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Abstract 

Real-time reverse transcription polymerase chain reaction (RT-PCR) targeting select genes of the 
SARS-CoV-2 RNA has been the main diagnostic tool in the global response to the COVID-19 
pandemic. This study was aimed at the estimation of diagnostic sensitivity and specificity of the 
first RT-PCR test developed by China CDC in January 2020. The study design is a secondary 
analysis of published findings on 1014 patients in Wuhan, China, of whom 59.3% tested positive 
for COVID-19 in RT-PCR tests and 87.6% tested positive in chest CT exams. We utilized 
previously ignored expert opinions in the form of verbal probability classifications of patients with 
conflicting test results to estimate the informative prior distribution of the infected proportion. It 
was then used in a Bayesian version of a previously developed model to reconstruct the sensitivity 
and specificity of the diagnostic tests without the need for specifying an inaccurate test as the gold 
standard. The sensitivity of the RT-PCR diagnostic test was estimated to be 0.707 (95% CI: 0.668, 
0.749), while the specificity was 0.851 (95% CI: 0.774, 0.941). Caution is advised in generalizing 
these findings to other versions of the RT-PCR test that are being used in diverse geographic 
regions. 

Introduction 

The cause of a disease outbreak that began in Wuhan, China in the last quarter of year 2019 was 
later identified as a novel coronavirus, labeled SARS-CoV-2 since it can cause severe acute 
respiratory syndrome, a disease that has been named COVID-19 [33]. The publication of the 
SARS-CoV-2 genome [30] led to the rapid development in January 2020 of real-time reverse 
transcription polymerase chain reaction (RT-PCR) tests for the diagnosis of COVID-19 while 
avoiding cross-reactions to other known coronaviruses. Among early versions, one was 
developed in China that targeted the ORF1ab and N genes of viral RNA [34] while another 
version was developed in Germany that targeted the RdRp, E, and N genes [8]. Real-time RT-
PCR tests were developed and implemented thereafter by many laboratories around the world [6, 
19, 24], even as COVID-19 became a global pandemic that continued to spread rapidly. A listing 
of tests and protocols is maintained online by the World Health Organization [35]. 

The rapid development and deployment of RT-PCR tests has been essential for the ability 
to measure and control the spread of SARS-CoV-2. However, the urgency of the pandemic has 
meant that the diagnostic tests were deployed without first being supported by clinical studies to 
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measure the diagnostic error rates. Initial knowledge about the RT-PCR tests was based on 
laboratory measurements of sensitivity to the minimum threshold of detection of viral loads and 
the required number of thermal cycles of the chain reaction [21]. Soon after deployment of the 
tests, attention was given to the viral distribution by physical location, such as the differences in 
positive rates of RT-PCR in nasopharyngeal versus oropharyngeal swabs, or in the sputum and 
bronchoalveolar lavage fluid [27, 31]. Other factors that can impact the diagnostic success of 
RT-PCR include the timing of the test relative to disease onset, adequacy of the volume of fluids 
collected in the swab, and deviations from the laboratory-recommended protocol under real-
world conditions. In terms of clinical decision-making, any of the causes of failure of the test led 
to incorrect diagnoses that resulted in false positives or false negatives and the lack of reliable 
data on diagnostic accuracy received media attention [12, 15] as the pandemic unfolded. 

This study provides an assessment of the diagnostic sensitivity and specificity of the RT-
PCR diagnostic test that was used shortly after the pandemic began in Wuhan, China. The data 
were collected in a study that had the aim of measuring the accuracy of chest computerized 
tomography (CT) imaging for diagnosis of COVID-19 in 1014 patients [1] and the investigators 
assumed that RT-PCR was the gold standard. The study authors provided additional information 
about the status of patients in the form of verbal probabilities of infection that were assigned 
after a review. Thus, in addition to the counts of positives and negatives for chest CT and RT-
PCR, there were unutilized data in the form of expert judgments about the patients. In this study, 
it is shown that putting together all of the available data permits the reconstruction of the 
sensitivity and specificity of RT-PCR for clinical decision-making without the need for a gold 
standard test. A by-product of this approach resulted in the assessment of diagnostic performance 
of chest CT imaging. 

There are two main features of the methods used in this study. The first feature is the use 
of fuzzy membership functions that creates a pathway for the inclusion of verbal probability data 
that would otherwise be ignored. The second feature is the use of the Bayesian form of modeling 
developed originally by Dawid and Skene in the maximum likelihood framework [9] that does 
not need the existence of a gold standard test for evaluation of the accuracy of a diagnostic test. 
However, it does need an informative prior distribution for the proportion of infected cases, 
which is possible to estimate from the verbal probability data. The two features are therefore 
related with the second feature arising as a result of the first one. The ability to discount the need 
for a gold standard test is important because neither the RT-PCR test nor the chest CT test are 
accurate enough to be considered gold standard tests for COVID-19. Reverse calculations that 
rely on considering one or another test as gold standard produce biased estimates, which can be 
avoided in the approach adopted here. 
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Methodology 

Data 

The methods were applied to data from a study that retrospectively enrolled patients suspected of 
having COVID-19 who underwent RT-PCR and chest CT imaging diagnostic tests at Tongji 
Hospital of Tongji Medical College of Huazhong University of Science and Technology in 
Wuhan, Hubei, China, during a 30-day period in the months of January and February, 2020 [1]. 
The effective sample size was 1014 and it was reported that 46% were male while the mean age 
was 51 ±15 years. Throat swab samples were collected and the RT-PCR assays were reported to 
have used TaqMan One-Step RT-PCR kits from Shanghai Huirui Biotechnology Co., Ltd., or 
Shanghai BioGerm Medical Biotechnology Co., Ltd., both of which were approved for use by 
China Food and Drug Administration. Chest imaging was done on one of three CT systems at the 
hospital and two radiologists reviewed the images while being blinded to the molecular test 
results. The median time interval between the chest CT exams and RT-PCR assays was 1 day. 

RT-PCR assays tested positive for 601 patients (59.3%) and negative for the other 413 
patients (40.7%). Chest CT exams were positive for 888 patients (87.6%) and negative for the 
other 126 patients (12.4%). See Table 1 for the joint distribution of the two tests. A large block 
of 308 patients with conflicting test results were reassessed on the basis of clinical symptoms and 
serial CT scans. The investigators concluded that 147 of these patients could be classified as 
highly likely cases of COVID-19 and another 103 could be classified as probable cases of 
COVID-19. Patients in both classifications had clinical symptoms of COVID-19, but repeat CT 
scans showed progression of disease in the highly likely cases while being stable in the probable 
cases. In summary, the data include the joint distribution of test results from RT-PCR and chest 
CT along with expert opinion in the form of verbal probabilities. 

Table 1. Summary of data for the observed joint distribution of RT-PCR and chest CT test 
results. See the footnote for a summary of clinical expert opinion data. 
 
 Positive chest CT Negative chest CT Row Sums 

Positive RT-PCR 580 21 601 

Negative RT-PCR 308* 105 413 

Column Sums 888 126 1014 
*Expert opinion indicated that COVID-19 was highly likely in 147 of these cases and probable in another 
103 cases. 

Statistical Analysis 

Dawid and Skene developed a maximum likelihood model for data from multiple raters that 
rigorously accounted for the uncertainty of the true rating of a case [9]. Their model is used here 
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in its Bayesian form for estimation of the sensitivity and specificity of diagnostic tests. The RT-
PCR and chest CT diagnostic tests are analogous to two raters that provide binary ratings and the 
true diagnosis, zi = 0 or 1 for the ith patient is unknown in the absence of a gold standard test for 
COVID-19. In order to estimate the informative prior distribution of the proportion of patients 
with COVID-19, it was necessary to use ideas from fuzzy logic that are described below in 
addition to details about the implementation of the Bayesian model. 

Linguistic uncertainties associated with terms such as highly likely and probable can be 
represented by membership functions of fuzzy logic that are not to be confused with probability 
distributions. A membership function can be defuzzified to yield a crisp estimate [32]. In the 
current application, the defuzzification yielded a probability associated with the linguistic terms. 
A recent study provided detailed estimates of membership functions of commonly used verbal 
probabilities [28]. In order to use their membership functions it was necessary to make a 
correspondence between the terminology used in the two studies [1, 28]. Equivalence was 
assumed between the terms highly likely and very likely, while the term probable was considered 
equivalent to likely, which is supported by synonyms for probable that are listed in the thesaurus 
by Oxford Languages. The centroids of membership functions yielded the values of the 
probability of being a highly likely or a probable case of COVID-19. Thus, the defuzzification 
provided a pathway to an exclusively probabilistic approach in the subsequent computation 
without having altogether ignored the linguistic uncertainties. 

The estimated verbal probabilities pv parametrized the Bernoulli distribution B(pv) that 
was used for imputation of ten thousand samples, each of size equal to the original data. Note 
that values of pv for a patient could be 0 or 1 in addition to the verbal probabilities that were 
estimated for the highly likely and probable classifications. The imputation resulted in the 
estimated distribution π of the proportion of patients that presented with COVID-19. For 
convenience of the Bayesian implementation in RStan [26], the informative prior for π was 
approximated by a beta distribution after matching the 2.5% and 97.5% quantiles to the imputed 
distribution using the Beta.Parms.from.Quantiles program [3] in R. 

The remaining parameters of the model may be denoted by θj,k for the probability of 
correct or incorrect assignment by the jth type of diagnostic test for the ith patient with true 
diagnosis zi = k, where k is binary. The parameters of primary interest in this study are θj,k since 
they represent sensitivity and specificity for each type of diagnostic test. The true diagnosis, zi = 
k, was marginalized over k in the RStan implementation because of its inability to sample 
discrete parameters. Thus, the Hamiltonian sampling was designed to estimate the logarithmic 
form of 

𝑝(𝑦|𝜃, 𝜋)  =  ෑ ෍ ቐ𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙(𝑧௜|𝜋) ෑ 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙(𝑦௜,௝|𝜃௝,௭[௜])
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 , 

where 𝑦௜,௝ denotes the observed jth type of diagnostic test result for the ith patient. Although the 

discrete parameter was marginalized, estimates were obtained of the probabilities of the true 
diagnosis, 𝑝(𝑧௜|𝜃, 𝜋). Noninformative prior distributions were used for the sensitivity of both 
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tests: beta distributions with shape parameters set equal to half, i.e. Beta(0.5, 0.5). Weakly 
informative prior distributions were used for the specificity of tests to assist with model 
convergence and to avoid inappropriate inferences. The 2.5% and 97.5% quantiles of the beta 
distributions for specificities covered a wide span between 0.50 and 0.95. Four chains were used 
while running the model in RStan, with 2500 iterations per chain that were run in parallel on four 
cores of an Intel i5 processor. 

Lastly, the positive and negative predictive values of each test were evaluated. These 
provide the chance of disease in a patient conditional upon results of the diagnostic test, i.e. 
P(COVID-19 | Positive test result) or P(COVID-19 | Negative test result). It is straightforward to 
relate the predictive values to the sensitivity, specificity, and pre-test probabilities of infection 
using Bayes’ rule. Statistical analysis was done using the R programming language [23] in the 
RStudio software environment [25]. 

Results 

Centroid defuzzification resulted in probability values 0.843 and 0.746 for highly likely and 
probable cases of COVID-19, respectively. Imputation of 10,000 samples based on Bernoulli 
trials indicated that the prior distribution of the proportion of patients who presented with 
COVID-19 had a median of 0.791 while the quantiles corresponding to 2.5% and 97.5% were 
0.778 and 0.803. The beta distribution with matched quantiles had shape parameters a = 876.2 
and b = 3307.4 and its mode matched within a margin of 0.00025, thereby providing a good 
substitute that acted as the informative prior for the Bayesian calculation in RStan.  

Table 2. Estimated sensitivity and specificity of RT-PCR and chest CT diagnostic tests for 
COVID-19. 

Test Parameter Mean SD 95% CI ESSa R̂b 
    Lower Upper   

RT-PCR 
Sensitivity 0.707 0.021 0.668 0.749 2073 1.00 
Specificity 0.851 0.042 0.774 0.941 1505 1.00 

Chest CT 
Sensitivity 0.992 0.008 0.971 1.000 1381 1.00 
Specificity 0.595 0.058 0.482 0.708 1903 1.00 

aEffective sample size after accounting for autocorrelated samples 
bPotential scale reduction statistic; R̂ < 1.1 indicates convergence of Markov chains 
 

The convergence and mixing of chains were satisfactory, resulting in estimates of 0.707 
for the sensitivity and 0.851 for the specificity of the RT-PCR test. In contrast, the sensitivity for 
chest CT was estimated to be quite high at 0.992, but it had a low specificity value of 0.595. See 
Table 2 for error estimates and more details. The model also provided estimates of the 
probability of having COVID-19 for each patient and these are shown in Table 3 for each of four 
combinations of RT-PCR and chest CT test results. The values ranged from a low of 0.016 when 
both tests were negative to a high of 0.978 for two positive tests. In the scenario of conflicting 
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test results, the probability of infection was higher for a positive chest CT exam than for a 
positive RT-PCR test. 

Table 3. Estimated probabilities of COVID-19 for combinations of RT-PCR and chest CT 
diagnostic test results. 

RT-PCR Chest CT Mean SD 95% CI ESSa R̂b 
  Probability  Lower Upper   

Negative 
Negative 0.016 0.017 0.000 0.062 1453 1.00 
Positive 0.761 0.041 0.670 0.834 1442 1.00 

Positive 
Negative 0.187 0.197 0.000 0.693 1085 1.01 
Positive 0.978 0.006 0.965 0.991 1868 1.00 

aEffective sample size after accounting for autocorrelated samples 
bPotential scale reduction statistic; R̂ < 1.1 indicates convergence of Markov chains 

 
The predictive values of the RT-PCR and chest CT diagnostic tests are shown in Figure 1 

for prior (pre-test) probabilities ranging from 0 to 1. The two curves in each panel show the 
posterior (post-test) probabilities of the presence of COVID-19 when test results are either 
positive or negative. It can be seen that the post-test probability of infection is generally higher 
for a positive RT-PCR test than for a positive chest CT, which is related to the higher specificity 
of RT-PCR. On the other hand, the post-test probability of infection is lower when chest CT is 
negative because of its higher sensitivity. 

Discussion 
 
RT-PCR tests are commonly used for the diagnosis of many influenza viruses and coronaviruses. 
However, they are often treated as the gold standard in comparisons made to other diagnostic 
methods, which has led to a rarity of estimates of their diagnostic accuracy in clinical practice. 
The virus culture process is considered a better standard, but it takes several days instead of the 
few hours needed for RT-PCR tests. In one such comparison [16], RT-PCR was found to have 
sensitivity greater than 96% relative to virus culture for the diagnosis of H1N1 influenza. 
Similarly, high accuracy of RT-PCR has also been reported for the MERS coronavirus [10]. On 
the other hand, low accuracy has been reported for detection of SARS coronavirus with real-time 
RT-PCR [14, 20], although rates of detection were improved with the refinement of laboratory 
methods [22]. 
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Figure 1. Probability of having COVID-19 predicted by RT-PCR (left) and chest CT (right) diagnostic 
tests as a function of the prior (pre-test) probability. The upper (red) curve applies for a person who tests 
positive, while the lower (blue) curve applies when the test is negative. The diagonal is the line of 
equality of pre-test and post-test probabilities; any point on it may be considered the predicted probability 
for a person before the diagnostic test is done. The arrows show an example of the changes induced by 
test results. For RT-PCR, the pre-test probability of 0.50 climbs to the post-test value of 0.83 after a 
positive test or it drops to 0.26 after a negative test result. For chest CT, the corresponding post-test 
probabilities of infection are 0.71 for a positive test or 0.01 for a negative test. The horizontal dashed lines 
mark probabilities of 10% and 90% for reference. 

 

In the current COVID-19 pandemic, it has been a great boon to have had the rapid 
development of RT-PCR diagnostic tests that target the detection of different genes from the 
viral RNA. Laboratory testing has shown that at least one version of the RT-PCR assay can 
detect viral loads as small as 3.2 RNA copies per reaction [8] and that it does not cross-react to 
other known coronaviruses, particularly when the primer for the assay is well-chosen [6]. 
However, there is widespread doubt about how well the tests have worked in practice [12, 15]. 
Several sources of error were mentioned in the Introduction that include among them the 
uncertain distribution of the virus in the body at various times during the COVID-19 disease 
trajectory [27]. Comparisons of specimens from nasal and throat swabs indicate better sensitivity 
in nasal swabs and diminished sensitivity in throat swabs, particularly after the first few days of 
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disease onset [31]. The variation in the severity of the viral infection between subjects presents 
another source of error with milder infections being more likely to escape detection. 

The error rates of diagnostic testing using RT-PCR for COVID-19 that were estimated in 
this study may be considered to provide the cumulative impact of various sources of error. Our 
analysis showed 70.7% sensitivity of the RT-PCR diagnostic test that was used in Wuhan during 
the early stage of the pandemic, designed by China CDC and implemented with TaqMan One-
Step RT-PCR kits. Even at the upper end of the 95% credible interval the sensitivity reached 
only 74.9%, which implies that the false negative rate exceeded 25%. The specificity of the test 
was better, estimated to be in the range from 77.4% to 94.1%. Using a reverse calculation that 
considered the chest CT as gold standard [11], the sensitivity and specificity of the same version 
of the RT-PCR test was reported to be 65% and 83%, respectively. Two other reverse 
calculations carried out by the same authors [11] on studies from China and Italy [5, 7] provided 
estimates as low as 47% for sensitivity and as high as 100% for specificity. However, the authors 
[11] acknowledged that the reverse calculations underestimated sensitivity and overestimated 
specificity of the RT-PCR tests, which is an expectation that is consistent with our findings. 

Among reasons for the low sensitivity of RT-PCR might be that the Wuhan study used 
throat swabs rather than nasal swabs and that the optimal timing for testing was still in the 
process of being discovered. For example, a later study of disease propagation among 4950 
quarantined Chinese participants reported that the first and second RT-PCR tests on throat-swab 
samples collected two days apart were positive in 72% and 92% of the 129 people who were 
eventually diagnosed with COVID-19 [17]. If data about the severity of infections and measures 
of viral load, such as cycle threshold of RT-PCR assays, had been available it might have been 
possible to explore whether it was the milder cases that tended to be misdiagnosed. It is likely 
that some of the diagnostic errors that resulted from the low sensitivity of RT-PCR were 
mitigated by the actions of medical professionals in Wuhan who might have decided to ignore 
negative test results in symptomatic patients. Nevertheless, the false negative rate is still likely to 
be among the main reasons for the difficulty in controlling the breakout in its early stages. For 
instance, if the prevalence is 10% in a population, our results indicate that testing would miss 
approximately 293 cases of COVID-19 for every 10,000 people tested. A highly transmissible 
virus can continue to propagate through the misdiagnosed cases. 

Despite the focus of this investigation on the early version of the RT-PCR test that was 
used in Wuhan in January and February 2020, the estimated values of sensitivity and specificity 
have some resemblance to findings about other RT-PCR tests. An analysis of data from seven 
longitudinal studies found that the probability of false negatives of RT-PCR tests reached their 
lowest value of 20% on the third day after onset of symptoms before starting to increase again 
[13]. An Italian study of multiple RT-PCR tests that targeted different genes of viral RNA used a 
repeated testing design in the emergency room and reported sensitivity values ranging from 62% 
to 94% [4]. It was not clear whether they studied a test that may be considered equivalent to the 
Chinese test, but the range of reported sensitivity values includes the point estimate and error 
interval that was estimated in this study. Woloshin et al. [29] concluded that after consideration 
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of current evidence, sensitivity and specificity values of 70% and 95% were reasonable estimates 
for RT-PCR tests. Although their estimate of specificity is high, the sensitivity value matches 
closely with our estimate. However, we also note that a systematic review found a high level of 
heterogeneity in the data for false negative rates [2], which serves as a warning against 
indiscriminate generalization of our results to other versions of RT-PCR tests. 

Measurement of diagnostic accuracy of chest CT exams was not an aim of this study. 
However, the availability of data from chest CT exams alongside RT-PCR test results assisted in 
improving the estimation of diagnostic performance of the RT-PCR test. Moreover, our estimates 
for the high sensitivity (97.1% to 100%) and low specificity (48.2% to 70.8%) of chest CT were 
comparable to other reports. For example, using RT-PCR as gold standard, a study in Italy by 
Caruso et al. [5] reported 97% sensitivity and 56% specificity. On the other hand, Ai et al. [1] 
reported 96.5% sensitivity and 25.4% specificity in their study in Wuhan which was also based 
on assuming that RT-PCR was the gold standard test. We found a substantially higher estimate 
of specificity based on the same data, which can be attributed to the advantage of taking expert 
opinion into account and avoiding the comparison to a flawed gold standard test. 

As far as the medical practitioner is concerned, the predictive values of the diagnostic test 
are of utmost importance. For COVID-19, if a medical practitioner suspected that there was a 
50% pre-test chance that a patient had the disease, a subsequent negative RT-PCR test would 
mean that the patient still has 26% chance of the disease. A second confirmatory negative test 
would bring the chance of disease down to 10.5%, which continues to be an uncomfortably high 
chance. This illustrates some of the hardship of decision-making that was faced in Wuhan by the 
medical community. 

From the methodological perspective, the approach adopted in this study delivered 
estimates of sensitivity and specificity that are free from the bias found in calculations based on 
an inaccurate gold standard test. The common reliance on a gold standard test was replaced here 
with the estimation of the prior distribution of the infected proportion coupled with Dawid and 
Skene’s [9] rigorous accounting of all possible true states of each patient. The utilization of 
expert opinion data in the form of verbal probabilities was key to the estimation of the prior 
proportion of COVID-19. Defuzzification made it possible to convert verbal probabilities to a 
framework that resides entirely within the domain of probability theory. The Bayesian 
computation flowed naturally from there on, with only a minor hurdle to overcome in 
marginalizing over the discrete set of true diagnoses to get past a limitation of the Hamiltonian 
sampling in RStan. 

Among the many limitations of this study, the primary one is that the estimated 
sensitivity and specificity apply to the particular version of the RT-PCR test that was urgently 
created by China CDC [34] and that was being used in Wuhan, China, during January and 
February, 2020. An important methodological limitation of the study is that it is a retrospective 
study based on probabilistic knowledge of diagnostic errors and there were no studies available 
that were based on using a better gold standard test than RT-PCR that could act as a reference for 
comparison.  
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