Model-predicted numbers of infected individuals before and after the intervention for both
infected individual-based and population-based interventions under different intervention
strengths. Shaded regions were computed from simulations based on 5,000 randomly sampled
parameter sets that satisfactorily fit the country-specific transmission data.

D. Relative numbers of infected individuals under interventions on day 100 since the onset of
pandemic compared to the case without intervention. Values for each country were computed

based on the parameter set with optimal fitting for that country.

Figure 4. Cooper ative infection resultsin resistance to public health inter ventions

A. Definition of the cooperative infection term and its relationship with the rate of infection.
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B. Relationship between viral dose and value of the cooperative infection term in different
countries.

C. Influence of reducing the viral dose by 90% (left panel) or 99% (right panel) on the value of
cooperative infection term. Violin plots were drawn based on distribution of the relative
cooperative infection term values computed from 5,000 randomly sampled parameter sets.
Circles indicate median values based on the 5,000 smulations and stars indicate values

computed based on parameter sets with optimal fitting.

Figure 5. Transmission characteristics of COVID-19 in the USA

A. Diagram of the model of dynamic intervention.

B. Comparison between actual and model-predicted numbers of infections and deathsin North
Carolina. Shaded regions were computed from simulations based on 500 randomly sampled
parameter sets that satisfactorily fit the actual transmission data.

C. Model-predicted total infections and deaths in the USA under the assumption of no
intervention, current intervention scenarios, or no lifting of intervention. Shaded regions were
computed from simulations based on 500 randomly sampled parameter sets that satisfactorily fit
the actual transmission data.

D. Modd-predicted numbers of lives saved by intervention and cost by lifting intervention in
each territory as of June 5, 2021. Values were computed based on the parameter sets with optimal
fitting for that state.

E. Distributions of average and minimal values of the intervention strength coefficient « in
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territories of the USA. Values were computed based on the parameter sets with optimal fitting for

that state.
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Figure 1. A cooperative infection model correctly captures country-specific COVID-19

transmission dynamics
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Figure 2. The cooperative infection model predicts country-specific transmission

dynamics
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Figure 3. Extremely strict interventions are needed to control the COVID-19 pandemic
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Figure 4. Cooperative infection results in resistance to public health interventions
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Figure 5. Transmission characteristics of COVID-19 in the United States of America

medRXxiv preprint doi: https://doi.org/10.1101/2020.05.05.20092361; this version posted September 18, 2020. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.

Infections in North Carolina

5
14 %10

B

Model of dynamic intervention

It is made available under a CC-BY-NC-ND 4.0 International license .

@it} < 1: Tirs-dspandsnt intervenfion strength

Weak

[=)

SUOIOBUI JO Jaquiny

©

©

strength

<

Maximal
intervention
strength

Average
intervention
strength

Intervention

@

1

08

s
<
Qﬂe m
<, 7 5
g ) ]
£z Y 2
] %, K, b
T 3 &, 7 32
- @ £
%m 5 mmuyv N »n
T Os % o
S & (R4S S
Z 3® % T
£ 5= os o, >
£= s N 3
35w S <z -
o § o =
73 £ a %
8 S8 Oy S, £
© 5o ny«w 2N =
T cc8 o Y, =
® 558 . B, £
> 223 NN
o &b %, o
£ 222 [N Avmw £
g =8 o s
['4 0w W < QFV \\W@ g
‘2 1 3 ©
2 Q%«o “ b
Q X . . . Q >
o~ © nmmﬂhwmv N o © © < o~ o nMT \Wn\ <
& e S
@wu a|doad paseasep/paiancoal Jo Jaquiny @,W -
< >
2 2
c £ y
o S8 RN
= B %,
2 c B m \W
o o 35 0
> = «—>» gt 4
s > = &m
(] @ o ac = 0
Q > o9 peti=] mﬁ
© 5 c 55 g = > N
S = o0 g @ g8 o
2 38 2 N
mw R= mm g o0 g m «mw«

2 4= £ 55 £E o,
5 ¢ S ¢ jFz: 2 .
i) > () - 0O 5gcc °

s § & g g5l 2
< 2L 3
8 ¢ E & = Etoogy %
=1 =] = B EE8Z 88 %
- @ B o © SLEEQD® ° 4
2 Q ge
o E £ E 2 33sss22 %
o 8 8 £ . %,
€ » & = © %
.. .. .. .. X
2 — N ™ <~ < © © © o~ © -~ © n~aw~v
v © O O ® o - E %,
0 0 0 0 adoad jo Jequinpy 2y
T © ® ® @
° = | =] = S
o o o o o
%,
%,
bl
= ®
= pi
ry 5
27}
= rvdeo\
ol
w = o c&q/
E b o 2 o,
[ = T %
wl= g ¢ <«
= =T . . %
= ] = = Y
= fw\'_vu - .M %
ey o= s 2,
b Nt ? nﬂ\
R %
1] I I ] 2 o o
b =
A _r—m o | e © 0 ¥ o © woa o - 9o Qrv,«\
= o =y = a|doad Jo laquinp W

C

Lives saved by intervention and cost by lifting intervention

0.8

in each state on June 5th, 2021

Saved by intervention

06

Cost by lifting intervention

0.4

0.2

L-1NojoauUU0Y
l-eyoneq yinos
l_spesnyoessey
[-stou|||
oulep

I BuiwoApp
[-llemeH

|- 0oIX8|\ MBN
- EJ03Eeqg YHoN
SUIDENY

I exsely
l-sesuey]
Fuein

| uisuoosiNA

I anysdwen map
I-emo|

I eyseiqaN

I euejuopy

| sesueyy

- EIqUINIOD 4O JoLsIa
- eluIBIIA 1Sop
I iddississiy

I Ayonjuay]

- Bloyepo

|- atemelaQg
l-uoBaip
SEESSEVIEYR
|-euelpu|
-oyep|

| opeiojo)
l-sexa]

I egosauuIy
[-Puels| spoyy
FOlYO

[- euljoJed YUoN
ewubiun

I epeasN
I-uoyBuiysepp
|- euljoie) ynog
I pue|fiey

- unossijy
-uebiyoin

| eweqgely

|- elueAjAsuusd
I euozuy

| eueisino
I-eibiosn

I Kesior maN
[-eluiojljey
)0\ MeN
-epuol4

1000000+

1000004

100004

1000

1004

104


https://doi.org/10.1101/2020.05.05.20092361
http://creativecommons.org/licenses/by-nc-nd/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2020.05.05.20092361; this version posted September 18, 2020. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.

It is made available under a CC-BY-NC-ND 4.0 International license .

—~
f2)
©
(2]
et
Q
@
£
S
o &
©° oD
o o S
g 8 g
. o
[Te] —
z U 5L
po) —
g = =3
= ~ © O
@ [ ~ =
O] = ccf
o £ o 0 ®
0 N » = = O
=] ® L0 =
2 2 53> 8
X ‘o Q EETB
N - W o N N
- [=}
a|doad jo JaquinN
o =}
o o
©§ ® &
=] =]
o N o N
© W0 © W
-~ -~
>
~ Qg Q
= o ¢ x o ©
3] < WL = < W
= o 2 ©
o S
< o £
> AN N
- > = >
X o X oyt
o~ [te} - [te) o N N 1 ~ 1 O
~ o [a\] - o
a|doad jo JaquinN a|doad jo JequinN
o o
=] =)
© & © &
o o
o o o N
© W © v
-~ -
c Ko} e}
= o < ©
3 SL @ S3e
@ g > 8
o £ o E
S Y2 N 5
¥ > >
X o & % 2
o o
™ o - o © < 3% o
a|doad jo 1aquinN a|doad jo 1equinN
o o
o o
© ] ® ]
o o
o o
© W © W
-~ -
3 a )
c o 0 X o ©
© < L > < W
& 8 8
o £ o £
S N eb N
- > = >
X oQa * oA
N N 1~ 1 O o [t} o
N -~ o ~
s|doad Jo JlequinN a|doad jo JoquinN

Figure S1. Model-predicted numbers of non-susceptible individuals
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A

Figure S2. Model-predicted COVID-19 transmission dynamics under interventions

Model-predicted numbers of infected individuals under population-based intervention
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Figure S4. Model-inferred intervention strength in USA states
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