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Abstract

The COVID-19 contagion has developed at an alarming rate in the US and as of April
24, 2020, tens of thousands of people have already died from the disease. In the event of
an outbreak like such, forecasting the extent of the mortality that will occur is crucial to
aid the implementation of effective interventions. Mortality depends on two factors: the
case fatality rate and the case incidence. We combine a cohort-based model that
determines case fatality rates along with a modified logistic model that evaluates the
case incidence to determine the number of deaths in all the US states over time; the
model is also able to include the impact of interventions. Both models yield exceptional
goodness-of-fit. The model predicted a range of death outcomes (79k to 246k) all of
which are considerably greater than the figures presented in mainstream media. This
model can be used more effectively than current models to estimate the number of
deaths during an outbreak, allowing for better planning.

Introduction 1

The first case of coronavirus disease 2019, or COVID-19, a respiratory infection caused 2

by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), was first identified 3

in Wuhan, China in late 2019 [1]. Subsequently, the outbreak has spread to 212 [2] 4

countries, including the United States, where the first case of COVID-19 was detected 5

in Washington state on January 20, 2020 [3]. As of April 24, 2020, the U.S has 6

reported 830053 cases and 42311 deaths [4]. 7

As the pandemic progresses, determining its prognosis is essential to inform the 8

adoption of adequate mitigation efforts. Many have attempted to forecast the trajectory 9

of the epidemic in the United States, and at the forefront is the White House 10

Coronavirus (COVID-19) Task Force [5], led by Dr. Anthony Fauci [6]. On March 29, 11

Dr. Fauci suggested that the US would likely face 100,000 to 200,000 deaths, with 12

millions of cases [7]. However, on April 9 he said the estimate had been revised down 13

to 60,000 [8]. Moreover, a model by the University of Washington, closely followed by 14

the White House, projects 67,000 deaths as of April 24, 2020 [9], in line with Dr. 15

Fauci’s statement [8]. 16

It is well-known that there is a wide variance in the sizes of outbreaks between states 17

as well as the resulting incidence of deaths. The primary reason for the variance is the 18

uncertainty in the prediction of infections and the fatality rate of infected individuals. 19

In this paper, we forecast the final number of cumulative deaths in each state using 20
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improved models to determine both the cumulative case incidence and the case fatality 21

rate. We calculated the case fatality rate (CFR) for each state using a cohort-based 22

approach, which has demonstrated greater accuracy than traditional methods [10]. 23

Additionally, the number of cumulative cases in each state is predicted using a modified 24

logistic model. Combining the two, we are able to forecast the number of cumulative 25

deaths by state. Additionally, we analyze the drivers of deaths and discuss implications 26

on policy formation. 27

Methods 28

Data sources 29

The primary data for this study is publicly available and was obtained from the Center 30

for Systems Science and Engineering (CSSE) at Johns Hopkins University [11]. We 31

obtained the data pertaining to daily new cases/deaths and cumulative cases/deaths for 32

the period of January 22, 2020, to April 24, 2020. In addition, we obtained US state 33

population data from the 2010 United States Census Bureau [12]. The number of 34

deaths is a product of the case fatality rate (CFR) and the population confirmed to 35

have been infected [13]. Therefore, in order to determine cumulative fatalities due to 36

COVID-19, it is necessary to first predict the CFR and the number of cases. CFR, case 37

incidence, and deaths were evaluated for all fifty states as well as the District of 38

Columbia. 39

Calculating CFR 40

There are three principal measures of disease lethality: the case fatality rate (CFR), 41

infection fatality rate (IFR) and mortality rate (MR). The mortality rate is represented 42

by the proportion of cumulative deaths to the total at-risk population. This is 43

ultimately indicative of the probability of any individual’s mortality among the total 44

population. The CFR uses the same numerator (cumulative deaths) but instead divides 45

it by the number of cumulative confirmed cases. The case fatality [14] rate is the 46

proportion of individuals who die from a disease among all individuals diagnosed with 47

the disease within a specified timeframe [15]. That is, it reveals the percentage of 48

individuals that die among all individuals who test positive for the disease. The IFR is 49

similar to the CFR, except it represents the ratio of deaths to the total number of 50

people who are infected; it accounts for all infected individuals regardless of whether 51

their disease is reported or not. In an ideal scenario, where zero individuals with 52

COVID-19 went unnoticed, and surveillance was faultless, the IFR and CFR would be 53

equivalent. However, this is not truly plausible; testing is limited, asymptomatic 54

infections commonly are not surveilled, and not all instances of the disease are 55

accounted for in reality. As a result, the CFR that we calculate will be much higher 56

than the IFR and the mortality rate. 57

In this paper, we use a logistical function [10] to describe the exponential growth 58

and subsequent flattening of COVID-19 CFR. The CFR depends on three parameters: 59

the final CFR (L), the CFR growth rate (k), and the onset-to-death interval (t0) and is 60

expressed as: 61

c(t) =
L

1 + e−k(t−t0)
(1)

Using this model, we calculate the number of deaths each day for each cohort or 62

group of individuals infected on the same day. Next, we build an objective function that 63
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minimizes the root mean square error between the actual and predicted values of 64

cumulative deaths. We ran 125,000 simulations, using numerous values of the 65

onset-to-death interval, the CFR, and the CFR growth rate. The CFR was kept in the 66

range of 0.5% to 20%, the slope was kept in the range of 0.005 and 0.7, and the 67

onset-to-death interval bounded between 0 and 60 days. We assigned these bounds 68

because after in-depth explorations of the model, we were convinced the solutions would 69

be within these parameters. We then identify the model parameters that best fit the 70

data (top 1% of the best-fit RMSE). With a kernel density distribution of case fatality 71

rates, we determined the low CFR (the lowest value regardless of its frequency); the 72

mode CFR (the most probable CFR); and the high CFR (the highest value regardless of 73

its frequency). 74

Calculating Cumulative Cases 75

Most methods for calculating the spread of infections use a form of logistic or 76

Susceptible-Infectious-Recovered (SIR) model [16] [17] [18]. While these models 77

perform effectively when predicting the spread of infections in the absence of 78

interventions, they are unable to model the outbreak (without additional modifications) 79

under conditions of mitigation efforts such as shelter-in-place orders. Common to all 80

methods is the incorporation of the growth rate. In the SIR model, this is R0, the 81

transmission rate– given that the population lacks immunity and there are no deliberate 82

interventions to impede disease transmission. The number of infections will continuously 83

rise in a population if R0 > 1, will remain steady if R0 = 1, and will decrease if R0 < 1. 84

To explicitly account for the impact of mitigation efforts, models must support gradual 85

changes in the shape of the case growth rate. 86

The logistic model forecasts the slow initial rise, exponential growth, and eventual 87

decay of cumulative cases, but cannot account for the changes that result from 88

interventions. Interventions may drastically impact the rate of transmission, thus it is 89

necessary to adapt the model to suit these conditions. 90

Therefore, we have adapted the logistic model to include the change in the rate of 91

infection to include the effects of interventions such as social distancing. The original 92

logistic model total that determines the total number of cases depends on three 93

parameters: the terminal number of cumulative cases (C), the CFR growth rate (r), and 94

the days to the inflection point (ti). The inflection point indicates the day at which the 95

number of daily cases reaches its maximum. This function that describes the change in 96

case incidencei(t) over time can be expressed as: 97

i(t) =
C

1 + e−r(t−ti)
(2)

The modified logistic model has five parameters; however, the terminal number of 98

cumulative cases (C) and inflection point (t0) remain unchanged. The set of equations 99

that describe the incidence using the modified logistic model are: 100

f(t) = K
1 + tanh(P ∗ (t− ti))

2
(3)

rm(t) = r(1 + f(t)) (4)

i(t) =
C

1 + e−rm(t−ti)
(5)
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The parameter rm is the modified growth function that changes over time, and f is a 101

smoothing function that determines how quickly the rate diverges around the point of 102

inflection, as well as the magnitude of the transformation. Using this model, we 103

calculated the number of cases for each state. 104

Next, we built an objective function that minimizes the root mean square error 105

between the actual and predicted values of cumulative cases, and ran numerous 106

simulations by varying the four parameters. We held P constant at 0.1 in all our 107

simulations. We ran 375,000 simulations, using numerous values of the days to 108

inflection: t0, the terminal number of cases, C, the growth rate, r, and the growth rate 109

multiplier, K. The terminal number of cases was kept in the range of 0.01% to 3% of the 110

each state’s penetration, the growth rate was kept in the range of 0.01 and 0.3, and the 111

number of days to inflection was bounded between 10 and 50 days. The growth rate 112

multiplier was kept in the range between 0 and 40%. 113

From these simulations, we identify the set of parameters that returns the lowest 114

error. Finally, we forecasted the number of cases up to September 10, 2020. With a 115

kernel density distribution of case incidence possibilities, we determined the mode 116

number of cases (the most probable value of cumulative cases) and the 95% percent 117

confidence interval range of case incidence for each state. 118

Calculating Cumulative Cases 119

The cumulative mortality is the product of the case fatality rate and the cumulative 120

case incidence. With the low, mode, and high values of both CFR and cumulative case 121

incidence, we evaluate the nine possible death tolls for each state by finding the product 122

of each CFR value and each value of the cumulative case incidence. To determine 123

cumulative mortality on the national scale, we add up the respective cells for all states. 124

Results 125

Predicting case incidence 126

We calculated the case incidence for each jurisdiction. Fig 1 shows the goodness-of-fit 127

between the forecasted cases and the true number of cases for New York. The two sets 128

of figures show the cumulative case incidence and new case incidence. It demonstrates 129

that there is an excellent fit for both new and cumulative cases. We calculated the R2
130

for all the states and the fit was excellent (greater than 98% for all the states) for all 131

states indicating that the modified logistical function does a great job of modeling the 132

transition after the intervention. More information regarding the model’s goodness-of-fit 133

for the states is provided in the supplemental information (see S1 Table). 134

Fig 1. Comparison of modeled and actual number of cases for New York.
The goodness-of-fit between the forecasted cases and the true number of cases for New
York. Used data from March 10 through April 24.

Fig 2 displays the range of the forecasted total case incidence for the top states that 135

contribute 90% of all the deaths. The vast majority of the states will experience less 136

than 50000 cases (see S2 Table). However, New York is a substantial outlier: the model 137

predicts 500,000 cases for the mode case. All the numbers we will quote in the rest of 138

the document will be the mode case (unless otherwise specified), as it has the highest 139

likelihood. Even if the best-case scenario transpires, its case incidence will probably 140

exceed the incidence of any other state by over 200000. 141

Next, we evaluated the forecasted case incidence for the entire United States (Fig 3). 142

The total number of cases predicted is above 1.2M, and the number of new daily cases 143
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Fig 2. Forecasted case incidence for the top US states. The range of
forecasted total case incidence for the top states that contribute 90% of all the deaths.
The low, mode, and high cases are displayed. The low and high cases are determined as
the low and high end of the 95% confidence interval.

peaks at more than 35000. As New York and New Jersey contribute significantly toward 144

the overall case incidence, the United States peak daily cases is strongly dependent on 145

the peak of these two states. 146

Fig 3. Forecasted Case incidence for US over time. The forecasted case
incidence of the United States over time. This shows both the new and cumulative
number of cases.

In order to understand whether the different states have a case incidence 147

proportionate to their populations, we calculated the discrepancy between the projected 148

cases per capita for individual states and U.S average projected cumulative cases per 149

capita (Fig 4). New York, New Jersey, Massachusetts, Connecticut, and Louisiana have 150

much higher case incidence per capita. This means that the disease affected these areas 151

disproportionately. In contrast, the states of California, Texas, Florida, and Ohio did 152

much better in controlling the spread of the infection. 153

Fig 4. Difference in forecasted case incidence between states. Difference in
forecasted case incidence between the top states that contributed 90% of all the deaths.
This was calculated by subtracting the difference between projected cases per capita for
individual states and the U.S average projected cumulative cases per capita.

Predicting Case Fatality Rates 154

We previously calculated the case fatality rates for Hubei province and showed that the 155

goodness-of-fit was excellent [10]. We used the same methodology and calculated the 156

CFR for all the states. The model is able to fit the data extremely well showing that 157

both the model and the methodology are sound. We provide the R2 value for all the 158

states in the supplemental information (see S1 Table). 159

We calculated the range of final case fatality rates for each state (Fig 5). The CFR 160

for most states is between 5% and 10%. Compared to the case incidence, case fatality 161

rates have far less variability. Massachusetts, Connecticut, New York, and Maryland 162

have relatively higher CFR’s. In contrast, Texas, California and Georgia have much 163

lower CFR’s. We also provide supplemental information for all state (see S3 Table). 164

Fig 5. Forecasted case fatality rates for the top US states. The range of
forecasted total fatality rates for the top states that contribute 90% of all the deaths.
The low, mode, and high cases are displayed. The low and high cases are determined as
the low and high end of the 95% confidence interval.

In order to measure how well states are faring relative to each other, we calculate the 165

difference between projected CFR’s for each state and the average CFR for the US 166

(Fig 6). Positive (negative) values indicate that the CFR is worse (better). It clearly 167

shows that there is a wide disparity between states’ case fatality rates. Furthermore, the 168

difference in CFR closely corresponds with projected cumulative deaths. This shows 169

even more dramatically how much greater New York’s and Connecticut’s outbreaks are 170

compared to other states. 171
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Fig 6. Difference in forecasted case fatality rates between states. Difference
in forecasted case fatality rates between the top states that contributed 90% of all the
deaths. This was calculated by subtracting the difference between projected CFR for
individual states and the U.S average CFR.

Predicting deaths 172

Considering that CFR and case incidence are the factors of death, it is fitting now to 173

discuss the projected incidence of deaths (Fig 7). We calculated the number of deaths 174

for each of the top 15 states that contribute 90% of the deaths. This reveals the 175

tremendous disparity between the size of outbreaks in different states (see also S4 176

Table). The majority of states will experience less than 10,000 deaths. New York is once 177

again a significant outlier; the model returns a minimum of 40,000 deaths and a mode of 178

65,000 deaths, 45% of the U.S. total and more than the next five jurisdictions combined. 179

This can be traced back to the state’s relatively high projected case fatality rate and 180

case incidence. New Jersey, and Massachusetts are expected to follow New York, with 181

18,000, and 10,000 respective projected deaths. Many states are disproportionately 182

represented; some are over-indexed (over-represented) in the national death toll while 183

others are under-indexed. Differences in deaths among jurisdictions are ultimately 184

indicative of differences in CFR and case incidence. Sources of variation include the 185

chronology and success of mitigation efforts, the prevalence of testing, and the 186

distribution of age [19] and comorbidities [20] within populations at risk of infection. 187

Fig 7. Forecasted deaths for the top US states. The range of forecasted deaths
for the top states that contribute 90% of all the deaths. The low, mode, and high cases
are displayed. The low and high cases are determined as the low and high end of the
95% confidence interval.

Table 1 summarizes the various possible death tolls under each of the 9 conditions. 188

There is a 95% likelihood that any of these results are possible. The lowest cumulative 189

deaths the U.S. could experience is 78,000, considerably higher than both Fauci’s 190

prediction and the University of Washington model. The highest mortality is a sobering 191

figure: 245000. 192

Table 1. Predicted death tolls for the US

Low CFR Mode CFR High CFR

Low Case Incidence 78833 97875 145282
Mode Case Incidence 100940 125484 183998
High Case Incidence 136079 168356 245904

Predicted deaths tolls for the nine different scenarios. These scenarios are constructed using the low, mode, and high cases for
CFR and cases. The low and high cases are determined as the low and high end of the 95% confidence interval.

For the best-fit case in all the states, we calculated the number of deaths per day 193

and the cumulative number of deaths (Fig 8). This shows that the number of deaths 194

will reach an asymptote in the end of June and the number of daily deaths will peak in 195

early May. 196

Fig 8. Forecasted deaths for US over time. The forecasted deaths of the United
States over time. This shows both the new and cumulative number of cases.
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Discussion 197

We used a cohort analysis approach to estimate CFR and a modified logistic model 198

(that explicitly accounts for the impact of mitigation efforts) to forecast case incidence 199

on the state level, and afterwards calculated mortality on the state and national levels. 200

Our model showed a wide range of mortality, with 79,000 deaths on the low end and a 201

maximum of 245,000 deaths. Every possibility predicted by the model exceeds the 202

prognostications produced by both the White House and the University of Washington 203

model. Our model also revealed the deep disparity in deaths among different states, 204

which is attributable to differences in case fatality rate and case incidence. We postulate 205

reasons for these variations. 206

Many states in the US Northeast, including New York, New Jersey, Massachusetts, 207

and Connecticut are disproportionately represented in the cumulative death toll. This 208

disparity is primarily because these states have much worse case incidence and case 209

fatality rates. New York is forecasted to experience the largest outbreak, the greatest 210

CFR, and the highest mortality of any state by far. One explanation for its high case 211

fatality rate is the strain the epidemic has placed on its healthcare system. As a result 212

of its high case incidence, more hospitalizations will be required, overwhelming the 213

medical care system. This could result in diminished quality of medical care, resulting 214

in a high case fatality rate. Additionally, the disease has disproportionately impacted 215

low-income, more vulnerable areas. [21] 216

The reason for the high case incidence itself is more perplexing. Numerous factors 217

are likely at play, such as the popularity of public transportation [22] and the high 218

population density of the New York City metropolitan area [23]] (where the vast 219

majority of cases have been reported [24]). However, it is difficult to find conclusive 220

evidence that any of these factors are directly accountable for the outbreak. It is very 221

likely that luck played a large role in determining where clusters appeared. There is 222

ample evidence that super-spreading events, or SSE’s, can cause sizable outbreaks [25]. 223

For instance, officials in New York stated that as many as fifty infections could be 224

traced back to a single man in Westchester County [26]. 225

We propose two principal explanations for the discrepancy between the death tolls 226

forecasted by the University of Washington model and that of our model: the 227

differences in both the procedure for calculating CFR and the procedure for calculating 228

mortality. Our cohort-based method to determining CFR’s predicts case fatality rates 229

more accurately at every stage of the outbreak than other models because it explicitly 230

accounts for the onset-to-death interval. Further, we forecast cumulative mortality by 231

independently evaluating CFR and case incidence. In contrast, the University of 232

Washington model directly predicts deaths; this method is prone to greater errors. 233

While both the CFR and case incidence models fit the data extremely well, there are 234

several challenges with estimating the number of deaths accurately. Our model assumes 235

the scale and methods of surveillance do not significantly change between today and the 236

future. Any changes to the testing process will affect the number of confirmed cases. 237

Breakthroughs in leveraging telemedicine, for instance, would result in increased 238

detection of infected individuals. In this case, the model’s current forecasts for case 239

incidence would be underestimates [27]. Additionally, if the shelter-in-place order is 240

withdrawn from states too early, there will likely be an increase in both the case 241

incidence and the mortality. The model itself has limitations; if our assumptions do not 242

hold true, then our analysis will not hold true either. 243

Supporting information 244

S1 Table Goodness of fit Goodness of fit for both the CFR and case incidence 245
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model. This shows excellent fit between the model and data. 246

S2 Table Final cumulative case incidence for all states. The predicted 247

cumulative case incidence for all states shows significant variability across states. 248

S3 Table CFR for all states. The predicted CFR for all states shows significant 249

variability across states. 250

S4 Table Final number of deaths for all states. The predicted deaths for all 251

states shows significant variability across states. 252
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